Guía del usuario

Aplicación Ethernet y canal de fibra

Serie FTB-8500 y FTB-8120NGE/8130NGE para FTB-500

Telecom Test and Measurement

www.EXFO.com

Copyright © 2001–2012 EXFO Inc. Todos los derechos reservados. No está autorizada la reproducción total o parcial de esta publicación, su almacenamiento en un sistema de consulta ni su transmisión por cualquier medio, ya sea electrónico, mecánico o de cualquier otra forma (entre otros, fotocopias o grabación), sin el permiso previo por escrito de EXFO Inc. (EXFO).

La información suministrada por EXFO se considera precisa y fiable. No obstante, EXFO no asume responsabilidad alguna derivada de su uso ni por cualquier violación de patentes u otros derechos de terceros que pudieran resultar de su uso. No se concede licencia alguna por implicación o por otros medios bajo ningún derecho de patente de EXFO.

El código para Entidades Gubernamentales y Mercantiles (CAGE) dentro de la Organización del Tratado del Atlántico Norte (OTAN) de EXFO es el 0L8C3.

La información incluida en la presente publicación se puede modificar sin previo aviso.

Marcas comerciales

Las marcas comerciales de EXFO se han identificado como tales. Sin embargo, la presencia o ausencia de dicha identificación no tiene efecto alguno sobre el estatus legal de ninguna marca registrada.

Unidades de medida

Las unidades de medida de la presente publicación están en conformidad con las normas y prácticas del SI.

mayo 11, 2012

Número de versión: 6.0.1

Contenido

	Información de certificación	ix
1	Presentación de Aplicación Ethernet y canal de fibra	1 3
2	Información de seguridad Advertencias de seguridad del láser Advertencias en las instrucciones de instalación	5 6
3	Primeros pasos Instalación de ToolBox Inserción y extracción de módulos de comprobación Encendido de la unidad	9 9
4	Interfaces físicas y LED Modelo FTB-8510B Modelo FTB-8510G Modelos FTB-8525 y FTB-8535 Modelos FTB-8120NGE y FTB-8130NGE	11 11 15 18
5	Presentación de la interfaz de usuario Smart Inicio de la aplicación de módulo Ventana principal Estado de prueba global y controles Favoritos Generación de informe de la prueba Elementos típicos de ficha Uso del teclado	33
6	Creación e inicio de un caso de prueba Presentación de Test Setup (Configuración de prueba) Disponibilidad del caso de prueba Prueba EtherSAM (Y.1564)	

Contenido

	Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544	
	Caso de prueba de Ethernet RFC 2544	
	Caso de prueba de Ethernet BERT	
	Caso de prueba del analizador de tramas Ethernet	
	Caso de prueba de bucle invertido Smart Ethernet	
	Caso de prueba de caudal de tráfico TCP Ethernet	
	Caso de prueba BERT de canal de fibra	129
7	Fichas de resumen	135
	Test Summary (Resumen de la prueba)	
	Alarm Summary (Resumen de la alarma)	
	Test Logger (Diario de la prueba)	148
8	Fichas de analizador de tráfico	151
Ŭ	Ethernet TX (TX de Ethernet)	153
	Ethernet RX (RX de Ethernet)	156
	Ethernet Statistics (Estadísticas de Ethernet)	160
	PBB-TE	
	Capas superiores	
	Flow Control (Control de flujo)	
	Traffic Filters (Filtros de tráfico)	170
	Traffic Filter Configuration (Configuración de filtros de tráfico)	176
	Traffic Filter Stats (Estadísticas de filtros de tráfico)	179
	Capture (Capturar)	181
	Graph (Gráfico)	186
	FC TX	187
	FC RX	
	FC Latency (Latencia de FC)	
	FC Statistics (Estadísticas de FC)	194
9	Fichas de generación de flujo	197
	Overview (Resumen)	
	Stream Configuration (Configuración de flujo)	
	РВВ-ТЕ	218
	MAC	221
	MPLS	224
	IP/UDP/TCP	226
	Payload (Carga útil)	230
	Frame Configuration (Configuración de trama) (canal de fibra)	231

10 Fichas de analizador de flujos	241
Overview (Resumen)	241
Stream (Flujo)	243
11 Fichas de puerto	
Electrical TX (TX eléctrica)	248
Electrical RX (RX eléctrica)	250
Optical TX (TX óptica)	252
Optical RX (RX óptica)	255
Interface Setup (Configuración de la interfaz) (Ethernet)	258
Interface Setup (Configuración de la interfaz) (canal de fibra)	263
Network (Red)	268
Advanced Auto-Neg. TX (TX de neg. auto. avanzada)	273
Advanced Auto-Neg. RX (RX de neg. auto. avanzada)	279
12 Fichas de WIS	
WIS TX	
WIS RX	
WIS OH RX	288
13 Fichas de patrón	
Pattern TX (TX de patrón)	
Pattern RX (RX de patrón)	
Error Analysis (análisis de errores)	297
14 Fichas IPTV	
Realización de pruebas de IPTV con FTB-8510B	
Discovery (Descubrimiento)	
Overview (Resumen)	
MDI/TR 101 290	327
IGMP	335
Stream Information (Información del flujo)	342
15 Fichas de RFC 2544	
Configuración global	
Throughput (Configuración del caudal de tráfico)	353
Back-to-Back (Configuración de transmisión recíproca)	358
Frame Loss (Configuración de pérdida de tramas)	363
Latency (Latencia)	368
Graph (Gráfico)	375

16 Fichas de EtherSAM	379
Overview (Configuration) [Resumen (Configuración)]	380
Services (Configuration) [Servicios (Configuración)]	385
Ramp (Configuration) [Rampa (Configuración)]	390
Overview (Resumen de la prueba de configuración - Resultados)	393
Service Configuration Test (Prueba de configuración de servicio - Resultados)	400
Service Performance Test (Prueba de rendimiento de servicio - Resultados)	403
17 Fichas de caudal de tráfico TCP	407
TCP Throughput Configuration (Configuración de caudal de tráfico TCP)	408
TCP Throughput Analysis (Resultados de análisis de caudal de tráfico TCP)	413
18 Ficha avanzada	415
Service Disruption Time (Tiempo de interrupción del servicio) (SDT)	415
19 Ficha común	421
Performance Monitoring (Supervisión del rendimiento) (PM)	421
20 Fichas de sistema	427
Preferences (Preferencias de la aplicación)	428
Default/Ethernet Test Preferences (Preferencias de prueba Ethernet/por defecto)	430
IPv6 Test Preferences (Preferencias de prueba IPv6)	434
FC Test Preferences (Preferencias de prueba FC)	437
Module Information (Información del módulo)	440
Opciones de software	442
Sincronización del reloj	448
Remote Control (Control remoto)	454
21 Fichas de herramientas	455
Script (Secuencia de comandos)	456
Ping Configuration (Configuración de ping)	461
Ping Results (Resultados de ping)	464
Trace Route Configuration (Configuración de ruta de traza)	468
Trace Route Results (Resultados de la ruta de traza)	470
ENIU Configuration (Configuración de ENIU)	4/3
ADC Configuration (Configuración de ADC)	4/5
802 3ah Statistics (Estadísticas de 802 3ah)	479 //82
802 3ah Events (Eventos de 802 3ah)	402 485
Traffic Scan (Exploración de tráfico)	488

22	Fichas de modo experto	497
	Expert Mode (Modo experto) (RFC 2544)	498
	Caudal de tráfico (RFC 2544)	500
	Back-to-Back (Transmisión recíproca) (RFC 2544)	502
	Frame Loss (Pérdida de tramas) (RFC 2544)	
	Latency (Latencia) (RFC 2544)	
	Port (Puerto) (BERT)	508 510
	Ethernet (BERT)	
	Pattern (Patrón) (BERT)	514
23	Recuperación automática tras la pérdida de la alimentación	517
24	Mantenimiento	521
	Recalibración de la unidad	522
	Reciclaje y desecho (solo para la Unión Europea)	523
25	Resolución de problemas	525
	Cómo solucionar problemas comunes	525
	Búsqueda de información en la página web de EXFO	526
	Contacto con el grupo de asistencia técnica	527
	Transporte	528
26	Garantía	529
	Información general	529
	Responsabilidad	530
	Exclusiones	531
	Certificación	
	Mantenimiento y reparaciones	532
-		
Α	Especificaciones	
	Interfaces opticas Ethernet	
	Interfaces eléctricas Ethernet	
	Interfaces de sincronización	
В	Glosario	545
	Lista de acrónimos	545
	VLAN/B-VLAN	561
	Etiquetas MPLS	562
	Etiqueta de señal de ruta (byte C2)	563

_

Contenido

С	Ventanas emergentes	565
	VLAN Configuration (Configuración VLAN)	566
	PBB-TE Interface configuration (Configuración de la interfaz PBB-TE)	568
	IPv4 Configuration (Configuración de IPv4)	570
	IPv6 Addresses Configuration (Configuración de direcciones IPv6)	572
	Copy Service Network Configuration (Copia de configuración de red de servicio)	577
	Service Profile Configuration (Configuración de perfil del servicio)	578
	Framing Configuration (Configuración del entramado)	580
	Frame Size Configuration (Configuración del tamaño de trama)	582
	Frame Format Configuration (Configuración del formato de trama)	584
	MAC Configuration (Configuración de MAC)	585
	MPLS Configuration (Configuración de MPLS)	587
	UDP Configuration (Configuración de UDP)	589
	TCP Configuration (Configuración de TCP)	589
	Advanced TOS/DS (TOS/DS avanzado)	590
	Ping	593
	Truncation Calculator (Calculadora de truncamiento)	597
	Field Match Configuration (Configuración de la coincidencia de campos)	599
	Triggered Frame Details (Detalles de trama disparada)	601
	Data Capture Export (Exportación de captura de datos)	602
Ín	dice	605

Información de certificación

Información sobre la Comisión Federal de Comunicaciones (Federal Communications Commission, FCC) e Industria de Canadá (Industry Canada, IC)

Los equipos de comprobación y medición electrónicos quedan exentos del cumplimiento de la Parte 15 de la FCC en Estados Unidos y de la ICES 003 de la IC en Canadá. Sin embargo, EXFO Inc. (EXFO) pone el máximo de su parte para garantizar el cumplimiento de las normas aplicables.

Los límites establecidos por estas normas están pensados para proporcionar una protección adecuada frente a interferencias dañinas cuando se utiliza el equipo en un entorno comercial. Este equipo genera, emplea y puede irradiar energía de radiofrecuencia y, si no se instala y se usa de acuerdo con la guía del usuario, puede causar interferencias dañinas para las radiocomunicaciones. El funcionamiento de este equipo en zonas residenciales puede causar interferencias dañinas, en cuyo caso el usuario tendrá que encargarse de corregir la interferencia a su cargo.

Información para la Unión Europea (CE)

Los equipos de comprobación y medición electrónicos están sujetos a la directiva CEM de la Unión Europea. La norma EN61326 dispone tanto de los requisitos de emisión como de inmunidad para equipos de laboratorio, medida y control. Esta unidad ha sido comprobada y se ha demostrado su cumplimiento de los límites de dispositivos digitales de clase A. Consulte *Declaración de conformidad CE* en la página xi.

Para obtener un cumplimiento permanente de los requisitos de la directiva CEM:

- Para FTB-8510G, emplee sólo cables de doble blindaje, tipo Belden 9907 o equivalentes, con una longitud máxima de 3 m para el puerto CLOCK OUT (SALIDA DE RELOJ).
- **1.** Para FTB-8535 y FTB-8130NGE, para los puertos **BNC**/EXT CLK utilice un cable coaxial con doble protección, tipo 734A o equivalente.
- **2.** Para FTB-8535 y FTB-8130NGE, para el puerto **REF OUT** (SALIDA DE REFERENCIA) use un cable con doble protección, tipo LMR-240 ULTRAFLEX o equivalente, con una longitud máxima de 3 m.
- **Nota:** Si el equipo que se describe en el presente documento porta el símbolo CE, significa que cumple con las directivas y normas comunitarias aplicables que se mencionan en la declaración de conformidad.

Láser

Este producto cumple las normas 21 CFR 1040.10 y EN 60825-1.

Este producto puede emplear un láser de Clase 1 o Clase 1M SFP o XFP. La clasificación del láser se indica en el SFP/XFP.

Declaración de conformidad CE

Application of Council Di	rective(s):	2006/95/EC - The Low Voltage Directive
		2004/108/EC - The EMC Directive 2006/66/EC - The Battery Directive 93/68/EEC - CE Marking
Manufacturer's Name:		And their amendments EXFO Inc.
Manufacturer's Address:		400 Godin Avenue Quebec, Quebec
Equipment Type/Environ	ment:	Canada, G1M 2K2 Test & Measurement / Industrial
Trade Name/Model No.:		FTB-8510/8510B/8510G
		IQS-8510/8510B/8510G Packet Blazer
EN 61010-1:2001 Edition 2.0	Safety Requirem Control, and Lab	ents for Electrical Equipment for Measurement, oratory Use – Part 1: General Requirements.
EN 61010-1:2001 Edition 2.0 EN 61326-1:2006	Safety Requirem Control, and Lab Electrical Equipn Use - EMC Requi	ents for Electrical Equipment for Measurement, oratory Use – Part 1: General Requirements. nent for Measurement, Control and Laboratory rements
EN 61010-1:2001 Edition 2.0 EN 61326-1:2006 EN 60825-1:2007 Edition 2.0	Safety Requirem Control, and Lab Electrical Equipn Use - EMC Requi Safety of laser pr requirements	ents for Electrical Equipment for Measurement, oratory Use – Part 1: General Requirements. nent for Measurement, Control and Laboratory rements roducts – Part 1: Equipment classification and
EN 61010-1:2001 Edition 2.0 EN 61326-1:2006 EN 60825-1:2007 Edition 2.0 EN 55022: 2006 + A1: 2007	Safety Requirem Control, and Lab Electrical Equipn Use - EMC Requi Safety of laser pr requirements Information tech characteristics –	ents for Electrical Equipment for Measurement, oratory Use – Part 1: General Requirements. nent for Measurement, Control and Laboratory rements roducts – Part 1: Equipment classification and nology equipment — Radio disturbance - Limits and methods of measurement
EN 61010-1:2001 Edition 2.0 EN 61326-1:2006 EN 60825-1:2007 Edition 2.0 EN 55022: 2006 + A1: 2007 I, the undersigned, hereby declare th	Safety Requirem Control, and Lab Electrical Equipn Use - EMC Requi Safety of laser pr requirements Information techn characteristics –	ents for Electrical Equipment for Measurement, oratory Use – Part 1: General Requirements. nent for Measurement, Control and Laboratory rements roducts – Part 1: Equipment classification and nology equipment — Radio disturbance - Limits and methods of measurement
EN 61010-1:2001 Edition 2.0 EN 61326-1:2006 EN 60825-1:2007 Edition 2.0 EN 55022: 2006 + A1: 2007 I, the undersigned, hereby declare th <u>Manufacturer</u> Signature:	Safety Requirem Control, and Lab Electrical Equipm Use - EMC Requi Safety of laser pr requirements Information tech characteristics –	ents for Electrical Equipment for Measurement, oratory Use – Part 1: General Requirements. nent for Measurement, Control and Laboratory rements roducts – Part 1: Equipment classification and nology equipment — Radio disturbance - Limits and methods of measurement fied above conforms to the above Directives and Standards.
EN 61010-1:2001 Edition 2.0 EN 61326-1:2006 EN 60825-1:2007 Edition 2.0 EN 55022: 2006 + A1: 2007 I, the undersigned, hereby declare the undersigned, hereby declare the undersigned and the statement of the stat	Safety Requirem Control, and Lab Electrical Equipm Use - EMC Requi Safety of laser pr requirements Information techn characteristics –	ents for Electrical Equipment for Measurement, oratory Use – Part 1: General Requirements. nent for Measurement, Control and Laboratory rements roducts – Part 1: Equipment classification and nology equipment — Radio disturbance - Limits and methods of measurement fied above conforms to the above Directives and Standards.
EN 61010-1:2001 Edition 2.0 EN 61326-1:2006 EN 60825-1:2007 Edition 2.0 EN 55022: 2006 + A1: 2007 I, the undersigned, hereby declare the undersigned, hereby declare the undersigned in the theory of	Safety Requirem Control, and Lab Electrical Equipm Use - EMC Requi Safety of laser pr requirements Information techn characteristics –	ents for Electrical Equipment for Measurement, oratory Use – Part 1: General Requirements. nent for Measurement, Control and Laboratory rements roducts – Part 1: Equipment classification and nology equipment — Radio disturbance - Limits and methods of measurement fied above conforms to the above Directives and Standard
EN 61010-1:2001 Edition 2.0 EN 61326-1:2006 EN 60825-1:2007 Edition 2.0 EN 55022: 2006 + A1: 2007 I, the undersigned, hereby declare th Manufacturer Signature: Full Name: Stephen Bul, E/EI Position: Vice-President R Development Address: 400 Godin Avenue Concede C1M 2/20	Safety Requirem Control, and Lab Electrical Equipn Use - EMC Requi Safety of laser pr requirements Information techn characteristics –	ents for Electrical Equipment for Measurement, oratory Use – Part 1: General Requirements. nent for Measurement, Control and Laboratory rements roducts – Part 1: Equipment classification and nology equipment — Radio disturbance - Limits and methods of measurement fied above conforms to the above Directives and Standards.

Position:

Address:

Date:

Vice-President Research and Development 400 Godin Avenue, Quebec (Quebec), Canada, G1M 2K2 February 1, 2009

EXFO	CE declar	ATION OF CONFORMITY			
Application of Council Dire	ctive(s):	2006/95/EC - The Low Voltage Directive 2004/108/EC - The EMC Directive 2006/66/EC - The Battery Directive 93/68/EEC - CE Marking And their amendments			
Manufacturer's Name: Manufacturer's Address:		EXFO Inc. 400 Godin Avenue Quebec, Quebec Canada, GIM 2K2			
Equipment Type/Environm Trade Name/Model No.:	ent:	Calada, G IN 2A2 Test & Measurement / Industrial Next-Generation Multiservice Test Modules / FTB-8120NGE/8130NGE AND IQS-8120NGE/8130NGE Power Blazer			
Standard(s) to which Conformity	Standard(s) to which Conformity is Declared:				
EN 61010-1:2001 Edition 2.0	Safety Requirements for Control, and Laboratory I	Electrical Equipment for Measurement, Use – Part 1: General Requirements.			
EN 61326-1:2006	Electrical Equipment for Use - EMC Requirements	Measurement, Control and Laboratory			
EN 60825-1:2007 Edition 2.0	Safety of laser products - requirements	- Part 1: Equipment classification and			
EN 55022: 2006 + A1: 2007	Information technology e characteristics — Limits	quipment — Radio disturbance and methods of measurement			
l, the undersigned, hereby declare that	t the equipment specified above	e conforms to the above Directives and Standards.			
<u>Manufacturer</u> Signature:	Bull				
Full Name: Stephen Bull, Ereng Position: Vice-President Res Development	search and				
Address: 400 Godin Avenue, C Canada, G1M 2K2 Date: February 1, 2009	Quebec (Quebec),				

Presentación de Aplicación Ethernet y canal de fibra

Solución de comprobación completamente integrada para la evaluación del rendimiento de redes de transporte de canal de fibra y Ethernet.

- ➤ Paquete de pruebas EtherSAM[™] (ITU-T Y.1564) completo. EtherSAM es la nueva norma para comprobar las redes móviles de retorno y los servicios comerciales de Ethernet.
- Mediciones de caudal de tráfico, transmisión recíproca, latencia y pérdida de tramas según el RFC 2544 (bidireccional)
- ➤ Función de prueba EtherBERT[™] para evaluar la integridad de los servicios de Ethernet que funcionan en redes WDM
- Generación y análisis de flujos múltiples, que permiten una verificación de la calidad del servicio (QoS) por medio de pruebas de priorización con redes virtuales LAN y TOS/DSCP
- Compatibilidad MPLS y PBB-TE para obtener una validación de transporte de Ethernet completa
- Capacidad para realizar pruebas BERT, RFC 2544, EtherSAM, analizador de tramas y bucle invertido Smart a través de IPv6.
- > Función de control remoto gracias al software Visual Guardian Lite
- Mediciones de caudal de tráfico TCP para la evaluación de la transmisión de datos de una aplicación a través de una conexión TCP
- > Pruebas y análisis de IPTV
- > Disponibilidad de LAN PHY y WAN PHY en un único módulo
- Medición de fluctuación de paquetes para calificar las redes de transporte Ethernet para la transmisión de tráfico sensible a retardos como vídeo y voz a través de IP (VoIP)
- Configuración lógica de capas FC-0, FC-1 y FC-2 para definición, prueba y análisis del rendimiento de puertos de canal de fibra
- Medición de latencia de ida y vuelta, y estimación del crédito entre búferes

Presentación de Aplicación Ethernet y canal de fibra

 Generación de tráfico de canal de fibra a 1x, 2x, 4x y 10x y pruebas BERT

- Capacidad de realizar una captura y descodificación de línea completa.
- Capacidad de explorar el tráfico en vivo entrante y descubrir automáticamente todos los flujos de ID/Prioridad de VLAN y MPLS ID/COS.

Esta guía del usuario describe la realización de pruebas de Ethernet y canal de fibra de los siguientes productos:

	Etherr	net (eléctrica)		Canal o	de fibra
Modelo	Eléctrica	Óptico			
	10/100/1000 Mbps	100/1000 Mbps	10 Gbps	1x/2x	4x/10x
FTB-8510B	Х	Х		Х	
FTB-8510G			Х		
FTB-8525	Х	Х		Х	
FTB-8535	Х	Х	Х	Х	Х
FTB-8120NGE	Х	Х		Х	
FTB-8130NGE	Х	Х	Х	Х	Х

Convenciones

Convenciones

Antes de usar el producto que se describe en este manual, debe familiarizarse con las siguientes convenciones:

ADVERTENCIA

Indica una posible situación de riesgo que, en caso de no evitarse, puede ocasionar *la muerte o lesiones graves*. No siga con la operación, a no ser que haya entendido las condiciones necesarias y las cumpla.

Precaución

Indica una posible situación de riesgo que, en caso de no evitarse, puede ocasionar *lesiones leves o moderadas*. No siga con la operación, a no ser que haya entendido las condiciones necesarias y las cumpla.

PRECAUCIÓN

Indica una posible situación de riesgo que, en caso de no evitarse, puede ocasionar *daños materiales*. No siga con la operación, a no ser que haya entendido las condiciones necesarias y las cumpla.

IMPORTANTE

Indica información sobre este producto que se debe tener en cuenta.

Información de seguridad

Advertencias de seguridad del láser

2

Advertencia

Cuando el LED LÁSER está encendido, significa que el dispositivo Serie FTB-8500 y FTB-8120NGE/8130NGE está recibiendo o emitiendo una señal óptica.

ADVERTENCIA

Keine Glasfasern installieren oder anschließen, während eine Laserquelle aktiv ist. No mire nunca directamente una fibra activa y asegúrese de tener los ojos protegidos en todo momento.

ADVERTENCIA

FTB-8510B, FTB-8120NGE y FTB-8525 pueden usar un SFP de clase 1M.

FTB-8510G puede usar un láser de Clase 1M XFP según la norma IEC 60825-1. La clasificación del láser se indica en el XFP.

FTB-8130NGE y FTB-8535 pueden emplear un láser de Clase 1M SFP y XFP según la norma IEC 60825-1. La clasificación del láser se indica en el XFP.

INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 1M LASER PRODUCT

Información de seguridad

Advertencias en las instrucciones de instalación

ADVERTENCIA

El uso de instrumentos ópticos con este producto incrementa el riesgo para la vista.

Advertencias en las instrucciones de instalación

PRECAUCIÓN

Esta unidad está diseñada sólo para uso en interiores.

PRECAUCIÓN

Todos las interfaces eléctricas son circuitos SELV (voltaje de seguridad extra bajo) previstos para su uso exclusivo dentro de edificios.

Para reducir el riesgo de incendio, use solo cable de línea de telecomunicaciones nº 26 AWG o mayor.

PRECAUCIÓN

En el interior no hay piezas que pueda cambiar el usuario. Contacte con el fabricante en lo relativo al mantenimiento de este equipo.

IMPORTANTE

Todo el cableado y la instalación deben estar de acuerdo con los códigos locales de construcción y electricidad, según lo estipulado por las autoridades en los países en los que se instale y use el presente equipo.

Información de seguridad

Advertencias en las instrucciones de instalación

Precaución

Equipo sensible a descargas electrostáticas (ESD):

Los módulos insertables pueden verse dañados por descargas de electricidad estática. Para minimizar el riesgo de daños, disipe la electricidad estática tocando un objeto de metal sin pintar y conectado a tierra

- > antes de retirar, insertar o manejar el módulo,
- > antes de conectar o desconectar cables en el módulo,
- > antes de insertar o retirar SFP/XFP en el módulo.

MPORTANTE

Todas las interfaces de telecomunicaciones (eléctricas) son circuitos SELV (voltaje de seguridad extra bajo) para su uso exclusivo dentro de edificios.

3 Primeros pasos

Si Aplicación Ethernet y canal de fibra se ha adquirido a la vez que FTB-500, el móduloAplicación Ethernet y canal de fibra estará preinstalado con la versión apropiada del software /ToolBox.

Instalación de ToolBox

ToolBox es el software de base y por eso debe instalarse en FTB-500 antes de usar el módulo Aplicación Ethernet y canal de fibra.

Nota: Consulte la guía del usuario de la plataforma FTB-500 para obtener más información sobre el proceso de instalación de Toolbox.

Inserción y extracción de módulos de comprobación

Precaución

Nunca inserte ni extraiga ningún módulo mientras el FTB-500 esté encendido. Esto causaría un daño inmediato e irreparable tanto en el módulo como en la unidad.

ADVERTENCIA

Cuando el LED de seguridad del láser (A) parpadea en el FTB-500, significa que al menos uno de los módulos está emitiendo una señal óptica. Compruebe todos los módulos, ya que puede tratarse de uno que no se esté usando en ese momento.

Nota: Consulte la guía del usuario de la plataforma FTB-500 para obtener más información sobre cómo insertar un módulo en FTB-500 o retirarlo de FTB-500.

Encendido de la unidad

Encienda la FTB-500. Consulte la guía del usuario de la plataforma FTB-500 para obtener más información.

4 Interfaces físicas y LED

En esta sección se describen todos los modelos, conectores (puertos) y LED de Serie FTB-8500 y FTB-8120NGE/8130NGE disponibles en cada módulo.

Modelo FTB-8510B

El FTB-8510B se suministra siempre con dos puertos eléctricos de Ethernet de 10/1000/1000 Mbps y dos puertos ópticos que se pueden usar tanto para Ethernet de 100/1000 Mbps como para canal de fibra de 1x/2x, pero en el modelo básico sólo están activados los puertos eléctricos de 10/100 Mbps.

Modelo	Description (Descripción)
FTB-8510B	Aplicación Ethernet y canal de fibra con dos puertos eléctricos Ethernet de 10/100 Mbps.
FTB-8510B-1	Aplicación Ethernet y canal de fibra con un puerto eléctrico Ethernet de 10/100 Mbps, un puerto eléctrico Ethernet de 10/100/1000 Mbps y un puerto Ethernet de 1000 Mbps.
FTB-8510B-2	Aplicación Ethernet y canal de fibra con dos puertos eléctricos Ethernet de 10/100/1000 Mbps y dos puertos ópticos Ethernet de 1000 Mbps.

Nota: los puertos ópticos Ethernet de 100 Mbps y los puertos de canal de fibra de 1x y 2x están disponibles a través de las opciones de software. Consulte Opciones de software en la página 442 para obtener más información.

Ethernet eléctrica de 10/100/1000 Mbps

El módulo FTB-8510B proporciona dos puertos eléctricos para 10Base-T o 100Base-TX. Las opciones FTB-8510B-1 y FTB-8510B-2 añaden respectivamente la función para realizar pruebas 1000Base-T en uno o dos puertos.

El tipo de conector al puerto es RJ-45 para conexión de categoría 5 de par cruzado sin blindaje (UTP).

- **Nota:** consulte Especificaciones en la página 535 para ver las especificaciones del cable.
 - Conecte la señal eléctrica de 10/100/1000 que se quiere probar al puerto marcado como 0/100/1000 nº 1 o 10/100/1000 nº 2.
- **Nota:** el puerto nº 1 es el puerto activado con el módulo FTB-8510B-1 para la prueba 1000Base-T.

LED	estado	Description (Descripción)
LINK/ACT	Encendido	Enlace Ethernet activo.
(verde)	Apagado	Enlace Ethernet inactivo.
	Intermitente	Actividad de TX/RX.
DUPLEX	Encendido	Modo de dúplex completo.
(amarillo)	Apagado	Modo de medio dúplex.
	Intermitente	Se detectan colisiones.

► Indicadores LED

Ethernet óptica de 100/1000 Mbps o Canal de fibra de 1x/2x

Los módulos FTB-8510B-1 y FTB-8510B-2 disponen respectivamente de uno o dos puertos ópticos para las pruebas de Ethernet de 1000Base-X y de canal de fibra de 1x/2x. Los puertos ópticos Ethernet de 100Base-FX y de canal de fibra de 1x/2x están disponibles a través de las opciones de software.

Los puertos ópticos son ranuras de forma pequeña insertable (SFP) (Conector LC dual o simple).

 Inserte uno de los siguientes módulos SFP en la ranura óptica nº 1/nº 2.

Opción	Description (Descripción)
FTB-8590	Conectores LC del módulo transceptor SFP óptico, 1000Base-SX/FC 1x/2x (850 nm).
FTB-8591	Conectores LC del módulo transceptor SFP óptico, 1000Base-LX/FC 1x/2x (1300 nm).
FTB-8592	Conectores LC del módulo transceptor SFP óptico, 1000Base-ZX/FC 1x/2x (1550 nm).
FTB-85910	Conectores LC del módulo transceptor SFP óptico, 100Base-FX (1310 nm, MMF, 2 Km).
FTB-85911	Conectores LC del módulo transceptor SFP óptico, 100Base-LX10 (1310 nm, SMF, 15 Km).

Conecte cuidadosamente los cables de fibra óptica a los puertos SFP de entrada y salida. Para garantizar una señal de buena calidad, asegúrese de que el conector de la fibra óptica está insertado completamente en el puerto del conector óptico.

Nota: el puerto nº 1 está activado con el módulo FTB-8510B-1 para la prueba 1000Base-X y cuando la opción de software óptico de 100M está activada en sólo un puerto.

► LED para puertos ópticos

LED	estado	Description (Descripción)
LASER	Encendido	Se genera una señal óptica
(rojo)	Apagado	No se genera ninguna señal óptica
LINK/ACT (verde)	Encendido	Enlace activo.
	Apagado	Enlace roto.
	Intermitente	Actividad de TX/RX.
DUPLEX (Amarillo) Disponible sólo con la interfaz Ethernet	Encendido	Modo de dúplex completo.
	Apagado	Modo de medio dúplex o al utilizar la interfaz 100Base-X o canal de fibra.
	Intermitente	Se detectan colisiones en el modo de medio dúplex.

Modelo FTB-8510G

FTB-8510G-LAN: un puerto 10 Gigabit Ethernet LAN PHY (10,3125 Gbps) (tipo de conector LC).

FTB-8510G-WAN: un puerto 10 Gigabit Ethernet WAN PHY (9,953 Gbps) (tipo de conector LC).

FTB-8510G-LAN/WAN: un puerto 10 Gigabit Ethernet LAN/WAN PHY (10,3125/9,953 Gbps) (tipo de conector LC).

FTB-8585: opción de software que convierte a un modelo FTB-8510G-LAN o FTB-8510G-WAN en un modelo FTB-8510G-LAN/WAN.

El FTB-8510G dispone de un puerto óptico, marcado como **10G ETHERNET**, para la función de prueba de 10 Gigabit Ethernet LAN/WAN.

Inserte uno de los siguientes transceptores ópticos XFP en la ranura **10G ETHERNET**.

Advertencia

Este producto puede emplear un láser de Clase 1 o de Clase 1M de tipo XFP según la norma IEC 60825-1. La clasificación del láser se indica en el XFP.

INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 1M LASER PRODUCT

Interfaces físicas y LED

Modelo FTB-8510G

Longitud de onda	Description (Descripción)	Número de pieza
850 nm	Óptica de onda corta SR para LAN o SW para WAN	FTB-85900
1310 nm	Óptica de onda larga LR para LAN o LW para WAN	FTB-85901
1550 nm	Óptica de onda larga ER para LAN o EW para WAN	FTB-85902

Conecte cuidadosamente los cables de fibra óptica a los puertos XFP de entrada y salida. Para garantizar una buena calidad de la señal, asegúrese de que el conector de fibra óptica esté completamente insertado en el puerto del conector óptico.

- **Nota:** no sustituta el XFP mientras la prueba está en proceso para evitar una distorsión en los resultados. En primer lugar, detenga la prueba, sustituya el XFP y, a continuación, vuelva a iniciar la prueba.
- **Nota:** utilice únicamente XFP compatibles con EXFO. el uso de XFP no compatibles puede afectar al rendimiento y la precisión del puerto óptico.

PRECAUCIÓN

Para evitar sobrepasar el nivel máximo de potencia de entrada, use un atenuador cuando se emplee una configuración de bucle invertido.

► LED

LED **LASER** (LÁSER): el LED LASER (LÁSER) rojo está encendido cuando la Serie FTB-8500 y FTB-8120NGE/8130NGE emiten una señal óptica de láser.

LED **LINK/ACT**: el LED LINK/ACT (ENLACE/ACTIVIDAD) está encendido cuando el enlace está activo, apagado cuando el enlace está roto y parpadea cuando se transmiten o reciben tramas.

Modelos FTB-8525 y FTB-8535

FTB-8525 Analizador de canal de fibra (1x/2x/4x) y Ethernet (10/100/1000M).

FTB-8535 Analizador de canal de fibra (1x/2x/4x/10x) y Ethernet (10/100/1000M/10Gig).

Rótulo del puerto	Description (Descripción)	Señales admitidas	Modelo
FC 1x/2x/4x ETHERNET 100M/1G	Puerto óptico de entrada/salida de forma pequeña insertable (SFP)	Canal de fibra de 1x, 2x y 4x Ethernet de 100 Mbps y 1 Gbps	FTB-8525 FTB-8535
FC 10x ETHERNET 10G	Puerto óptico de entrada/salida de forma pequeña insertable (XFP)	Canal de fibra de 10x Ethernet de 10 Gbps	FTB-8535
Ethernet 10/100/1000M	Puerto Ethernet RJ-45 eléctrico	10/100/1000 Mbps (eléctrico)	FTB-8525 FTB-8535
EXT CLK	Puerto BNC eléctrico	Señal DS1/1.5M/E1/2M/2 de sincronización de reloj externa	FTB-8535
SALIDA DE REFERENCIA	Puerto SMA de salida de referencia		FTB-8535

La siguiente tabla muestra la lista de puertos disponibles, así como una descripción y las señales compatibles con cada modelo.

Ethernet eléctrica de 10/100/1000 Mbps

El módulo FTB-8525/FTB-8535 proporciona un puerto eléctrico para 10Base-T, 100Base-T o 1000Base-T.

El tipo de conector al puerto es RJ-45 para conexión de categoría 5 de par cruzado sin blindaje (UTP).

- **Nota:** consulte Especificaciones en la página 535 para ver las especificaciones del cable.
 - Conecte la señal eléctrica de 10/100/1000 que se quiere probar al puerto ETHERNET 10/100/1000.
 - ► LED

LED	estado	Description (Descripción)
LINK/ACT (verde)	Encendido	Enlace Ethernet activo.
	Apagado	Enlace Ethernet inactivo.
	Intermitente	Actividad de TX/RX.
DUPLEX (amarillo)	Encendido	Modo de dúplex completo.
	Apagado	Modo de medio dúplex.
	Intermitente	Se detectan colisiones.

Canal de fibra óptica de 1x/2x/4x o Ethernet de 100/1000 Mbps

El módulo FTB-8525 proporciona un puerto óptico para pruebas de canal de fibra de 1x/2x/4x. Los puertos ópticos Ethernet de 100Base-FX y 1000Base-X están disponibles a través de las opciones de software. Las pruebas de canal de fibra de 1x/2x/4x y Ethernet están disponibles a través de las opciones de software del modelo FTB-8535.

Los puertos ópticos son ranuras de forma pequeña insertable (SFP) (Conector LC dual o simple).

- Description Número de Longitud de Alcance (Descripción) onda pieza 1310 nm Corto (15 Km) Módulo transceptor SFP FTB-8190 óptico de valor múltiple 1310 nm Intermedio (40 Km) FTB-8191 (FC 1x/2x) con conector LC 1550 nm Intermedio (40 Km) FTB-8193 1550 nm Largo (80 Km) FTB-8192 Módulo transceptor SFP 1310 nm MM FTB-85910 óptico con conector LC SM 1310 nm FTB-85911 Ethernet de 100 Mbps 850 nm MMF (<500 m) FTB-8590 Módulo transceptor SFP óptico Gig-E/FC 1x/2x 1310 nm 10 Km FTB-8591 con conector LC 1550 nm 90 Km FTB-8592 850 nm MMF (<500 m) FTB-85912 Módulo transceptor SFP óptico Gig-E/FC 1x/2x/4x1310 nm SMF (4 Km) FTB-85913 con conector LC 1310 nm SMF (30 Km) FTB-85914 SMF (40 Km) 1550 nm FTB-85915
- Inserte uno de los siguientes módulos SFP en la ranura óptica nº 1/nº 2.

 Conecte cuidadosamente los cables de fibra óptica a los puertos SFP de entrada y salida. Para garantizar una señal de buena calidad, asegúrese de que el conector de la fibra óptica está insertado completamente en el puerto del conector óptico.

► LED para puertos ópticos

LED	estado	Description (Descripción)
LASER	Encendido	Se genera una señal óptica
(rojo)	Apagado	No se genera ninguna señal óptica
LED RX utilizado	Encendido	Enlace activo
para el estado de enlace/actividad de Ethernet y canal de fibra	Apagado	Enlace roto
	Intermitente	Actividad de TX/RX

Canal de fibra de 10x y Ethernet de 10G

El FTB-8525/FTB-8535 dispone de un puerto óptico para la función de prueba de canal de fibra de 10x o Ethernet de 10 Gigabit LAN/WAN.

Inserte uno de los siguientes transceptores ópticos XFP en la ranura **FC 10x - ETHERNET 10G**.

ADVERTENCIA

Este producto puede emplear un láser de Clase 1 o de Clase 1M de tipo XFP según la norma IEC 60825-1. La clasificación del láser se indica en el XFP.

Description (Descripción)	Longitud de onda	Alcance	Número de pieza
Para Ethernet 10G: módulo transceptor XFP óptico	850 nm	Onda corta SR para LAN o SW para WAN	FTB-85900
de 10 Gbps con conector LC	1310 nm	Onda larga LR para LAN o LW para WAN	FTB-85901
	1550 nm	Onda larga ER para LAN o EW para WAN	FTB-85902
Para Ethernet de 10G o canal	1310 nm	10 Km	FTB-81900
de fibra de T0x: módulo transceptor óptico de	1310 nm	40 Km	FTB-81901
valor múltiple (10/10,7 Gbps) con conector LC	1550 nm	80 Km	FTB-81902

Conecte cuidadosamente los cables de fibra óptica a los puertos XFP de entrada y salida. Para garantizar una buena calidad de la señal, asegúrese de que el conector de fibra óptica esté completamente insertado en el puerto del conector óptico.

- **Nota:** no sustituta el XFP mientras la prueba está en proceso para evitar una distorsión en los resultados. En primer lugar, detenga la prueba, sustituya el XFP y, a continuación, vuelva a iniciar la prueba.
- **Nota:** utilice únicamente XFP compatibles con EXFO. el uso de XFP no compatibles puede afectar al rendimiento y la precisión del puerto óptico.

PRECAUCIÓN

Para evitar sobrepasar el nivel máximo de potencia de entrada, use un atenuador cuando se emplee una configuración de bucle invertido.

Indicadores LED

LED **LASER** (LÁSER): el LED LASER (LÁSER) rojo está encendido cuando la Serie FTB-8500 y FTB-8120NGE/8130NGE emiten una señal óptica de láser.

LED **LINK/ACT**: el LED LINK/ACT (ENLACE/ACTIVIDAD) está encendido cuando el enlace está activo, apagado cuando el enlace está roto y parpadea cuando se transmiten o reciben tramas.

Modelos FTB-8120NGE y FTB-8130NGE

FTB-8120NGE Analizador de Ethernet (10/100/1000M) y canal de fibra (1x/2x/4x).

FTB-8130NGE Analizador de Ethernet (10/100/1000M) y canal de fibra (1x/2x/4x/10x).

Nota: únicamente los puertos relacionados con las aplicaciones Ethernet y canal de fibra se incluyen en esta guía del usuario; consulte la guía del usuario del analizador SONET/SDH para obtener más información sobre los otros puertos.

En la siguiente tabla se muestra la lista de puertos disponibles, así como una descripción y las señales admitidas en cada modelo.

Rótulo del puerto	Description (Descripción)	Señales admitidas	Modelo
100M-4.25G	Puerto óptico de entrada/salida de forma pequeña insertable (SFP)	Canal de fibra de 1x, 2x y 4x Ethernet de 100 Mbps y 1 Gbps	FTB-8120NGE FTB-8130NGE
10G-11.3G	Puerto óptico de entrada/salida de forma pequeña insertable (XFP)	Canal de fibra de 10x Ethernet de 10 Gbps	FTB-8130NGE
Ethernet 10/100/1000M	Puerto Ethernet RJ-45 eléctrico	10/100/1000 Mbps (eléctrico)	FTB-8120NGE FTB-8130NGE
AUX	Puerto BNC eléctrico	Señal DS1/1.5M/E1/2M/2 o 1PPS de sincronización de reloj externa	FTB-8120NGE FTB-8130NGE
SALIDA DE REFERENCIA	Puerto SMA de salida de referencia		FTB-8130NGE

Ethernet eléctrica de 10/100/1000 Mbps

El módulo FTB-8120NGE/FTB-8130NGE proporciona un puerto eléctrico para 10Base-T, 100Base-TX o 1000Base-T.

El tipo de conector al puerto es RJ-45 para conexión de categoría 5 de par cruzado sin blindaje (UTP).

Nota: consulte la sección A para ver las especificaciones del cable.

- Conecte la señal eléctrica de 10/100/1000 que se quiere probar al puerto ETHERNET 10/100/1000 del módulo Serie FTB-8500 y FTB-8120NGE/8130NGE.
- ► Indicadores LED

LED	estado	Description (Descripción)
LINK/ACT	Encendido	Enlace Ethernet activo.
(verde)	Apagado	Enlace Ethernet inactivo.
	Intermitente	Actividad de TX/RX.
DUPLEX	Encendido	Modo de dúplex completo.
(amarillo)	Apagado	Modo de medio dúplex.
	Intermitente	Se detectan colisiones.

Ethernet óptica de 100/1000 Mbps o Canal de fibra de 1x/2x/4x

El módulo Serie FTB-8500 y FTB-8120NGE/8130NGE proporciona un puerto óptico para pruebas de Ethernet de 1000Base-X o canal de fibra de 1x/2x/4x. Los puertos ópticos Ethernet de 100Base-FX y de canal de fibra de 1x/2x/4x están disponibles a través de las opciones de software.

Los puertos ópticos son ranuras de forma pequeña insertable (SFP) (Conector LC dual o simple).

 Inserte uno de los siguientes módulos SFP en la ranura óptica nº 1/nº 2.

Description (Descripción)	Longitud de onda	Alcance	Número de pieza
Módulo transceptor SFP óptico de	1310 nm	Corto (15 Km)	FTB-8190
conector LC	1310 nm	Intermedio (40 Km)	FTB-8191
	1550 nm	Intermedio (40 Km)	FTB-8193
	1550 nm	Largo (80 Km)	FTB-8192
Módulo transceptor SFP óptico con	1310 nm	MM	FTB-85910
conector LC Ethernet de 100 Mbps	1310 nm	SM	FTB-85911
Módulo transceptor SFP óptico	850 nm	MMF (<500 m)	FTB-8590
Gig-E/FC 1x/2x con conector LC	1310 nm	10 Km	FTB-8591
	1550 nm	90 Km	FTB-8592
Módulo transceptor SFP óptico	850 nm	MMF (<500 m)	FTB-85912
Gig-E/FC 1x/2x/4x con conector LC	1310 nm	SMF (4 Km)	FTB-85913
	1310 nm	SMF (30 Km)	FTB-85914
	1550 nm	SMF (40 Km)	FTB-85915

- Conecte cuidadosamente los cables de fibra óptica a los puertos SFP de entrada y salida. Para garantizar una señal de buena calidad, asegúrese de que el conector de la fibra óptica está insertado completamente en el puerto del conector óptico.
- ► LED para puertos ópticos

LED	estado	Description (Descripción)
LASER	Encendido	Se genera una señal óptica
(rojo)	Apagado	No se genera ninguna señal óptica
LED RX utilizado para el estado de enlace/actividad	Encendido	Enlace activo
	Apagado	Enlace roto
de Ethernet y canal de fibra	Intermitente	Actividad de TX/RX

Ethernet de 10G y canal de fibra de 10x

El FTB-8525/FTB-8535 dispone de un puerto óptico para la función de prueba de Ethernet de 10 Gigabit LAN/WAN o de canal de fibra de 10x.

Inserte uno de los siguientes transceptores ópticos XFP en la ranura **10-11.3G**.

Interfaces físicas y LED

Modelos FTB-8120NGE y FTB-8130NGE

ADVERTENCIA

Este producto puede emplear un láser de Clase 1 o de Clase 1M de tipo XFP según la norma IEC 60825-1. La clasificación del láser se indica en el XFP.

Description (Descripción)	Longitud de onda	Alcance	Número de pieza
Para Ethernet 10G: módulo transceptor XFP	850 nm	Onda corta SR para LAN o SW para WAN	FTB-85900
conector LC	1310 nm	Onda larga LR para LAN o LW para WAN	FTB-85901
	1550 nm	Onda larga ER para LAN o EW para WAN	FTB-85902
Para Ethernet de 10G o canal	1310 nm	10 Km	FTB-81900
de fibra de 10x: módulo transceptor óptico de	1310 nm	40 Km	FTB-81901
valor múltiple (10/10,7 Gbps) con conector LC	1550 nm	80 Km	FTB-81902

Conecte cuidadosamente los cables de fibra óptica a los puertos XFP de entrada y salida. Para garantizar una buena calidad de la señal, asegúrese de que el conector de fibra óptica esté completamente insertado en el puerto del conector óptico.

- **Nota:** no sustituta el XFP mientras la prueba está en proceso para evitar una distorsión en los resultados. En primer lugar, detenga la prueba, sustituya el XFP y, a continuación, vuelva a iniciar la prueba.
- **Nota:** utilice únicamente XFP compatibles con EXFO. el uso de XFP no compatibles puede afectar al rendimiento y la precisión del puerto óptico.

Precaución

Para evitar sobrepasar el nivel máximo de potencia de entrada, use un atenuador cuando se emplee una configuración de bucle invertido.

Conecte cuidadosamente los cables de fibra óptica a los puertos XFP de entrada y salida. Para garantizar una buena calidad de la señal, asegúrese de que el conector de fibra óptica esté completamente insertado en el puerto del conector óptico.

- **Nota:** no sustituta el XFP mientras la prueba está en proceso para evitar una distorsión en los resultados. En primer lugar, detenga la prueba, sustituya el XFP y, a continuación, vuelva a iniciar la prueba.
- **Nota:** utilice únicamente XFP compatibles con EXFO. el uso de XFP no compatibles puede afectar al rendimiento y la precisión del puerto óptico.

Interfaces físicas y LED

Modelos FTB-8120NGE y FTB-8130NGE

PRECAUCIÓN

Para evitar sobrepasar el nivel máximo de potencia de entrada, use un atenuador cuando se emplee una configuración de bucle invertido.

► Indicadores LED

LED **LASER** (LÁSER): el LED LASER (LÁSER) rojo está encendido cuando la Serie FTB-8500 y FTB-8120NGE/8130NGE emiten una señal óptica de láser.

LED **LINK/ACT**: el LED LINK/ACT (ENLACE/ACTIVIDAD) está encendido cuando el enlace está activo, apagado cuando el enlace está roto y parpadea cuando se transmiten o reciben tramas.

Clock (Reloj)

Nota: La sincronización del reloj sólo está disponible para las interfaces Ethernet 10G y Fibre Channel 10x o para Dual Test Set (Conjunto de pruebas duales) en el modo de medición de latencia unidireccional.

Conecte el reloj de señal al puerto AUX.

- Use una señal de reloj DS1 o E1 para las pruebas Ethernet 10G y Fibre Channel 10x.
- Use una señal 1PPS para Dual Test Set (Conjunto de pruebas duales) en el modo de medición de latencia unidireccional. Sólo disponible con FTB-8120NGE y FTB-8130NGE para Dual Test Set (Conjunto de pruebas duales) en el modo de medición de latencia unidireccional.

Inicio de la aplicación de módulo

Para iniciar la aplicación Serie FTB-8500 y FTB-8120NGE/8130NGE:

- 1. Una vez que ha instalado el módulo Serie FTB-8500 y FTB-8120NGE/8130NGE, encienda el FTB-500.
- **2.** En la ventana principal de ToolBox, en **Modules** (Módulos), pulse Serie FTB-8500 y FTB-8120NGE/8130NGE una vez para seleccionar el módulo.

T EXFO ToolBox			- 3 🛛
Modules Applicat	ions 🧼 Tools	EXFO T	oolBox
Modules		Main Menu	
Type Slot Sta	tus Description		
	FTB-8510B ing Packet Blazer FTB-8510B S/N:AZ70A4C	Optical Pol and	VFL
		Fiber Ins Pro	pection be
		Set	up
		System In	formation
Module Applications		Module Information	
PacketBlazerG2		Start Application Help	Exit
	i 🏐 🚻 🚺	000 64% Local 1/23/2009	3:21 PM

3. En la barra Module Applications (Aplicaciones de módulo), pulse la aplicación o el botón Start Application (Iniciar aplicación) para iniciar la interfaz de usuario inteligente(SUI) para FTB-8510B/FTB-8510G/FTB-8525/FTB-8535 o el Network Analyzer (Analizador de red compacto) para FTB-8120NGE/FTB-8130NGE. La aplicación Network Analyzer (Analizador de red compacto) permite ejecutar la aplicación SONET/SDH o la aplicación Packet Analyzer (Analizador de paquetes). No se pueden ejecutar ambas aplicaciones a la vez.

5

Inicio de la aplicación de módulo

4. Para FTB-8120NGE/FTB-8130NGE únicamente, en Available Applications (Aplicaciones disponibles), en la ficha Applications (Aplicaciones), pulsePacket Analyzer (Analizador de paquetes) para iniciar la interfaz de usuario Smart (SUI) para las pruebas de Ethernet y canal de fibra.

Consulte la guía del usuario de la aplicación SONET/SDH para obtener más información sobre SONET/SDH.

El botón de salida (X) cierra las aplicaciones **Network Analyzer** (Analizador de red), **SONET/SDH Analyzer** (Analizador de SONET/SDH) o **Ethernet Analyzer** (Analizador de Ethernet). Si se ha creado una prueba, aparecerá uno de los siguientes mensajes de confirmación, según el estado de propiedades de la función independiente (activado o no). Consulte la guía del usuario de FTB-500 para obtener más información sobre las propiedades de la función independiente.

 Si sale de la SUI al crear la prueba con el modo independiente desactivado:

Are you sure you want to exit the Network Anlyzer, SONET/SDH Analyzer, and Ethernet Analyzer? Any unsaved information will be lost. (¿Está seguro de que desea salir del analizador de red, del analizador de SONET/SDH y del analizador de paquetes? Se perderá toda información no guardada.) Si sale de la SUI al crear la prueba con el modo independiente activado:

Exiting the application will maintain the module alive as the Standalone mode is enabled. Are you sure you want to exit? (Al salir de la aplicación, el módulo permanecerá activo mientras la función independiente esté activada. ¿Está seguro de que desea salir?) Ventana principal

Ventana principal

Fichas

La aplicación SUI contiene cuatro fichas de aplicaciones principales que, a su vez, incluyen otras fichas.

► Ficha **TEST** (PRUEBA)

La ficha **TEST** (PRUEBA) ofrece acceso a la creación, configuración y resultados de prueba.

Nota: si no se ha creado ninguna prueba, sólo estará disponible la ficha **Setup** (Configuración).

La ficha **Setup** (Configuración) forma parte de la ficha **TEST** (PRUEBA) y permite configurar la prueba. Consulte la página 70 para obtener más información.

Una vez que se ha creado la prueba, se activan otras fichas que contienen una o dos fichas, lo que permite configurar los parámetros de prueba y ver el estado de la prueba y resultados.

TEST	System	Tools	About		Packet Blazer Ana		_	? ×
Setup	Summary	Port	Stream Gen.	Pattern	Traffic Analyzer	Expert Mode	Traffic Analyzer	• •
Optical [P1]/Port							
-Signal Anal Outp -Wavelengt 1310	ysis ut Presence h (nm)	Alarm Gener Type LOS Frequency Frequency 0 Actual Fre Nominal F	Offset (ppm) quency (bps) requency (bps)	On/Off On/Off	•			
	RX Inter	ace Netwo	rk Auto-Neg	. IX Auto-I	Veg. RX			
Signal Anal	ysis ange (dBm)		Freque	ncy Analysis ency (bps)				
Alarm Anal H C I L I I F TX	ower (aBm) ysis OS requency RX Interf	Seconds	rk Auto-Neg	ency Offset Negative Offset Positive Offset . TX Auto-1	Offset Unit			
H [-:-		Start Rep	ort New	Load Sa	ve Favorites Las	er 🔒		

Ventana principal

Para puertos duales (FTB-8510B únicamente), consulte la imagen a continuación para localizar el número de puerto en cada ficha.

Puerto 1				
	TEST System Tools Ab	out	Packet Blazer Analyzer	_ ? ×
	Setup Summary Port Stream	Gen. Traffic Analyzer	IPTV	
	Optical [P1]/Port			
	Signal Analysis Alarm Generation			
	Output Presence LOS	On/Off		
	1310 Frequency			
	Frequency (bps)			
	Nominal Frequency	(bps)		
Puerto 2				
	Ontical IP21/Port	uto-Neg, IX Auto-Neg, RX		
	Signal Analysis Alarm Generation			
	Output Presence Type Lo5	On/Off		
	Wavelength (nm)			
	1310 Frequency Frequency (bps)			
	Nominal Frequenc;	(bps)		
	,			
	TX RX Interface Network	uto-Neg. TX Auto-Neg. RX		
	[-:-:] H C Fart Report	New Load Save Fav	orite Laser	2007-04-12 09:39:18

Ventana principal

En esta guía del usuario, las fichas están agrupadas como se indica a continuación:

- > Fichas de resumen en la página 135
- > Fichas de puerto en la página 247
- > Fichas de generación de flujo en la página 197
- > Fichas de analizador de flujos en la página 241
- Fichas de analizador de tráfico en la página 151
- ► Fichas IPTV en la página 299 (FTB-8510B)
- > Fichas de patrón en la página 291
- ▶ Fichas de RFC 2544 en la página 347
- > Fichas de EtherSAM en la página 379
- Fichas de caudal de tráfico TCP en la página 407(no disponible en FTB-8510G)
- > Ficha avanzada en la página 415
- Fichas de WIS en la página 281 (FTB-8510G, FTB-8535 y FTB-8130NGE)
- ▶ Ficha común en la página 421
- > Fichas de modo experto en la página 497
- Ficha System (sistema); consulte la página 427 para obtener más información.
- Ficha Tools (herramientas); consulte la página 455 para obtener más información.
- La ficha About (acerca de) proporciona información general y de contacto acerca de la compañía EXFO, así como información sobre la versión de software del producto.

Nombre de la aplicación

Muestra el nombrenombre, que es [x] - **EXFO** seguido del nombre de la aplicación, Donde x es el ID de la ranura en la cual se inserta el módulo.

Delante del ID **[x]** de la ranura aparece una descripción del módulo cuando está definido en ToolBox. Consulte los campos **Tools** (herramientas), **Remote Control Configuration** (configuración del control remoto) y **Module Description** (descripción del módulo) de la guía del usuario de FTB-500 para obtener más información.

Para Visual Guardian Lite, la dirección IP de FTB-500 se inserta después del ID **[x]** de la ranura.

 $\label{eq:posterior} \begin{array}{l} \mbox{Por ejemplo: Module \#1 - [2] - 10.1.200.25 - EXFO Packet Blazer} \\ \mbox{(Módulo n^o 1 - [2] - 10.1.200.25 - EXFO Packet Blazer)} \end{array}$

Minimizar

El botón de minimizar (_) permite la minimización de una aplicación SUI remota (**Visual Guardian Lite**).

Ventana principal

Ayuda

El botón de ayuda (?) muestra información de ayuda sobre la ventana actual. Al pulsar este botón, aparece una ventana emergente para seleccionar la parte de la aplicación donde se necesita ayuda. Press **OK** (Aceptar) y la información de ayuda se muestran de forma inmediata.

	×
Select a topic	
C Test Folder	
	OK Cancel

También es posible navegar a través de la información de ayuda una vez que se ha abierto la ventana de ayuda.

Packet Blazer FTB-8510/8510B		<u>_ ×</u>
Hide Back Forward Print exfo.com		
Contents Index Search	Creating a Test Case Using Test Setup	
Copyright Information Introducing the 10 Gigabit Ethernet Test M Safety Information Getting Stated Signal Connection and LEDs Introducing and Using the Smart User Inter Costing and Stating a Test Cose Costing Test Cose Using Test Saturg	The Test Setup window is displayed by default when the SUI is launch creation of the test case by traveling through the signal structure. In the the SUI is not in the test setup window, press the Test Setup tab from (refer to page <u>44</u> for more information). The test path is created through the configuration of each layer that mu by the signal that has to be tested. The test path can contain the followin depending on the test application type:	e case where the Test1 tab
[2] Stating the lest Lase Surmary Tabs Port Tabs Traffic Analyzer Tabs Stream Generation Tabs Prov Tabs Pottern Tabs PfC 2544 Tabs TCP Throughout Tabs	Test Port Framing	Traffic
Advanced Tabs	Node	Available with
Expert Mode Tabs	The Test node is the root of the test case. It allows the configuration of the test name, test application type and topology.	f all tests
Tools Tabs	The Port node allows the selection and configuration of the physical port.	all tests
About Lab Automatic Power Failure Recovery	The Framing node allows the selection of the test framing layer.	BERT test
Maintenance	Traffic Stream allows traffic stream configuration.	all tests
Warranty	The Pattern node allows the selection of the pattern.	BERT test
Specifications Glossary	Steen Task Kour (11 12 min 11 12 min Steen	Penker ? X

Salir

▶ Para FTB-8510B, FTB-8510G, FTB-8525 y FTB-8535:

El botón de salir (X) cierra la aplicación actual. Si se crea una prueba, aparece uno de los siguientes mensajes de confirmación, basándose en el estado de la función independiente (activada o no activada). Consulte la guía del usuario de FTB-500 para obtener más información sobre las propiedades de la función independiente.

 El siguiente mensaje aparecerá cuando se salga de la SUI una vez que se haya creado una prueba y con el modo independiente desactivado:

Are you sure you want to exit the Aplicación Ethernet y canal de fibra? Any unsaved information will be lost. (¿Está seguro de que desea salir del analizador de red, del analizador de SONET/SDH y del analizador de paquetes? Se perderá toda información no guardada.)

- Aparece el siguiente mensaje al salir de la SUI mientras se está creando una prueba y la función independiente está activada.
 Exiting the application will maintain the module alive as the Standalone mode is enabled. Are you sure you want to exit? (Al salir de la aplicación, el módulo permanecerá activo mientras la función independiente esté activada. ¿Está seguro de que desea salir?)
- ► Para FTB-8120NGE y FTB-8130NGE:

El botón de salir (X) cambia la aplicación actual a la aplicación **Network Analyzer** (Analizador de red). Si la prueba está en ejecución, se solicitará la confirmación del usuario para detener la prueba antes de cambiar la aplicación. El cambio pone la aplicación en modo de inactividad, lo que significa que se mantiene la configuración del caso de prueba y se recuperará al volver a esa aplicación.

Estado de prueba global y controles

Estado de prueba global

El área de estado de prueba global muestra la alarma, el veredicto y el temporizador de prueba. Al hacer clic en esta área, se maximiza la vista de este estado. La vista maximizada resulta útil para maximizar la visualización a distancia de este estado.

Para minimizar la vista, haga clic en el área de estado de prueba global o en cualquier lugar del área de estado maximizada.

H (Historial): indica las alarmas o los errores que ocurrieron en el pasado. Un fondo gris indica que aún no se ha ejecutado la prueba, un fondo verde indica que no se ha producido ninguna alarma ni ningún error, mientras que un fondo rojo indica que se ha producido al menos una alarma o un error.

Estado de prueba global y controles

- Current status (Estado actual): indica el estado actual de la alarma/del error de la prueba. Un fondo gris indica que la prueba no se está ejecutando (--), un fondo verde indica que no hay alarma/error [NO ALARM (SIN ALARMA)], mientras que un fondo rojo indica que, como mínimo, se ha producido una condición de alarma/error en el último segundo [ALARM [ALARMA)].
- **Nota:** El estado actual de la alarma/del error y el historial se supervisan una vez iniciada la prueba.
 - Verdict (Veredicto): ofrece el veredicto, PASS (ÉXITO) (fondo verde) o FAIL (FALLO) (fondo rojo) de la prueba de acuerdo con la configuración de umbral definida. El veredicto sólo se muestra con pruebas EtherSAM, RFC 2544 y BERT. Para las pruebas RFC 2544 y BERT, debe seleccionarse al menos una de las casillas de verificación Enable criteria (Activar criterios). Consulte *Fichas de EtherSAM* en la página 379 o *Fichas de modo experto* en la página 497 (pruebas RFC 2544 y BERT) para obtener más información.
 - El temporizador de prueba indica el tiempo transcurrido desde el inicio de la prueba. El formato por defecto del temporizador de prueba es día:hora:minutos:segundos.

Estado de prueba global y controles

Controles de prueba

Botón	Description (Descripción)
▶ Start	Start (Iniciar) : Inicia la prueba. El botón Start (iniciar) aparece cuando se crea una prueba y no se está ejecutando.
Stop	Stop ^a (Detener): detiene la prueba.
H. Reset	H. Reset ^a (Restablecer historial): Restablece los LED de alarma y error del historial (H).
P) Reset	Reset ^a (Restablecer): Restablece los contadores (segundos, recuento y valor), el temporizador de la prueba y los LED de historial (H) y actual (C) para todo el caso de prueba. También restablece el registro.
Report	Report (Informe) ^b : Genera un informe de la prueba actual. Consulte <i>Generación de informe de la prueba</i> en la página 51 para obtener más información.
New New	New (Nuevo) ^b : borra la prueba actual. Se necesita la confirmación del usuario antes de borrar la prueba.
Load	Load (Cargar) ^b : carga una configuración guardada previamente. Seleccione un archivo existente y press Open (Abrir) para confirmar. El directorio por defecto es d:\ToolBox\User Files\PacketBlazerG2\Configuration. La extensión del archivo de configuración es cfg .
	aparecerá un mensaje de error y no se cargará la configuración cuando el archivo esté dañado, el módulo no esté instalado correctamente, las opciones de hardware o software no sean compatibles o cuando los recursos o la alimentación disponibles no sean suficientes.
Save	Save ^b (guardar): guarda la configuración de la prueba actual. Seleccione un archivo existente o introduzca un nombre nuevo en el campo File name (Nombre de archivo) y press Save (Guardar). El directorio por defecto es d:\ToolBox\User Files\PacketBlazerG2\Configuration.
/Brr Send	Send ^a (enviar): genera un error de bit de patrón según la cantidad seleccionada en la ficha Pattern TX (TX de patrón). Consulte <i>Pattern</i> (Patrón) <i>Error Injection (inyección de errores)</i> en la página 295. Este botón sólo está disponible con la prueba BERT .

Estado de prueba global y controles

Botón	Description (Descripción)						
Set	Set (Establecer) ^a : permite seleccionar el puerto que se usará para la inyección de errores de bit de patrón. Consulte el botón Send (Enviar) para la inyección de errores. Este botón sólo está disponible con la prueba BERT en la topología Dual Ports (Puertos duales). Disponible sólo con FTB-8510B.						
Laser	Laser (Láser) desactivado (gris): indica que el control del láser está apagado. Pressing este botón se activará inmediatamente el láser y emitirá una señal láser óptica. Este botón sólo está disponible para interfaces ópticas. Cuando se crea la prueba, el láser está activado por defecto a no ser que se establezca lo contrario en <i>Default/Ethernet Test Preferences (Preferencias de prueba Ethernet/por defecto)</i> en la página 430.						
Laser	Laser (Láser) activado (verde): indica que el control del láser está encendido. Pressing este botón, se apagará el láser. Este botón sólo está disponible para interfaces ópticas. Cuando se crea la prueba, el láser está activado por defecto a no ser que se establezca lo contrario en <i>Default/Ethernet Test Preferences</i> <i>(Preferencias de prueba Ethernet/por defecto)</i> en la página 430. El botón de control del láser no se ve afectado cuando se apaga el láser por la generación de un LOS, por ejemplo.						
Favorites	Favorites (Favoritos) ^b : proporciona acceso a las configuraciones de 10 casos de prueba por defecto o definidas por el cliente. Consulte <i>Favoritos</i> en la página 48 para obtener más información.						

a. Sólo está disponible cuando la prueba está ejecutándose.

b. Sólo está disponible cuando la prueba no está ejecutándose (detenida).

Estado de prueba global y controles

Remote Status (estado remoto)

indica si la función de control remoto está activada/desactivada e indica el número de conexiones establecidas con Serie FTB-8500 y FTB-8120NGE/8130NGE cuando está activada.

2	indica que la función de control remoto está desactivada. Consulte la guía del usuario de FTB-500 para obtener más información sobre cómo activarla.
2	Indica que se ha establecido una conexión individual con el Serie FTB-8500 y FTB-8120NGE/8130NGE. La conexión puede ser local (en el FTB-500) o remota (en un ordenador remoto que use Visual Guardian Lite).
.	Indica que se han establecido, al menos, dos conexiones con el Serie FTB-8500 y FTB-8120NGE/8130NGE. Las conexiones pueden ser una combinación de una conexión local (en FTB-500) y al menos una remota (a un PC remoto con Visual Guardian Lite), dos o más conexiones remotas.

Date and Time (Fecha y hora)

Indica la fecha (aaaa-mm-dd) y la hora (hh:mm:ss).

Consulte *Time Options (opciones de tiempo)* en la página 428 para obtener más información sobre el formato de hora y la zona horaria.

Battery Level/AC Power

Indica el nivel de batería del FTB-500 cuando se han instalado baterías, o indica la presencia de una fuente de alimentación de CA cuando no se ha instalado la batería.

Nota: El módulo Serie FTB-8500 y FTB-8120NGE/8130NGE necesita una fuente de alimentación de CA para funcionar.

Favoritos

Favoritos

Favorites (Favoritos) da acceso a 10 configuraciones predeterminadas de casos de prueba. Favorites (favoritos) está disponible cuando ninguna prueba está en marcha.

Press 📩.

avorites
Favorites List 100 Base-T Dual Ports RFC 2544
100 Base-T Single Port RFC 2544
100 Base-T Single Port BERT FL2
100 Base-T Single Port F.A. 7st
1000 Base-T Single Port RFC 2544
1000 Base-TSingle Port BERT FL2
1000 Base-T Single Port F.A. 7st
1000 Base-X Single Port RFC 2544
1000 Base-X Single Port BERT FL2
Favorite Name
100 Base-T Dual Ports RFC 2544
Save
Load Factory Default Close

Favoritos

Favorites List (lista de favoritos)

Permite seleccionar una configuración de caso de prueba. La configuración de caso de prueba seleccionada por defecto es la primera de la lista.

- **Nota:** No se crearán casos de prueba que no sean compatibles con el modelo Serie FTB-8500 y FTB-8120NGE/8130NGE actual ni sus opciones.
- **Nota:** La compatibilidad de los favoritos de una versión de software a otra no está garantizada. También pueden ser compatibles o no de un módulo a otro según la opción de hardware y software instalada.

Overwrite Selected Favorite Content (sobrescribir contenido de favoritos seleccionado)

Las configuraciones de casos de prueba predeterminadas se pueden modificar así como sus nombres por defecto.

- ➤ Favorite Name (nombre favorito): permite cambiar el nombre del archivo de la configuración del caso de prueba. Se permite un máximo de 32 caracteres en el nombre.
- Save (guardar): guarda la configuración del caso de prueba actual con el nombre de favorito especificado.

Cargar

Carga la configuración de caso de prueba seleccionada. Al cargar la configuración de un favorito se borra automáticamente el caso de prueba actual.

Factory Default (configuración de fábrica)

Restablece la lista de favoritos por defecto de fábrica en función del modelo de módulo y las opciones activadas.

Nota: Se crea una lista de favoritos por defecto la primera vez que se usa un módulo específico, en función de su tipo de modelo y opciones. Se genera una lista de favoritos para cada tipo de módulo utilizado (FTB-8525, FTB-8535 FTB-8120NGE y FTB-8130NGE). La lista de favoritos para un tipo de módulo específico es común para todos los módulos de ese mismo tipo en el FTB-500. La lista de favoritos no se actualiza aunque se instale una nueva opción de software o se use otro módulo que tenga otras opciones. Por dichos motivos, el botón **Factory Default** (Configuración de fábrica) permite volver a crear la lista de favoritos en función del módulo actual y sus opciones.

Close (cerrar)

Cierra la ventana Favorites (Favoritos).

Generación de informe de la prueba

Press **Report** (Informe) en *Estado de prueba global y controles* para generar un informe de la prueba actual. El informe contiene toda la información acerca de la prueba e incluye la información de la tarea, información del sistema, configuración de la interfaz, resumen de la prueba, configuración de la prueba, resultados, etc.

- **Nota:** El botón Report (Informe) no está disponible cuando la prueba está en marcha.
- **Nota:** nada impide la configuración y la determinación de la inyección de alarmas/errores cuando la prueba se ha detenido; por ello, el informe se debe guardar antes de cambiar los parámetros de prueba para evitar discrepancias entre la configuración y los resultados.

Generación de informe de la prueba

Report Generator	×				
Information Sections					
Job Information Job ID	Contractor				
Customer	Operator Name				
Comment					
Report Settings	í				
Report Title Packet Blazer	Report Header EXFO Electro-Optical Engineering Inc.				
Selected Logo C:\Program Files\EXFO\Toolbox\User Files\PacketBlazer8510\Reports\Images\Exfo.; Browse					
Report Format					
🥑 🗖 View Report After Generation	Default Generate Close				

Information (Información)

- ➤ Job Information (información del trabajo): estos parámetros se usan para identificar la fuente del informe y no son obligatorios. Introduzca la siguiente información de tarea si es necesario: Job ID (ID de trabajo), Contractor (contratista), Customer (cliente), Operator Name (nombre del operador) y Comment (comentario). Cada parámetro admite hasta 256 caracteres.
- Report Settings (configuración del informe): estos parámetros se usan para identificar el informe y no son obligatorios. Introduzca los siguientes datos del informe si es necesario: ReportTitle (Título del informe), Report Header (Encabezado del informe), Selected Logo (Logotipo seleccionado), y Report Format (Formato de informe).

Press **Browse** (Examinar) para seleccionar un logotipo diferente y, a continuación, press **Open** (Abrir).

Report Format (Formato de informe): Seleccione el formato de archivo del informe. Las opciones son **html**, **csv**, **pdf** y **txt**. El formato **CSV** (formato de archivo separado por comas) genera un informe con delimitador de comas para los SO ingleses y por guiones para los demás SO. La configuración por defecto es **html**.

Generación de informe de la prueba

- View Report After Generation (ver informe después de la generación): permite mostrar el informe una vez generado. Sin embargo, el informe sólo puede mostrarse cuando esté instalada la aplicación de Windows que sea compatible con Report Format (formato de informe). La casilla de verificación View Report After Generation (ver informe después de la generación) no está seleccionada de manera predeterminada.
- **Nota:** una vez que se ha generado, el archivo del informe puede abrirse manualmente usando el explorador de Windows. El directorio por defecto es d:\ToolBox\User Files\PacketBlazerG2\Reports.
- **Nota:** Si el informe html contiene caracteres especiales, asegúrese de que la codificación de su navegador web es Europeo occidental (ISO). Para configurar la codificación de caracteres como Europeo occidental (ISO), haga clic con el botón derecho (press) en el informe en Internet Explorer, seleccione Codificación y seleccione Europeo occidental (ISO).
 - Botón Default (por defecto): Press pulse Default (por defecto) para restablecer la configuración de informe por defecto.
 - Botón Generate (generar): Permite generar y guardar el informe.
 Seleccione un archivo existente o introduzca un nombre nuevo en el campo File name (nombre de archivo) y pulse press OK (aceptar). El directorio por defecto es

 $d:\label{eq:constraint} d:\label{eq:constraint} d:\l$

El archivo del informe se puede guardar en las siguientes ubicaciones:

Memoria local (FTB-500): el archivo se guarda localmente en la memoria de FTB-500.

Unidad de red: el archivo se guarda en una unidad de red.

Dispositivo USB o Compact Flash: el archivo se guarda en una unidad extraíble.

 Botón Close (cerrar): cierra la ventana de configuración de generación de informes.

Generación de informe de la prueba

Sections (Secciones)

Pre-defined selection (selección predefinida): permite seleccionar el tipo de informe, y la ventana que hay debajo permite seleccionar lo que formará parte del informe. La configuración por defecto es Summary Report (informe del resumen). Las opciones son:

Summary Report (informe del resumen) sólo selecciona la sección del informe **Summary** (resumen).

Test Case Report (informe del caso de prueba) selecciona todas las secciones del informe.

Nota: una vez seleccionado el tipo de informe, se puede seleccionar cada sección para personalizar el informe.

Los botones **Select All** (seleccionar todo) y **Deselect All** (eliminar la selección de todos) se usan para seleccionar o eliminar la selección de las secciones de los informes.

Elementos típicos de ficha

Una vez generada la prueba, hay varias fichas disponibles que permiten la configuración y supervisión de la prueba. La siguiente sección describe los elementos habituales que aparecen en estas fichas.

LED de estado

- LED H (historial): indica las alarmas o los errores que ocurrieron en el pasado. Un LED gris indica que aún no se ha ejecutado la prueba, un LED verde indica que no se ha producido ninguna alarma ni ningún error, mientras que un LED rojo indica que se ha producido al menos una alarma o un error en la prueba.
- ➤ LED C (actual): indica el estado actual de la alarma/del error. Un LED gris indica que la prueba no se está ejecutando, un LED verde indica que no hay alarma/error, mientras que un LED rojo indica que, como mínimo, se ha producido una condición de alarma/error en el último segundo.

Nota: Los LED H y C se actualizan cada segundo.

Elementos típicos de ficha

Mediciones de alarma/error

Nota: las alarmas/los errores sólo se supervisan una vez iniciada la prueba.

- Seconds (segundos): proporciona el número total de segundos en los que se ha producido uno o más errores/alarmas.
- Count (recuento): proporciona el número de veces que se ha producido un error determinado. El recuento se muestra con un valor entero. Se empleará un valor exponencial (1,00000E10) cuando el recuento sea mayor que la capacidad de visualización del campo.
- Rate (valor): calcula y muestra el valor del error. El valor se expresa mediante el formato exponencial con dos dígitos decimales (por ejemplo: 1,23E-04).

Botón	Description (Descripción)						
×	Flecha arriba: se desplaza al inicio de la lista.						
	Flecha Av Pág: se desplaza una página hacia arriba.						
	Flecha arriba: se desplaza al evento de arriba.						
•	Flecha abajo: se desplaza al evento de abajo.						
*	Flecha Re. pág permite avanzar una página hacia abajo.						
T	Flecha Fin: se desplaza al final de la lista.						

Botones de flecha

Elementos típicos de ficha

Orden de tabla

Las tablas ofrecen funciones de ordenación en una o varias columnas.

Una flecha junto al nombre de la etiqueta de la columna indica el campo de columna de ordenación y la orden de ordenación. Al Pressing de nuevo en la etiqueta de la columna de ordenación seleccionada, se modificará el orden.

Al Pressing en otra etiqueta de la columna se permite ordenar con un campo diferente.

Botones de desplazamiento izquierdo y derecho

Los botones de desplazamiento izquierdo y derecho se usan para desplazarse respectivamente a la izquierda y a la derecha para ver más fichas. Los botones de desplazamiento izquierdo y derecho no siempre aparecen; sólo cuando es necesario.1

TEST	System	Tools	About		Packet Blazer Ana	lyzer	_	? ×	
Setup	Summary	Port	Stream Gen.	Pattern	Traffic Analyzer	Expert Mode	Traffic Analyzer	• •	Botones de
Optical [P1	1]/Port —								desplazami
									ento
Signal Ana	lysis	Alarm Gen	eration						innuianda u
Outp	ut Presence	Туре		0.1077					izquierdo y
		ILOS	•	Un/Uff	•				derecho
1310	th (nm)	Frequency	v Offset (nom)						
1010		o	y onset (ppin)	On/Off	•				
		Actual Fr	equency (bps)						
	DV Jatar	Nominal	Frequency (bps)	TY Auto I	lag DY				
Ontical (D)				Auton	veg. KA			1	
Signal Ana	hueie		Freque	incy Analysis					
F	Range (dBm)		Frequ	iency (bps)					
F	Power (dBm)		-						
Alarm Anal	lysis		Frequ	ency Offset	Offset Unit				
нс		Seconds	Max.	Negative Offset	ppm 💽				
9 9 L	.05			in a galine on occ					
0 0 F	requency		Max.	Positive Offset					
			-						
	RX Inter	face Netw	ork Auto-Neg	.TX Auto-1	Neg. RX				
н [-:-		Start Rep	ort New	Load Sa	ve Favorites La	ser 🖁			
Configuración de fichas

Una vez que se ha creado la prueba, se activan otras fichas junto a las fichas de Test (prueba), lo que permite la configuración de los parámetros de prueba y la consulta del estado y el resultado de la prueba.

Hay disponible un botón de configuración de fichas en la parte superior derecha de cada ficha.

Botones de configuración de fichas

Configuración de fichas

Esta ventana de configuración de fichas permite la configuración de todas las fichas de cualquier página excepto de las fichas **Test Setup** (Configuración de prueba) y **Summary** (Resumen). La configuración de fichas permite también pasar directamente a la página deseada tras seleccionarla en la lista *Defined Tabs (fichas definidas)* y, a continuación, pressing en **OK** (Aceptar).

Panel Configuration		X
Selected Tab Tab Name:		-
Top Page: Optical [P1]/Port		
Bottom Page: Optical [P1]/Port		
Defined Tabs	Page Selection	
Setup	Type:	Path:
Summary	Stream Generation	Optical [P1]/
Port	RFC 2544	
Stream Gen.	Traffic Analyzer	
RFC 2544	Expert Mode	
Traffic Analyzer	Empty Panel	
Expert Mode		
Page #8		
Page #9		
Page #10		<>
Insert Delete		Apply To Top Page Apply To Bottom Page
0		Default OK Cancel

Selected Tab (ficha seleccionada)

- Tab Name (Nombre de la ficha) indica el nombre de la ficha que contiene las dos fichas (partes superior e inferior de la página). Pressing en este campo, podrá cambiar el nombre de la ficha. El nombre de la ficha puede tener una longitud de hasta 35 caracteres, las barras diagonales y los espacios incluidos.
- Top Page indica la pestaña que aparecerá en la parte superior de la pestaña.
- Bottom Page indica la pestaña que aparecerá en la parte inferior de la pestaña.

Defined Tabs (fichas definidas)

Permite la selección de una pestaña.

Las flechas arriba y abajo se emplean para mover en la dirección respectiva la página seleccionada hacia arriba o hacia abajo en la lista.

El botón **Insert** (insertar) permite añadir una ficha nueva a continuación de la ficha seleccionada (la que está resaltada). Se pueden mostrar hasta 30 fichas.

El botón **Delete** (eliminar) permite eliminar la ficha seleccionada.

Page Selection (selección de página)

- ➤ Type (tipo): Permite la selección de una ficha que se asignará a la ficha seleccionada al pressing Apply to top page (Aplicar a parte superior) o Apply to bottom page (Aplicar a parte inferior).
- Path (ruta): indica la estructura de señales de la prueba (capas/nodos del caso de prueba) correspondiente a la ficha seleccionada. Consulte Presentación de Test Setup (Configuración de prueba) en la página 70 para obtener más información sobre las capas o los nodos de la prueba.
- Apply To Top Page (aplicar a parte superior): aplica la ficha seleccionada como parte superior de la página para la ficha seleccionada.
- Apply To Bottom Page (aplicar a parte inferior): aplica la ficha seleccionada como parte inferior de la página para la ficha seleccionada.
- Nota: las fichas disponibles de la lista dependen de la ruta de prueba activada. Empty Tab (ficha vacía) muestra una ficha en blanco (las fichas que no se rellenan se dejan en blanco). Las fichas Test Setup (Configuración de la prueba) y Summary (Resumen) no se pueden duplicar, eliminar o renombrar.

Botón de ayuda (?)

Muestra la información de ayuda relacionada con la configuración de fichas. También es posible navegar por el cuaderno de la información de ayuda.

Botón Default (por defecto)

Vuelve a la configuración de la página predeterminada.

Botón OK (Aceptar)

Acepta los cambios en la configuración de la página y pasa a la página seleccionada (pestañas definidas).

Botón Cancel (cancelar)

Cancela los cambios y regresa a la página desde donde se inició la configuración de la pestaña.

Uso del teclado

Uso del teclado

La SUI dispone de distintos teclados emergentes para modificar datos. Las teclas convencionales del teclado son las siguientes:

- > Flecha izquierda: mueve el cursor una posición a la izquierda.
- > Flecha derecha: mueve el cursor una posición a la derecha.
- > Del (suprimir): elimina el valor de la posición del cursor.
- **Back** (borrar): elimina el valor anterior a la posición del cursor.
- Ayuda: muestra la información de ayuda relacionada con el uso del teclado. También es posible navegar por el resto de la información de ayuda.
- **• OK** (aceptar) y **Enter** (intro): completan la introducción de datos.
- Cancel (cancelar): cierra el teclado y descarta la introducción mediante el mismo.
- > Teclado binario: permite introducir los valores 0 y 1.

Presentación de la interfaz de usuario Smart

- Teclados numéricos: permiten la introducción de valores enteros/decimales.
 - > Para valores enteros sin signo o con signo

 Para valores fraccionarios: permite introducir los valores fraccionarios (de 0 a 9 y exponente)

Automa	ated Err	or Rate	Amount Ir	put Dialog					
Enter th	ne rate								
1.0E-04	1								
1	2	3	1.0E-02	1.0E-06	Del	Back	Validation I Minimum:	information 1.0E-09	
4	5	6	1.0E-03	1.0E-07	+	→	Maximum:	1.0E-02	
7	8	9	1.0E-04	1.0E-08					
	0		1.0E-05	1.0E-09					
				E-		[•	OK Cancel	

 Para los valores de dirección IP, máscara de subred y puerta de enlace por defecto

Enter Start Time Enter Start Time 19:00:00 Validation Information 2 3 Del Back Minimum: 00:00:00 Maximum: 23:59:59 ← → 5 6 9 7 8 0 0 ОК Cancel

> Teclado temporal: permite introducir un valor de tiempo.

> Teclado de fecha: permite seleccionar una fecha pressing sobre el día en el calendario. Emplee las flechas derecha e izquierda para pasar de un mes a otro o pulse la zona del mes para seleccionar rápidamente el mes. Pulse la zona del año para seleccionar rápidamente el año.

•	Fe	brua	ary,	. 20	07	Þ
Sun	Mon	Tue	Wed	Thu	Fri	Sat
28	29		31	1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	1	2	
4	5	б	7		9	10
	Tod	lay:	2/	13/	200	7

Presentación de la interfaz de usuario Smart

 Teclados hexadecimales: permiten introducir valores hexadecimales (de 0 a 9 y de A a F)

User Pa	User Pattern Input Dialog									
Enter th	Enter the user pattern									
00 00 0	0 00									
1	2	3	A	в	Del Back	Validation Information Minimum: 00 00 00 00				
4	5	6	с	D	← →	Maximum: FF FF FF FF				
7	8	9	E	F						
	0					OK Cancel				

Para dirección MAC

MAC Ad	dress									
Enter th	Enter the MAC address									
00:00:0	00:00:00	:00								
1	2	3	A	в	Del Back	Validation Information Minimum: 00:00:00:00:00:00				
4	5	6	с	D	← →	Maximum: FF:FF:FF:FF:FF:FF				
7	8	9	E	F						
	0	:				OK Cancel				

Para dirección IPv6

Teclado completo: permite introducir números, letras y otros caracteres. Las teclas Back (borrar), Del (suprimir), Shift (mayúsculas) y espacio tienen las mismas funciones que en un teclado de ordenador normal.

Test Name	
Enter Test Name	
TESTI	
· 1 2	3 4 5 6 7 8 9 0 - = ←Backspace Validation Information Maximum: 8 chars.
Tab l ← i q	w e r t y u i o p [] \
අරි Caps 💿 a	s d f g h j k l ; ' ← Enter
순 Shift 🏾 🔍	z x c v b n m , . / ŷshift
← →	(Space) Alt Char.

 Teclado de mensaje de traza (WAN): permite introducir caracteres alfanuméricos (ITU T.50) necesarios para los campos de traza J0 y J1. Pulse el botón Ctrl Char (Ctrl. car.) para acceder a los caracteres.

Expected	Mes	sage	Input D	ialog										
Enter the	expec	ted m	essage											
EXFO SO	NET/SI	DHNuL												
	1	NUL	з	4	5	1 ₅₂	7	8	9	0	I _{S1}	-	← Backspace	Validation Information Maximum: 15 chars.
Tab	4- →	D _{C1}	ET.B	ε _{NQ}	D _{C2}	D _{C4}	EM	N _{AK}	нт	۶r	DLE	*sc	I _{\$3} I _{\$4}	Selected character
谷 Caps	۲	s _{0 H}	PC3	ŧ _{от}	A _{CK}	₿ _{EL}	BS	Lp	٧Ţ	FF	;	•	←Enter	E': 45
습 Shift		•	s _{ug}	C _{AN}	T _X	s _{YN} s	T _X 5	•	c _R	,		/ 1	i) Shift 🛛 🔹	Padding Null 💌
+	← → (Space)						Ctrl Char	r. ම	↓	↑	Delete	OK Cancel		

Presentación de la interfaz de usuario Smart

Uso del teclado

Caracteres UIT T.50

b7 a b1	Carácter	Description (Descripción)	b7 a b1	Carácter	Description (Descripción)
000 0000	NUL	Nulo	001 0000	DLE	Escape de enlace de datos
000 0001	SOH	Inicio de encabezado	001 0001	DC1	Control de dispositivo 1
000 0010	STX	Inicio de texto	001 0010	DC2	Control de dispositivo 2
000 0011	ETX	Final de texto	001 0011	DC3	Control de dispositivo 3
000 0100	EOT	Fin de transmisión	001 0100	DC4	Control de dispositivo 4
000 0101	ENQ	Consulta	001 0101	NAK	Reconocimiento negativo
000 0110	ACK	Reconocimiento	001 0110	SYN	Sincrónico inactivo
000 0111	BEL	Bell	001 0111	ETB	Fin de bloque de transmisión
000 1000	BS	Retroceso	001 1000	CAN	Cancelar
000 1001	HT	Tabulación horizontal	001 1001	EM	Fin de medio
000 1010	LF	Salto de línea	001 1010	SUB	Sustituir carácter
000 1011	VT	Tabulación vertical	001 1011	ESC	Escape
000 1100	FF	Alimentación de página	001 1100	IS4	Separador de información 4
000 1101	CR	Retorno de carro	001 1101	IS3	Separador de información 3
000 1110	SO	Shift-Out	001 1110	IS2	Separador de información 2
000 1111	SI	Shift-In	001 1111	IS1	Separador de información 1

Se puede crear un caso de prueba con uno de los métodos siguientes:

Test Setup (Configuración de prueba) permite crear el caso de prueba desplazándose a través de la estructura de la señal. Consulte Presentación de Test Setup (Configuración de prueba) en la página 70.

Consulte *Disponibilidad del caso de prueba* para determinar los casos de prueba compatibles con la unidad.

- Load (Cargar) permite configurar el caso de prueba al cargar una configuración guardada anteriormente. Consulte Load (Cargar) en la página 45 para obtener más información.
- Script (secuencia de comandos) permite ejecutar una secuencia de comandos para crear el caso de prueba. Consulte Script (Secuencia de comandos) en la página 456.

Presentación de Test Setup (Configuración de prueba)

La ventana **Test Setup** (Configuración de prueba) aparece por defecto al iniciar SUI. En el caso de que SUI no esté en la ventana de configuración de prueba, press la ficha **el botón** (Configuración de prueba) en *Ficha TEST (PRUEBA)* en la página 37.

				Test Config	L Sección de
				Test Name	configuración
				TEST	configuración
				Interface Type	
				Ethernet 10/100/1000	
				Topology	
				Single Port	1
				Application Type	
				RFC 2544	1
	Test1			🔽 Throughput	
				Back-to-Back	
				₩ Frame Loss	
				I✓ Latency	
				Dual Test Set	
				Mode	
					
				Remote ID	
Selector de	Test Setup: Modify the test properties. Then press 'Next'.	Tree	Grid		Controles de
ruta de ——				Back Next Finish	- configuración
datos				Delete	de la prueba

- Tree (árbol) permite ver la estructura de la prueba de configuración (ruta de datos).
- Grid (Cuadrícula) se usa para la dirección del caso de prueba (modo de prueba desacoplado).
- Data Path Selector (selector de ruta de datos) se usa para seleccionar la estructura de ruta de datos (por ejemplo: puerto, señal, patrón, etc.) del caso de prueba.

 La sección de configuración permite la configuración de los parámetros de cada nodo de la prueba.

El cuadro **Test Name** (nombre de la prueba) indica el nombre que se usa para identificar la prueba. La configuración por defecto es **TEST**.

Nota: los demás parámetros de la sección de configuración se describen específicamente para cada prueba.

> Controles de configuración de la prueba:

- Back (volver) retrocede al paso de configuración anterior y permite ver, cambiar o eliminar lo que se había seleccionado.
- Next (siguiente) cambia al siguiente paso de configuración. El botón Next (Siguiente) sólo está disponible cuando se han realizado las selecciones del selector de ruta de datos y/o de cuadrícula.
- > Delete (borrar) elimina el nodo de ruta actual.

► Finish/Setup (Finalizar/configuración):

Finish (terminar) completa la configuración y crea el caso de prueba. La configuración de la ventana actual sólo se aceptará si se ha realizado la selección desde la vista **Grid** (Cuadrícula). Para los pasos restantes del asistente se utilizarán los parámetros por defecto. Por lo tanto, pressing **Finish** (Finalizar) para la prueba BERT se añadirá automáticamente un patrón al final de la estructura del caso de prueba si no está ya seleccionado aún.

Una vez creada la prueba, **Setup** (configuración) aparece en lugar de **Finish** (terminar), lo que permite volver al modo de configuración. El control **Setup** no está disponible cuando la prueba se está ejecutando.

Presentación de Test Setup (Configuración de prueba)

La ruta de prueba se crea por medio de la configuración de todas las capas que la señal bajo prueba debe cruzar. La ruta de prueba puede contener los siguientes pasos dependiendo del tipo de aplicación de la prueba:

Para FTB-8510B:

Para FTB-8510G:

Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535:

Presentación de Test Setup (Configuración de prueba)

Pasos	Disponible con
El paso Test (Prueba) es la raíz del caso de prueba. Permite la configuración del nombre de prueba, tipo de aplicación de la prueba, tipo de interfaz, topología y modo de reloj. En RFC 2544, también se pueden seleccionar pruebas secundarias y conjuntos de pruebas duales.	Todas las pruebas
El paso Port (Puerto) permite seleccionar y configurar el puerto físico y para la interfaz 10Gig-E también configurar el modo de transceptor (LAN o WAN). Para el modo de transceptor WAN, el paso WIS se insertará en la parte frontal del paso Framing (Entramado).	Todas las pruebas
El paso WIS indica que el modo de transceptor WAN está seleccionado. disponible sólo con la interfaz 10Gig-E.	Sólo modo de transceptor WAN
El nodo paso (entramado) permite seleccionar la capa de trama de la prueba.	Sólo prueba Todas las pruebas
El paso Network (Red) permite seleccionar los parámetros de la red Ethernet/Canal de fibra para el puerto.	Todas las pruebas, excepto la prueba BERT Unframed (BERT no entramado), Framed Layer1 (Capa de trama 1) y canal de fibra
El paso Traffic Stream (Flujo de tráfico) permite configurar el flujo de tráfico.	Todas las pruebas de Ethernet excepto Smart Loopback (Bucle invertido Smart)
El paso Remote Module (Módulo remoto) permite seleccionar un módulo remoto compatible (FTB-8510B, FTB-8510G, FTB-8525/FTB-8535, FTB-8120NGE/FTB-8130NGE y RTU-310/RTU-310G).	Sólo pruebas EtherSAM y RFC 2544 Dual Test Sets (Conjuntos de pruebas duales)
El nodo paso (Patrón) permite seleccionar el patrón.	Sólo prueba BERT

Disponibilidad del caso de prueba

Disponibilidad del caso de prueba

En este capítulo, se describe cómo crear los siguientes casos de prueba típicos de Ethernet y canal de fibra. La disponibilidad de los casos de prueba depende del modelo y de las opciones activadas.

	Compatible con								
Caso de prueba	FTB-8510B	FTB-8510G	FTB-8525 FTB-8535	FTB-8120NGE FTB-8130NGE	Página				
Prueba EtherSAM (Y.1564)	Х	Х	Х	Х	75				
Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544	Х	Х	Х	X	84				
Caso de prueba de Ethernet RFC 2544	Х	Х	Х	X	95				
Caso de prueba de Ethernet BERT	Х	Х	Х	Х	103				
Caso de prueba del analizador de tramas Ethernet, incluidas las pruebas Multiple-Stream (Flujos múltiples), Through Mode (Modo directo) , MPLS y PBB-TE .	X	Xa	X ^a	Xa	113				
Caso de prueba de bucle invertido Smart Ethernet	Х	Х	Х	X	121				
Caso de prueba de caudal de tráfico TCP Ethernet	Х		Х	Х	125				
Caso de prueba BERT de canal de fibra	Х		Х	Х	129				

a. Through Mode (Modo directo) sólo disponible en el FTB-8510B.

Prueba EtherSAM (Y.1564)

ITU-T Y.1564 es la norma que se ha presentado más recientemente para solucionar y acabar con los problemas de los servicios de transporte de Ethernet. Esta nueva metodología está completamente adaptada a los servicios actuales de Ethernet, especialmente las redes móviles de retorno y servicios comerciales.

Al contrario que otras metodologías, EtherSAM admite nuevas ofertas multiservicio. Puede simular todo tipo de servicios que haya en la red y, al mismo tiempo, habilitar todos los parámetros clave del SLA para cada uno de estos servicios. Además, permite validar los mecanismos de calidad del servicio (QoS) provistos en la red para establecer prioridades entre los diferentes tipos de servicio, ofreciendo una validación más precisa, así como un desarrollo y una resolución de problemas mucho más rápidos.

Aplicación típica EtherSAM (Y.1564):

Nota: para una prueba bidireccional (conjunto de pruebas duales), consulte Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544 en la página 84.

Crear un caso de prueba EtherSAM (Y.1564):

- 1. Compruebe la configuración:
 - 1a. Seleccione Ethernet 10/100/1000 o Ethernet 10G como el Interface Type (Tipo de interfaz). Interface Type (Tipo de interfaz) no está disponible con FTB-8510G.
 - 1b. Seleccione Single Port (Puerto único) como Topology (Topología). Topology (Topología) sólo está disponible con FTB-8510B.

Test Config	
Test Name	
TEST	
Interface Type	
Ethernet 10/100/1000	-
Topology	
Single Port 💌	
Application Type	
EtherSAM (Y.1564)	•
 Service Configuration Tes Service Performance Test 	it
🔲 Dual Test Set	
Mode	
v	
Remote ID	

- 1c. Seleccione Clock Mode (Modo de reloj) de origen. Disponible sólo con FTB-8510G. Consulte Sincronización del reloj en la página 448 para obtener más información.
- *1d.* Seleccione EtherSAM (Y.1564) como Application Type (Tipo de aplicación).
- 1e. Seleccione las pruebas secundarias de EtherSAM deseadas. Todas las pruebas secundarias de EtherSAM están seleccionadas por defecto. Consulte Overview (Configuration) [Resumen (Configuración)] en la página 380 y Services (Configuration) [Servicios (Configuración)] en la página 385 para obtener más información.

Service Configuration Test (Prueba de configuración de servicio) consiste en comprobar cada servicio de forma secuencial. Confirma si el servicio está adecuadamente provisto y si se cumplen todos los parámetros KPI o SLA específicos.

Service Performance Test (Prueba de configuración de servicio) valida simultáneamente la calidad de todos los servicios en el tiempo.

Electrical RJ-45

- **1f.** Desmarque la casilla de verificación **Dual Test Set** (Conjunto de pruebas duales). Para los casos de prueba de Dual Test Set (Conjunto de pruebas duales), consulte *Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544* en la página 84.
- 1g. Press Next (Siguiente).
- 2. Configuración del puerto:
 - 2a. Seleccione el Connector Type (Tipo de conector) (Optical or Electrical RJ-45

(Optical or **Electrical RJ-45)** (Óptico o Eléctrico RJ-45) del puerto. **Optical** (Óptico) está seleccionado automáticamente para la interfaz **Ethernet 10G**.

Optical

2b. Para FTB-8510B, seleccione el número del puerto pressing Port 1 (Puerto 1) o Port 2 (Puerto 2).

Port 1	Port 2
Port Setup: Select a port	Tree Grid
Optical	Electrical RJ-45

Prueba EtherSAM (Y.1564)

 Para RJ-45 eléctrico, si es necesario, seleccione la casilla de verificación
 Ethernet port crossover (Puerto
 Ethernet cruzado) para invertir la acid

Ī	Electrical RJ-45 Config
ľ	Ethernet port crossover

Ethernet cruzado) para invertir la asignación pin/par del cable UTP utilizado.

Nota: En este punto debería disponer de un enlace activo indicado en la ficha de visualización **Tree** (Árbol). Un LED verde indica un enlace activo mientras que un LED rojo indica un enlace roto. para un puerto eléctrico, si el enlace está roto, asegúrese de que el ajuste **Ethernet port crossover** (Puerto Ethernet cruzado) es correcto.

2d. Press Next (Siguiente).

Prueba EtherSAM (Y.1564)

- **3.** Configuración óptica sólo para la interfaz **Ethernet 10G**:
 - **3a.** Seleccione **Transceiver Mode** (Modo de transceptor) Las opciones son de red de área local (LAN) para la interfaz regular de Ethernet (10,31250 Gbps) y de red de área extensa (WAN) para un

Optical Config	
Transceiver Mode	
10GigE WAN	-
Clock Mode	
Internal	•

flujo de Ethernet encapsulado dentro de una estructura de trama SONET/SDH (9,95328 Gbps). Las opciones disponibles dependen del modelo de la unidad y las opciones; consulte *Opciones de software* en la página 442 para obtener más información.

- **3b.** Seleccione el modo de reloj de origen (sólo para el modo de transceptor WAN). Consulte *Sincronización del reloj* en la página 448 para obtener más información.
- 3c. Press Next (Siguiente).
- **3d.** Introduzca los mensajes de traza J0 Trace y J1 (sólo para el modo de transceptor WAN). Consulte *WIS TX* en la página 281 para obtener más información.
- **3e.** Press Next (Siguiente).

WIS Config	
J0 Trace	
EXFO 10GigE ^N UL ^N UL ^N UL ^N UL	*
J1 Trace	<u></u>
EXFO 10GigE ^{NULNULNULNUL}	*

Prueba EtherSAM (Y.1564)

- **4.** Configuración del puerto y el entramado:
 - 4a. Establezca los parámetros
 Auto-Negotiation (Negociación automática), Speed (Velocidad), Duplex
 (Dúplex) y Flow Control (Control de flujo). No disponible con Ethernet 10G. Consulte Interface Setup (Configuración de la interface) (Ethernet) and

la interfaz) (Ethernet) en la página 258 para obtener más información.

- **4b.** Configure los parámetros de **VLAN** si es necesario. Consulte *Network (Red)* en la página 268 para obtener más información.
- 4c. Seleccione Frame Format (Formato de trama). Las opciones son Ethernet II y 802.3 SNAP. Para 802.3 SNAP, seleccione el Identificador único organizativo (OUI). Consulte Network (Red) en la página 268 para obtener más información.
- 4d. Seleccione la casilla de verificación PBB-TE (Configuración de PBB-TE) para activar la función de generación y análisis de flujos con tráfico de datos PBB-TE, incluida la configuración de B-MAC (origen y destino), B-VLAN e I-tag, así como para filtrar el tráfico recibido por cualquiera de los siguientes campos. PBB-TE es una opción de software y tiene que activarse para permitir el acceso a la función de la prueba PBB-TE (consulte Opciones de software en la página 442). PBB-TE no está disponible cuando la casilla de verificación MPLS está seleccionada. Consulte PBB-TE Interface configuration (Configuración de la interfaz PBB-TE) en la página 568 para obtener más información.

Prueba EtherSAM (Y.1564)

Seleccione la casilla de verificación **MPLS** para activar la función de generación y análisis de flujos de hasta dos capas de etiquetas MPLS y para filtrar el tráfico recibido por la etiqueta MPLS o COS. **MPLS** es una opción de software y tiene que activarse para permitir el acceso a la función de la prueba MPLS (consulte *Opciones de software* en la página 442). MPLS no está disponible cuando la casilla de verificación **PBB-TE** está seleccionada. Consulte *MPLS Configuration (Configuración de MPLS)* en la página 587 para obtener más información.**TX** y **RX**: permite seleccionar las etiquetas MPLS de TX y RX de la interfaz (**0** a **1048575**). El valor por defecto de la etiqueta es **16** tanto para TX como para RX. Las etiquetas TX y RX están disponibles cuando se activa la casilla de verificación **MPLS**. Consulte *Network (Red)* en la página 268 para obtener más información.

- **4e.** Configure **IP Version** (Versión de IP) (IPv4 o IPv6). **IP Version** (Versión de IP) sólo está disponible cuando las opciones de software IPv6 (SK-IPv6) están activadas.
- 4f. Para IPv4, seleccione la casilla de verificación Automatic IP Address (Dirección IP automática) para obtener de forma dinámica una dirección IP de un servidor DHCP (protocolo de configuración dinámica de host) o establezca las direcciones de origen y de destino, Subnet Mask (Máscara de subred) y Default Gateway (Puerta de enlace por defecto). Consulte IPv4 Configuration (Configuración de IPv4) en la página 570 para obtener más información.
- **4g.** Para IPv6, press el botón **IPv6 Config** (Configuración de IPv6) para establecer la configuración de IPv6. Consulte *IPv6 Addresses Configuration (Configuración de direcciones IPv6)* en la página 572 para obtener más información.
- 4h. Press Next (Siguiente).

Prueba EtherSAM (Y.1564)

- 5. Configuración del servicio
 - 5a. Para IPv4, seleccione la casilla de verificación Automatic IP Address (Dirección IP automática) para obtener de forma dinámica una dirección IP de un servidor DHCP (protocolo de configuración dinámica de host) o establezca las direcciones de origen y de destino, Subnet Mask (Máscara de subred) y Default Gateway (Puerta de enlace por defecto). Consulte IPv4 Configuration (Configuración de IPv4) en la página 570 para obtener más información.
 - 5b. Para IPv6, configure la dirección IP de destino y, si es necesario, press el botón IPv6 Config (Configuración de IPv6) para acceder a las opciones adicionales de IPv6. Consulte IPv6 Addresses Configuration (Configuración de direcciones IPv6) en la página 572 para obtener más información.

Service 1 Config	
Source MAC Address	Dest. MACAddress
00:00:00:00:00	FE:FE:FE:FE:FE
	MAC Address Status
Resolve MACAddress	
Automatic IP Address	
Source IP Address	Dest. IP Address
10.10.0.0	10.10.0.0
Subnet Mask	
255.255.0.0	Ping
Default Gateway	
	able
Frame Format	
Ethernet II 💌	Stacked VLAN
Enable VLAN	T
VLAN #1 ID VLAN #2 ID	VLAN #3 ID
Service 1 Config	
Source MAC Address	Dest. MAC Address
00:00:00:00:00	FE:FE:FE:FE:FE
	MAC Address Status
Resolve MACAddress	
IPv6 Config. Ping	
Link-Local IPv6 Address	
Global IPv6 Address	

Global IPv6 Address
Default Gateway Address
FE80:0000:0000:0000:0000:0000:0000
Destination IPv6 Address
FE80:0000:0000:0000:0200:00FF:FE00:0000
Frame Format
Ethernet II Stacked VLAN
Enable VLAN
VLAN #1 ID VLAN #2 ID VLAN #3 ID

- 5c. Si es necesario, configure las direcciones MAC de origen y destino y seleccione la casilla de verificación Resolve MAC Address (Resolver dirección MAC) si es necesario. Consulte página 387 para obtener más información.
- 5d. Seleccione Frame Format (Formato de trama). Las opciones son Ethernet II y 802.3 SNAP. Consulte Framing Configuration (Configuración del entramado) en la página 580 para obtener más información.

- **5e.** Configure los parámetros de **VLAN** si es necesario. Consulte *VLAN Configuration (Configuración VLAN)* en la página 566 para obtener más información.
- 5f. Press Finish (Terminar) para finalizar la configuración de prueba.
- **6.** Los servicios deben estar activados antes de iniciar la prueba. Para activar los servicios y otros parámetros de configuración, consulte *Fichas de EtherSAM* en la página 379.
- 7. Press el botón Start (Iniciar) para comenzar la prueba.

Al menos una de las pruebas secundarias de EtherSAM (Y.1564) [Service Configuration Test (Prueba de configuración de servicio) o Service Performance Test (Prueba de rendimiento de servicio)] debe estar activada para iniciar la prueba. Las pruebas secundarias activadas se ejecutarán siguiendo este orden: Service Configuration Test (Prueba de configuración de servicio) y Service Performance Test (Prueba de rendimiento de servicio).

8. Para ver resultados adicionales, consulte *Fichas de EtherSAM* en la página 379.

Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544

Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544

La prueba **EtherSAM (Y.1564)** permite validar los indicadores de rendimiento clave de los servicios de transporte basados en Ethernet.

La prueba **RFC 2544** admite las pruebas de rendimiento Ethernet **Throughput** (Caudal de tráfico), **Back-to-Back** (Transmisión recíproca), **Frame Loss** (Pérdida de tramas) y **Latency** (Latencia) según las especificaciones **RFC 2544**.

La prueba de conjunto de pruebas duales permite realizar una prueba bidireccional entre dos módulos compatibles que proporcionarán resultados independientes para cada dirección de la prueba. Los módulos compatibles son FTB-8510B, FTB-8510G, FTB-8525/FTB-8535, FTB-8120NGE/FTB-8130NGE y RTU-310/RTU-310G. Un caso de prueba de conjunto de pruebas duales se debe crear primero en un módulo remoto y, a continuación, en un módulo local según se describe en el siguiente procedimiento. Los resultados de local a remoto y de remoto a local están disponibles en la unidad de prueba local.

Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544

Para crear un caso de prueba de conjunto de pruebas duales de EtherSAm (Y.1564) o RFC 2544, primero debe crear la prueba en el módulo remoto de la siguiente manera:

- 1. Configuración de la prueba:
 - 1a. Seleccione
 Ethernet 10/100/1000 o
 Ethernet 10G como el
 Interface Type (Tipo de interfaz). Interface Type
 (Tipo de interfaz) no está disponible con FTB-8510G.
 - 1b. Seleccione Single Port (Puerto único) como Topology (Topología).

Test Name	
TEST	Test Name
Interface Type	TEST
Ethernet 10/100/1000	Interface Type
Application Type	Ethernet 10/100/1000
EtherSAM (Y.1564)	Topology
	Single Port
	Application Type
	RFC 2544
Service Configuration Test	🔽 Throughput
Service Performance Test	I▼ Back-to-Back
Dual Test Set	I Frame Loss
Remote	✓ Latency
Remote ID	Dual Test Set
	Mode
Latency Measurement Mode	Remote
One-Way 🔽 🔮	Remote ID

Topology (Topología) sólo está disponible con FTB-8510B.

- **1c.** Seleccione **EtherSAM (Y.1564)** o **RFC 2544** como el **Application Type** (Tipo de aplicación).
- 1d. Seleccione la casilla de verificación Dual Test Set (Conjunto de pruebas duales) para activar el control de un módulo remoto compatible (FTB-8510B, FTB-8510G, FTB-8525/FTB-8535, FTB-8120NGE/FTB-8130NGE o RTU-310/RTU-310G). Para FTB-8510B, Dual Test Set (Conjunto de pruebas duales) sólo está disponible en Topology (Topología), en Single Port (Puerto único). Esta configuración no está seleccionada por defecto.
- 1e. Seleccione la prueba Remote (Remoto) en Mode (Modo).
- **1f.** Introduzca una ID para esta unidad remota. Se permiten hasta 16 caracteres.

Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544

1g. Para FTB-8120NGE y FTB-8130NGE, seleccione el modo de medida de latencia: Round-Trip (Ida y vuelta) o One-Way (Unidireccional). Para obtener más información, consulte Latency Measurement (Medición de latencia) en la página 352 para RFC-2544 o Latency Measurement (Medición de latencia) en la página 383 para EtherSAM.

1h. Press Next (Siguiente).

2. Configuración del puerto:

Port 1 (Puerto 1)(sólo para FTB-8510B) se selecciona automáticamente.

2a. Seleccione el **Connector Type (Tipo de conector)**

(**Optical** or **Electrical RJ-45**) (Óptico o Eléctrico RJ-45) del puerto. **Optical** (Óptico) está seleccionado automáticamente para la interfaz **Ethernet 10G**.

2b. Para RJ-45 eléctrico, si es necesario, seleccione la casilla de verificación **Ethernet port crossover** (Puerto

Electrical RJ-45 Config	
Ethernet port crossover	

Ethernet cruzado) para invertir la asignación pin/par del cable UTP utilizado.

Nota: En este punto debería disponer de un enlace activo indicado en la ficha de visualización **Tree** (Árbol). Un LED verde indica un enlace activo mientras que un LED rojo indica un enlace roto. para un puerto eléctrico, si el enlace está roto, asegúrese de que el ajuste **Ethernet port crossover** (Puerto Ethernet cruzado) es correcto.

2c. Press Next (Siguiente).

Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544

- **3.** Configuración óptica sólo para la interfaz **Ethernet 10G**:
 - **3a.** Seleccione **Transceiver Mode** (Modo de transceptor) Las opciones son de red de área local (LAN) para la interfaz regular de Ethernet (10,31250 Gbps) y de red de área extensa (WAN) para un

Optical Config	
Transceiver Mode	
10GigE WAN	•
Clock Mode	
Internal	•

flujo de Ethernet encapsulado dentro de una estructura de trama SONET/SDH (9,95328 Gbps). Las opciones disponibles dependen del modelo de la unidad y las opciones; consulte *Opciones de software* en la página 442 para obtener más información.

- **3b.** Seleccione el modo de reloj de origen (sólo para el modo de transceptor WAN). Consulte *Sincronización del reloj* en la página 448 para obtener más información.
- 3c. Press Next (Siguiente).
- **3d.** Introduzca los mensajes de traza J0 Trace y J1 (sólo para el modo de transceptor WAN). Consulte *WIS TX* en la página 281 para obtener más información.

-	
J0 Trace	
EXFO 10GigE ^{NULNULNULNUL}	
J1 Trace	
EXFO 10GigE ^{NULNULNULNUL}	

WIS Confid

3e. Press Next (Siguiente).

Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544

- 4. Configuración del entramado.
 - 4a. Establezca los parámetros Auto-Negotiation (Negociación automática), Speed (Velocidad), Duplex (Dúplex) y Flow Control (Control de flujo). No disponible con Ethernet 10G. Consulte Interface Setup (Configuración de la interfaz) (Ethernet) en

Ethernet Framed Layer 2 Config	Ethernet Framed Layer 2 Config
Auto-Negotiation Speed Duplex IGbps Full	✓ Auto-Negotiation Speed Duplex IGbps ▼ Full ▼
Enable VLAN VLAN Config,	Frame Format VLAN Config. Frame Format EthernetII OUI
	×
IP Version	IP Version IPv6 Version
IP Address 10.10.0.0 Enable DH Subnet Mask	Link-Local IPv6 Address
255.255.0.0 Default Gateway	Global IPV6 Address Default Gateway Address
J Enable	

la página 258 para obtener más información.

- **4b.** Configure los parámetros de **VLAN** si es necesario. Consulte *MAC* en la página 221 para obtener más información.
- 4c. Seleccione Frame Format (Formato de trama). Las opciones son Ethernet II y 802.3 SNAP. Consulte Network (Red) en la página 268 para obtener más información.
- **4d.** Configure **IP Version**(Versión de IP) (IPv4 o IPv6)**IP Version** (Versión de IP) sólo está disponible cuando las opciones de software IPv6 (SK-IPv6) están activadas.

- 4e. Para IPv4, seleccione la casilla de verificación Automatic IP Address (Dirección IP automática) para obtener dinámicamente una dirección IP de un DHCP (servidor de protocolo de configuración dinámica de host) o establezca las direcciones IP de origen y destino, Subnet Mask (Máscara de subred) y Default Gateway (Puerta de enlace por defecto). Consulte IPv4 Configuration (Configuración de IPv4) en la página 570 para obtener más información.
- **4f.** Para IPv6, press el botón **IPv6 Config** (Configuración de IPv6) para establecer la configuración de IPv6. Consulte *IPv6 Addresses Configuration (Configuración de direcciones IPv6)* en la página 572 para obtener más información.
- **4g.** Press **Finish** (Terminar) para completar la configuración de la prueba de este módulo remoto. La ficha **Global** de **RFC 2544** aparece automáticamente.

Al crear la prueba como remota en una unidad o en una unidad compatible (FTB-8510B, FTB-8510G, FTB-8525/FTB-8535, FTB-8120NGE/FTB-8130NGE o RTU-310/RTU-310G), SUI se limita a lo siguiente: fichas Test Setup (Configuración de prueba), Tools (Herramientas), System (Sistema) y About (Acerca de); funciones de favoritos, guardar, cargar e informar. La configuración y los resultados de la prueba no están disponibles.

Cree la prueba en el módulo local de la siguiente manera:

- En el módulo local, realice la creación de la prueba tal y como se describe anteriormente (empezando con el paso 1 de la página 85) a excepción de los siguientes parámetros:
 - 1a. Seleccione las pruebas secundarias de EtherSAM (Y.1564) o RFC
 2544 deseadas. Todas las pruebas secundarias están seleccionadas por defecto.

Para RFC 2544:

Throughput (Permitir caudal de tráfico): proporciona el máximo caudal de tráfico del dispositivo que se prueba para el que no se produce pérdida de tramas. Consulte *Throughput (Configuración del caudal de tráfico)* en la página 353 para obtener más información.

Back-to-Back (Permitir transmisión recíproca): proporciona el número máximo de tramas que se puede enviar con el máximo caudal de tráfico. Consulte *Back-to-Back (Configuración de transmisión recíproca)* en la página 358 para obtener más información.

Frame Loss (Permitir pérdida de tramas): proporciona el porcentaje de tramas que se pierden. Consulte *Frame Loss (Configuración de pérdida de tramas)* en la página 363 para obtener más información.

Latency (Permitir latencia): proporciona el tiempo que necesita la trama enviada para pasar a través del equipo que se prueba. Consulte *Latency (Latencia)* en la página 368 para obtener más información.

Para EtherSAM (Y.1564):

Service Configuration Test (Prueba de configuración de servicio) consiste en comprobar cada servicio de forma secuencial. Confirma si el servicio está adecuadamente provisto y si se cumplen todos los parámetros KPI o SLA específicos.

Service Performance Test (Prueba de configuración de servicio) valida simultáneamente la calidad de todos los servicios en el tiempo.

- **1b.** En **Dual Test Set Mode** (Modo de conjunto de pruebas duales) (consulte el paso 1e de la página 85), seleccione el modo de prueba **Local**.
- **1c.** En la página **Remote Module** (Módulo remoto), press el botón **Remote Selection** (Selección remota) .

IPv4	IPv6
Remote Module Selection	Remote Module Selection
Broadcast Destination 255,255,255,255 Remote Module	Scan Subnet 🜑 Remote Module
IP Address Remote ID Status	IP Address Remote ID Status
Select	Select
Remote ID Status IP Address Disconnect	IP Address Remote ID Status 0000:0000:0000:0000:0000:0000 Disconnect Disconnect Disconnect
Close	Close

Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544

1d. Si ambos módulos (remoto y local) están en la misma subred, seleccione la máscara de subred [Broadcast Destination (Destino de difusión)] de la red que vaya a explorar, basándose en la dirección IP y subred de su interfaz. Disponible sólo con IPv4.

Si los módulos remoto y local no están en la misma subred, como cuando se conectan a través de un enrutador, introduzca la dirección IP del módulo remoto en el campo **IP Address** (Dirección IP) en la sección **Remote Module Connection** (Conexión del módulo remoto). Para IPv6, al introducir una dirección IPv6 global de destino, hay que definir la interfaz **Global IPv6 Address** (Dirección IPv6 global). La **Remote ID** (ID remota) y su **Status** (Estado) se muestran si se detecta el módulo. Salte al siguiente paso 1g.

1e. Press Scan Subnet (Explorar subred) para explorar la subred y buscar módulos remotos compatibles (FTB-8510B, FTB-8510G, FTB-8525/FTB-8535, FTB-8120NGE/FTB-8130NGE, Serie AXS-850 (sólo RFC 2544), Serie FTB-860, Serie FTB-810/880 o RTU-310/RTU-310G). La exploración de subred se realizará sólo cuando ambos módulos remoto y local estén en la misma subred. Sólo los módulos que ejecutan la misma prueba (RFC 2544 o EtherSAM) y que tienen el modo Remote Dual Test Set (Conjunto de pruebas duales remotas) activado estarán en la lista.

El módulo remoto compatible que se ha detectado aparece en una lista con su información relativa a **IP Address** (Dirección IP), **Remote ID** (ID remota) y **Status** (Estado).

estado	Description (Descripción)
Not Connected (No conectado)	El módulo remoto no está conectado a otro módulo.
Busy (Ocupado)	El módulo remoto está conectado a otro módulo.
Conectado	El módulo remoto está conectado al módulo actual.
IP remota no encontrada	El módulo local no ha recibido respuesta de la dirección IP seleccionada del módulo remoto.

- 1f. Seleccione un módulo detectado de la lista pressing en él y press Select (Seleccionar). La conexión se puede realizar con un módulo que esté en estado Not Connected (No conectado) o Busy (Ocupado). Se necesita una confirmación al seleccionar un módulo remoto que esté en estado Busy (Ocupado), ya que la unidad remota podría estar conectada a otro módulo.
- 1g. Press el botón Connect (Conectar) para establecer la conexión con el módulo remoto. La conexión se puede realizar con un módulo que esté en estado Not Connected (No conectado) o Busy (Ocupado). Se necesita una confirmación al seleccionar un módulo remoto que esté en estado Busy (Ocupado), ya que la unidad remota podría estar conectada a otro módulo.

Disconnect (Desconectar) permite desconectarse del módulo remoto.

1h. Press Finish (Terminar) para completar la configuración de la prueba de este módulo local. En RFC 2544, la ficha Global de RFC 2544 aparece automáticamente.

Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544

- 2. Para ver parámetros de configuración adicionales, consulte *Fichas de EtherSAM* en la página 379 o *Fichas de RFC 2544* en la página 347.
- 3. En el módulo local, press el botón Start (Iniciar) para comenzar la prueba. El botón Start (Iniciar) sólo estará disponible cuando la conexión entre las dos unidades Serie FTB-8500 y FTB-8120NGE/8130NGE se establezca.

Al menos uno de los procedimientos de prueba [para EtherSAM (Y.1564): **Service Configuration Test** (Prueba de configuración de servicio) o **Service Performance Test** (Prueba de rendimiento de servicio) ; para RFC 2544: Throughput (Caudal de tráfico), Back-to-Back (Transmisión recíproca), Frame Loss (Pérdida de tramas) o Latency (Latencia)] debe estar activado al iniciar la prueba. Los procedimientos de prueba que estén activados se ejecutarán siguiendo este orden:

Service Configuration Test (Prueba de configuración de servicio) y **Service Performance Test** (Prueba de rendimiento de servicio) para EtherSAM (Y.1564)

Throughput (Caudal de tráfico), **Back-to-Back** (Transmisión recíproca), **Frame Loss** (Pérdida de tramas) y **Latency** (Latencia) para **RFC 2544**.

4. Para ver resultados adicionales, consulte *Fichas de EtherSAM* en la página 379 o *Fichas de RFC 2544* en la página 347.
RFC 2544: permite realizar las pruebas de rendimiento de Ethernet **Throughput** (Caudal de tráfico), **Back-to-Back** (Transmisión recíproca), **Frame Loss** (Pérdida de tramas) y **Latency** (Latencia) según las especificaciones de **RFC 2544**.

Nota: para una prueba bidireccional (conjunto de pruebas duales), consulte Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544 en la página 84.

Aplicación típica de RFC 2544 en Single Port (Puerto único):

Aplicación típica de **RFC 2544** en **Dual Ports** (Puertos duales) (FTB-8510B únicamente):

Para crear un caso de prueba de RFC 2544:

- 1. Configuración de la prueba:
 - 1a. Seleccione Ethernet 10/100/1000 o
 Ethernet 10G como el Interface Type (Tipo de interfaz). Interface Type (Tipo de interfaz) no está disponible con FTB-8510G.
 - 1b. Para FTB-8510B: seleccione el tipo de Topology (Topología) de prueba: Single Port (Puerto único) o Dual Ports (Puertos duales).

Test Config	
Test Name	
TEST	
Interface Type	
Ethernet 10/100/1000	-
Topology	
Single Port 🔹	
ApplicationType	
RFC 2544	
✓ Throughput	
V Back-to-Back	
✓ Frame Loss	
V Latency	
🔲 Dual Test Set	
Mode	
v	
Remote ID	

- Seleccione RFC 2544 como Application Type (Tipo de aplicación).
- **1d.** Seleccione las pruebas secundarias de RFC 2544 deseadas. Todas las pruebas secundarias de RFC 2544 están seleccionadas por defecto.

Throughput (Permitir caudal de tráfico): proporciona el máximo caudal de tráfico del dispositivo que se prueba para el que no se produce pérdida de tramas. Consulte *Throughput (Configuración del caudal de tráfico)* en la página 353 para obtener más información.

Back-to-Back (Permitir transmisión recíproca): proporciona el número máximo de tramas que se puede enviar con el máximo caudal de tráfico. Consulte *Back-to-Back (Configuración de transmisión recíproca)* en la página 358 para obtener más información.

Frame Loss (Permitir pérdida de tramas): proporciona el porcentaje de tramas que se pierden. Consulte *Frame Loss (Configuración de pérdida de tramas)* en la página 363 para obtener más información.

Latency (Permitir latencia): proporciona el tiempo que necesita la trama enviada para pasar a través del equipo que se prueba. Consulte *Latency (Latencia)* en la página 368 para obtener más información.

- 1e. Desmarque la casilla de verificación Dual Test Set (Conjunto de pruebas duales). Para los casos de prueba de Dual Test Set (Conjunto de pruebas duales), consulte Casos de prueba del conjunto de pruebas duales de Ethernet EtherSAM (Y.1564) y RFC 2544 en la página 84.
- 1f. Press Next (Siguiente).
- 2. Configuración del puerto:
 - 2a. Seleccione el Connector
 Optical
 Electrical RJ-45

 Type (Tipo de conector)
 (Optical or Electrical RJ-45) (Óptico o Eléctrico RJ-45) del puerto. Optical (Óptico) está seleccionado automáticamente para la interfaz Ethernet 10G.
 - 2b. Para FTB-8510B, seleccione el número del puerto pressing Port 1 (Puerto 1) o Port 2 (Puerto 2).

 Para RJ-45 eléctrico, si es necesario, seleccione la casilla de verificación
 Ethernet port crossover (Puerto
 Ethernet cruzado) para invertir la asig

Electrical RJ-45 Config
Ethernet port crossover

Ethernet cruzado) para invertir la asignación pin/par del cable UTP utilizado.

Nota: En este punto debería disponer de un enlace activo indicado en la ficha de visualización **Tree** (Árbol). Un LED verde indica un enlace activo mientras que un LED rojo indica un enlace roto. para un puerto eléctrico, si el enlace está roto, asegúrese de que el ajuste **Ethernet port crossover** (Puerto Ethernet cruzado) es correcto.

2d. Press Next (Siguiente).

- **3.** Configuración óptica sólo para la interfaz **Ethernet 10G**:
 - **3a.** Seleccione **Transceiver Mode** (Modo de transceptor) Las opciones son de red de área local (LAN) para la interfaz regular de Ethernet (10,31250 Gbps) y de red de área extensa (WAN) para un

Optical Config	
Transceiver Mode	
10GigE WAN	-
Clock Mode	
Internal	•

flujo de Ethernet encapsulado dentro de una estructura de trama SONET/SDH (9,95328 Gbps). Las opciones disponibles dependen del modelo de la unidad y las opciones; consulte *Opciones de software* en la página 442 para obtener más información.

- **3b.** Seleccione el modo de reloj de origen (sólo para el modo de transceptor WAN). Consulte *Sincronización del reloj* en la página 448 para obtener más información.
- 3c. Press Next (Siguiente).
- **3d.** Introduzca los mensajes de traza J0 Trace y J1 (sólo para el modo de transceptor WAN). Consulte *WIS TX* en la página 281 para obtener más información.
- **3e.** Press Next (Siguiente).

*
*

Caso de prueba de Ethernet RFC 2544

- 4. Configuración del entramado:
 - 4a. Establezca los parámetros
 Auto-Negotiation (Negociación automática), Speed (Velocidad),
 Duplex (Dúplex) y Flow Control (Control de flujo). No disponible con Ethernet 10G. Consulte Interface Setup (Configuración de la interfaz)

(Ethernet) en la página 258 para obtener más información.

- **4b.** Configure **IP Version** (Versión de IP) (IPv4 o IPv6). **IP Version** (Versión de IP) sólo está disponible cuando las opciones de software IPv6 (SK-IPv6) están activadas.
- 4c. Press Next (Siguiente).

Caso de prueba de Ethernet RFC 2544

5. Configuración del flujo de tráfico

- 5a. Para IPv4, seleccione la casilla de verificación Automatic IP Address (Dirección IP automática) para obtener de forma dinámica una dirección IP de un servidor DHCP (protocolo de configuración dinámica de host) o establezca las direcciones de origen y de destino, Subnet Mask (Máscara de subred) y Default Gateway (Puerta de enlace por defecto). Consulte IPv4 Configuration (Configuración de IPv4) en la página 570 para obtener más información.
- 5b. Para IPv6, configure la dirección IP de destino y, si es necesario, press el botón IPv6 Config (Configuración de IPv6) para acceder a las opciones adicionales de IPv6. Consulte IPv6 Addresses Configuration (Configuración de direcciones IPv6) en la página 572 para obtener más información.

Source MAC Address	Dest. MAC Address
00:00:00:00:00:00	FE:FE:FE:FE:FE:FE
	MAC Address Status
Resolve MACAddress	J
Automatic IP Address	
Source IP Address	Dest. IP Address
10.10.0.0	10.10.0.0
Subnet Mask	
255.255.0.0	Ping
Default Gateway	
E	nable
Frame Format	
Ethernet II	Stacked VLAN
Enable VLAN	-
VLAN #1 ID VLAN #2 ID	VLAN #3 ID
Service 1 Config	
Service 1 Config	Dest. MACAddress
Service 1 Config Source MAC Address 00:00:00:00:00) Dest. MAC Address FE:FE:FE:FE:FE
Service 1 Config Source MAC Address 00:00:00:00:00	Dest. MAC Address FE:FE:FE:FE:FE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00	Dest. MAC Address FE:FE:FE:FE:FE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MAC Address IPv6 Config. Ping	Dest. MAC Address FE:FE:FE:FE:FE:FE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MAC Address IPv6 Config. Ping	Dest. MAC Address FE:FE:FE:FE:FE:FE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MAC Address IPv6 Config. Ping Link-Local IPv6 Address) Dest. MAC Address [FE:FE:FE:FE:FE:FE MAC Address Status [
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MACAddress IPv6 Config. Ping Link-Local IPv6 Address	Dest. MAC Address FE:FE:FE:FE:FE:FE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MACAddress IPv6 Config. Pinc Link-Local IPv6 Address Global IPv6 Address	Dest. MAC Address FE:FE:FE:FE:FE:FE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MAC Address IPv6 Config. Pinc Link-Local IPv6 Address Global IPv6 Address 	Dest. MAC Address FE/FE/FE/FE/FE/FE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MACAddress IPv6 Config. Pim Link-Local IPv6 Address Global IPv6 Address Default Sateway Address 	Dest. MAC Address FEFEFEFEFEFE - Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MAC Address IPv6 Config. Ping Link-Local IPv6 Address Global IPv6 Address Default Gateway Address FE80:0000:0000:0000:0000	Dest. MAC Address FEFEFEFEFEFEFE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MAC Address IPv6 Config. Ping Link-Local IPv6 Address Global IPv6 Address Default Gateway Address F880:0000:0000:0000:0000 Destimation IPv6 Address	Dest. MAC Address FEFEFEFEFEFE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MAC Address IPv6 Config. Pinf Link-Local IPv6 Address Global IPv6 Address Default Gateway Address FE80:0000:0000:0000:0000 Destination IPv6 Address FE80:0000:0000:0000:0000	Dest. MAC Address FE:FE:FE:FE:FE:FE: MAC Address Status 2 2000:0000:0000 :0000:0000 :000F:FE00:0000
Service 1 Config Source MAC Address D0:00:00:00:00 Resolve MACAddress IPv6 Config. Ping Link-Local IPv6 Address 	Dest. MAC Address FEFE/FE/FE/FE/FE MAC Address Status
Service 1 Config Source MAC Address 00-00-00-00-00 Resolve MAC Address IPv6 Config. Ping Link-Local IPv6 Address 	Dest: MAC Address FEFE/FEFE/FE/FE MAC Address Status
Service 1 Config Source MAC Address 00:00:00:00:00 Resolve MAC Address IPv6 Config. Pinf Link-Local Pv6 Address Obfault Gateway Address Default Gateway Address Default Gateway Address F88:0000:0000:0000:0000 Destination IPv6 Address F88:0000:0000:0000:0000 Estibuted IPv6 Address F88:0000:0000:0000:0000	Dest. MAC Address FE/FE/FE/FE/FE/FE MAC Address Status

- 5c. Si es necesario, configure la dirección MAC de origen de la red. Seleccione la casilla de verificación Resolve MAC Address (Resolver dirección MAC) o configure la dirección MAC de destino. Consulte MAC en la página 221 para obtener más información.
- 5d. Seleccione Frame Format (Formato de trama). Las opciones son Ethernet II y 802.3 SNAP. Consulte Frame Format (Formato de trama) en la página 221 para obtener más información.

- **5e.** Configure los parámetros de **VLAN** si es necesario. Consulte *MAC* en la página 221 para obtener más información.
- *5f.* Press **Finish** (Terminar) para finalizar la configuración de prueba. La ficha **Global** de **RFC 2544** aparece automáticamente.
- **6.** Para ver parámetros de configuración adicionales, consulte *Fichas de RFC 2544* en la página 347.
- 7. Press el botón Start (Iniciar) para comenzar la prueba.

Al menos uno de los procedimientos de prueba de RFC 2544 [Throughput (Caudal de tráfico), Back-to-Back (Transmisión recíproca), Frame Loss (Pérdida de tramas) o Latency (Latencia)] debe estar activado al iniciar la prueba. Los procedimientos de prueba que estén activados se ejecutarán siguiendo este orden: Throughput (Caudal de tráfico), Back-to-Back (Transmisión recíproca), Frame Loss (Pérdida de tramas) y Latency (Latencia).

8. Para ver resultados adicionales, consulte *Fichas de RFC 2544* en la página 347.

permite la generación de tráfico de Ethernet no entramado y de capa 1 a capa 4, con un patrón específico de prueba para el análisis de la tasa de errores de bit.

Aplicaciones típicas de **BERT** en **Single Port** (Puerto único):

Aplicación típica de **BERT** en **Dual Ports** (Puertos duales) (FTB-8510B únicamente):

Para crear un caso de prueba de BERT:

- **1.** Configuración de la prueba:
 - 1a. Seleccione Ethernet 10/100/1000 o Ethernet 10G como el Interface Type (Tipo de interfaz). Interface Type (Tipo de interfaz) no está disponible con FTB-8510G.

Test Config	
Test Name	
TEST	
Interface Type	
Ethernet 10/100/1000	•
Topology	
Single Port	•
ApplicationType	
BERT	-

- **1b.** Para FTB-8510B: seleccione el tipo de **Topology** (Topología) de prueba: **Single Port** (Puerto único) o **Dual Ports** (Puertos duales).
- 1c. Seleccione BERT como Application Type (Tipo de aplicación).
- 1d. Press Next (Siguiente).
- 2. Configuración del puerto:
 - 2a. Seleccione el Connector Type (Tipo de conector) (Optical or Electrical RJ-45

(Optical or **Electrical RJ-45)** (Óptico o Eléctrico RJ-45) del puerto. **Optical** (Óptico) está seleccionado automáticamente para la interfaz **Ethernet 10G**.

2b. Para FTB-8510B, seleccione el número del puerto pressing Port 1 (Puerto 1) o Port 2 (Puerto 2).

Para FTB-8510B en Dual Ports (Puertos duales), seleccione el primer puerto y complete el resto de la configuración para el primer puerto. Sin embargo, antes de pressing Finish (Finalizar), press Back (Atrás) varias veces para volver a la ventana de configuración de puertos, seleccione el segundo puerto y complete el resto de la configuración para el segundo puerto.

2c. Para RJ-45 eléctrico, si es necesario, seleccione la casilla de verificación Ethernet port crossover (Puerto Ethernet cruzado) para invertir la asignación pin/par del cable UTP utilizado.

Electrical RJ-45 Config	
Ethernet port crossover	

Nota: En este punto debería disponer de un enlace activo indicado en la ficha de visualización **Tree** (Árbol). Un LED verde indica un enlace activo mientras que un LED rojo indica un enlace roto. para un puerto eléctrico, si el enlace

está roto, asegúrese de que el ajuste Ethernet port crossover (Puerto Ethernet cruzado) es correcto.

2d. Press Next (Siguiente).

- **3.** Configuración óptica sólo para la interfaz **Ethernet 10G**:
 - **3a.** Seleccione **Transceiver Mode** (Modo de transceptor) Las opciones son de red de área local (LAN) para la interfaz regular de Ethernet (10,31250 Gbps) y de red de área extensa (WAN) para un

Optical Config	
Transceiver Mode	
10GigE WAN	•
Clock Mode	
Internal	•

flujo de Ethernet encapsulado dentro de una estructura de trama SONET/SDH (9,95328 Gbps). Las opciones disponibles dependen del modelo de la unidad y las opciones; consulte *Opciones de software* en la página 442 para obtener más información.

- **3b.** Seleccione el modo de reloj de origen (sólo para el modo de transceptor WAN). Consulte *Sincronización del reloj* en la página 448 para obtener más información.
- 3c. Press Next (Siguiente).
- **3d.** Introduzca los mensajes de traza J0 Trace y J1 (sólo para el modo de transceptor WAN). Consulte *WIS TX* en la página 281 para obtener más información.
- **3e.** Press Next (Siguiente).

WIS Config	
J0 Trace	
EXFO 10GigE ^{NULNULNULNUL}	4
J1 Trace	
EXFO 10GigE ^{NULNULNULNUL}	4

- 4. Configuración del entramado:
 - **4a.** Seleccione el modo entramado de la prueba:

Ethernet Unframed Ethernet Framed Layer 1 Ethernet Framed Layer 2

Ethernet Unframed (Ethernet no entramado): consiste en enviar una trama sin EOF (fin de trama). Ethernet Unframed (Ethernet no entramado) sólo está disponible para interfaces ópticas excepto 10Gig-E WAN.

Enable Sync (Permitir sincronización) desactivada:

SOF	Test Pattern
-----	--------------

Enable Sync (Permitir sincronización) activada:

SOF	Test Pattern (1 second length)	IFG
-----	-----------------------------------	-----

Ethernet Framed Layer 1 (Capa de trama 1 de Ethernet): consiste en enviar una trama de x bytes especificados en el campo de tamaño de trama; consulte el tamaño de la trama en**Size** (Tamaño) en la página 205 para obtener más información. Este tipo de entramado permite la conexión a cualquier interfaz que cumpla con 802.3 Ethernet PHY o fibra DWDM.

SOF	Test Pattern (Configurable length)	IFG
-----	---------------------------------------	-----

Ethernet Framed Layer 2 (Capa de trama 1 de Ethernet): consiste en enviar una trama de x bytes especificados en el campo de tamaño de trama; consulte el tamaño de la trama en**Size** (Tamaño) en la página 205 para obtener más información. Este tipo de entramado permite la conexión a cualquier interfaz EtherType (10/100/1000 Mbps) o red Ethernet (10GigE) que cumpla con la capa 2 de 802.3 Ethernet (direcciones MAC válidas, tipo/longitud y bytes FCS).

Nota: para las capas 3 y 4, seleccione **Ethernet Framed Layer 2** (Capa de trama 2 de Ethernet) y consulte Fichas de generación de flujo - Overview (Resumen) en la página 198 una vez creada la prueba.

Caso de prueba de Ethernet BERT

- 4b. Para Ethernet Unframed (Ethernet no entramado), seleccione la casilla de verificación Enable Sync (Permitir sincronización) para permitir que cualquier receptor sincronice bits cada segundo al insertar un IFG de 12 bytes con SOF. La casilla de verificación Enable Sync (Permitir sincronización) no está seleccionada por defecto.
- 4c. Establezca los parámetros
 Auto-Negotiation (Negociación automática), Speed (Velocidad),
 Duplex (Dúplex) y Flow Control (Control de flujo). No disponible

thernet Unframed Config	
Enable Sync	
 Auto-Negotiation Speed 	Ethernet Framed Layer 1 Config
1Gbps 💌	Auto-Negotiation
Duplex	Speed
Full 💌	1Gbps 💌
Flow Control	Duplex
None	Full
	Flow Control
	None
Ethernet Framed L	ayer 2 Config
Auto-Negotiation	
Speed C	uplex Flow Control
1Gbps 🔻 F	ull 💌 None 💌
IP Version	

con Ethernet 10G. Consulte *Interface Setup (Configuración de la interfaz) (Ethernet)* en la página 258 para obtener más información.

- 4d. Configure IP Version (Versión de IP) (IPv4 o IPv6). IP Version (Versión de IP) sólo está disponible con Framed Layer 2 (Capa de trama 2) cuando las opciones de software de IPv6 (SK-IPv6) están activadas.
- 4e. Press Next (Siguiente).

Caso de prueba de Ethernet BERT

5. Configuración del flujo de tráfico:

Sólo **Frame Size** (Tamaño de trama) y **Maximum Rate** (Velocidad máxima) se pueden configurar con Framed Layer 1 (Capa de trama 1).

Traffic Stream Config		Traffic Stream Config
Source MAC Address	Destination MACAdd	
00:00:00:00:00:00	FE:FE:FE:FE:FE:FE	Source MAC Address Destination MACAddress
	MAC Address Status	00:00:00:00:00:00 [FE:FE:FE:FE:FE
Resolve MACAddress	Not Resolved	MAC Address Status
Automatic IP Address		V Resolve MACAddress Not Resolved
Source IP Address	Dest. IP Address	IPv6 Config. Ping
10.10.0.0	10.10.0.0	Link-Local IPv6 Address
Subnet Mask		
255.255.0.0	Ping	Global IPv6 Address
Default Gateway		
	nable	Default Gateway Address
Frame Format		FE80:0000:0000:0000:0000:0000:0000
		Destination IPv6 Address
Ethernetii	Stacked VLAN Fran	FE80:0000:0000:0000:0200:00FF:FE00:0000
Enable VLAN	64	Frame Format
VLAN #1 ID VLAN #2 ID	/LAN #3 ID Maximur	EthernetII Stacked VLAN Frame Size
	100.0	Enable VLAN 84
		VLAN #1 ID VLAN #2 ID VLAN #3 ID Maximum Rate

5a. Para IPv4,

seleccione la casilla de verificación

Automatic IP Address (Dirección IP automática) para obtener de forma dinámica una dirección IP de un servidor DHCP (protocolo de configuración dinámica de host) o establezca las direcciones de origen y de destino, **Subnet Mask** (Máscara de subred) y **Default Gateway** (Puerta de enlace por defecto). Consulte *IPv4 Configuration (Configuración de IPv4)* en la página 570 para obtener más información.

- 5b. Para IPv6, configure la dirección IP de destino y, si es necesario, press el botón IPv6 Config (Configuración de IPv6) para acceder a las opciones adicionales de IPv6. Consulte IPv6 Addresses Configuration (Configuración de direcciones IPv6) en la página 572 para obtener más información.
- 5c. Si es necesario, configure la dirección MAC de origen de la red. Seleccione la casilla de verificación Resolve MAC Address (Resolver dirección MAC) o configure la dirección MAC de destino. Consulte MAC en la página 221 para obtener más información.
- 5d. Seleccione Frame Format (Formato de trama). Las opciones son Ethernet II y 802.3 SNAP. Consulte Frame Format (Formato de trama) en la página 221 para obtener más información.

- 5e. Seleccione la casilla de verificación Enable VLAN (Permitir VLAN) si es necesario y ajuste el número de VLAN apiladas y sus parámetros [botón (VLAN Config (Configurar VLAN)]. Para obtener más información sobre VLAN, consulte MAC en la página 221.
- **5f.** Introduzca un valor para **Frame Size** (Tamaño de trama). Para obtener más información sobre **Frame Size** (Tamaño de trama), consulte *Size* (Tamaño) en la página 205.
- 5g. Introduzca un valor para Maximum Rate (%) (Velocidad máxima en %). La configuración por defecto es 100% para todas las velocidades excepto WAN a 10 Gbps, que es
 92.3076923076923%. Consulte Forma de tráfico en la página 214 para obtener más información.
- 5h. Press Next (Siguiente).

- **6.** Configuración del patrón:
 - **6a.** Establezca los parámetros del patrón. Consulte *Pattern TX (TX de patrón)* en la página 292 para obtener más información.
 - **6b.** Press **Finish** (Terminar) para finalizar la configuración de prueba. La ficha de resumen **Alarm** (Alarma) aparece automáticamente.

Pattern Config	
Coupled TX/RX	
Test Pattern	
PRBS 2^31-1	•
🖵 Invert	
User Pattern	
Pattern #	
J.	<u>×</u>
Value	_
1	

- 7. Para ver parámetros de configuración adicionales, consulte *Fichas de generación de flujo* en la página 197.
- 8. Press el botón Start (Iniciar) para comenzar la prueba. .
- **9.** Para ver resultados adicionales, consulte *Fichas de analizador de tráfico* en la página 151 y *Fichas de patrón* en la página 291.

Permite la generación y el análisis de hasta 10 flujos de tráfico Ethernet. La prueba **Frame Analyzer** (Analizador de tramas) permite también realizar pruebas **IPTV**, **Through Mode** (Modo directo), **MPLS** y **PBB-TE**. **IPTV** y **Through Mode (Modo directo)** sólo disponibles con el FTB-8510B.

Aplicación típica de **Frame Analyzer** (Analizador de tramas) en **Single Port** (Puerto único):

Aplicación típica de **Frame Analyzer** (Analizador de tramas) en **Dual Ports** (Puertos duales) (FTB-8510B únicamente):

Aplicación típica de **Frame Analyzer** (Analizador de tramas) en **Through Mode** (Modo directo):

Para crear un caso de prueba del analizador de tramas:

- 1. Configuración de la prueba:
 - 1a. Seleccione Ethernet 10/100/1000 o Ethernet 10G como el Interface Type (Tipo de interfaz). Interface Type (Tipo de interfaz) no está disponible con FTB-8510G.

Test Config	
Test Name	
TEST	
Interface Type	
Ethernet 10/100/1000	▼
Topology	
Dual Ports 💌	
ApplicationType	
Frame Analyzer 💌	
IPTV	
Through Mode	

- 1b. Para FTB-8510B: seleccione el tipo de Topology (Topología) de prueba: Single Port (Puerto único) o Dual Ports (Puertos duales).
- **1c.** Seleccione **Frame Analyzer** (Analizador de tramas) como **Application Type** (Tipo de aplicación).
- 1d. Seleccione la casilla de verificación IPTV (Televisión sobre protocolo IP) para proporcionar acceso a la función de prueba de IPTV. IPTV es una opción del software disponible en el FTB-8510B únicamente y necesita activarse para estar disponible (consulte *Opciones de software* en la página 442). La prueba de IPTV siempre se realiza en el Port 1 (Puerto 1). Las funciones de prueba PBB-TE y MPLS no están disponibles cuando la casilla de verificación IPTV está activada o viceversa. La casilla de verificación IPTV está desactivada por defecto.

- 1e. Seleccione la casilla de verificación Through Mode (Modo directo) para activar el control del tráfico bidireccional de la línea Ethernet entre los dos puntos finales de una forma no intrusiva usando los dos puertos de prueba del FTB-8510B. No se admiten las funciones de generación de flujo, alarmas ni errores, así como tampoco de la ruta de traza ni el ping. Through Mode (Modo directo) es una opción de software disponible en el FTB-8510B únicamente y necesita activarse para estar disponible (consulte *Opciones de software* en la página 442). La prueba Through Mode (Modo directo) está disponible únicamente en la topología Dual Ports (Puertos duales). La casilla de verificación Through Mode (Modo directo) está desactivada por defecto.
- 1f. Press Next (Siguiente).
- **2.** Configuración del puerto:
 - 2a. Seleccione el Connector Type (Tipo de conector) (Optical or Electrical RJ-45) (Óptico o Eléctrico RJ-45) del puerto. Optical (Óptico) está seleccionado automáticamente para la interfaz Ethernet 10G.
 - 2b. Para FTB-8510B, seleccione el número del puerto pressing Port 1 (Puerto 1) o Port 2 (Puerto 2).

Port 1 (Puerto 1) (FTB-8510B únicamente) se selecciona automáticamente al activar **IPTV**.

Caso de prueba del analizador de tramas Ethernet

Para FTB-8510B en **Dual Ports** (Puertos duales), seleccione el primer puerto y complete el resto de la configuración para el primer puerto. Sin embargo, antes de pressing **Finish** (Finalizar), press **Back** (Atrás) varias veces para volver a la ventana de configuración de puertos, seleccione el segundo puerto y complete el resto de la configuración para el segundo puerto.

2c. Para RJ-45 eléctrico, si es necesario, seleccione la casilla de verificación **Ethernet port crossover** (Puerto

Electrical	RJ-45 Config
🗖 Ethern	et port crossover

Ethernet cruzado) para invertir la asignación pin/par del cable UTP utilizado.

Nota: En este punto debería disponer de un enlace activo indicado en la ficha de visualización **Tree** (Árbol). Un LED verde indica un enlace activo mientras que un LED rojo indica un enlace roto. para un puerto eléctrico, si el enlace está roto, asegúrese de que el ajuste **Ethernet port crossover** (Puerto Ethernet cruzado) es correcto.

2d. Press Next (Siguiente).

- **3.** Configuración óptica sólo para la interfaz **Ethernet 10G**:
 - **3a.** Seleccione **Transceiver Mode** (Modo de transceptor) Las opciones son de red de área local (LAN) para la interfaz regular de Ethernet (10,31250 Gbps) y de red de área extensa (WAN) para un

flujo de Ethernet encapsulado dentro de una estructura de trama SONET/SDH (9,95328 Gbps). Las opciones disponibles dependen del modelo de la unidad y las opciones; consulte *Opciones de software* en la página 442 para obtener más información.

- **3b.** Seleccione el modo de reloj de origen (sólo para el modo de transceptor WAN). Consulte *Sincronización del reloj* en la página 448 para obtener más información.
- 3c. Press Next (Siguiente).
- **3d.** Introduzca los mensajes de traza J0 Trace y J1 (sólo para el modo de transceptor WAN). Consulte *WIS TX* en la página 281 para obtener más información.
- 3e. Press Next (Siguiente).
- **4.** Configuración del entramado:
 - 4a. Establezca los parámetros Auto-Negotiation (Negociación automática), Speed (Velocidad), Duplex (Dúplex) y Flow Control (Control de flujo). No disponible con Ethernet 10G. Consulte Interface Setup (Configuración de la interfaz)

(Ethernet) en la página 258 para obtener más información.

WIS Config	
J0 Trace	
EXFO 10GigE ^{NUL NUL NUL NUL}	*
	-
J1 Trace	
EXFO 10GigE ^{NUL NUL NUL NUL}	*
I	*

Ethernet Framed Layer 2 Config					
Auto-Neg	gotia	tion			
Speed		Duplex		Flow Control	
1Gbps	•	Full	-	None	-
Г РВВ-ТЕ					
MPLS					
IP Version	•				

Optical Config	
Transceiver Mode	
10GigE WAN	
Clock Mode	
Internal	•

- **4b.** Configure **IP Version** (Versión de IP) (IPv4 o IPv6). **IP Version** (Versión de IP) sólo está disponible cuando las opciones de software IPv6 (SK-IPv6) están activadas.
- 4c. Seleccione la casilla de verificación PBB-TE (Configuración de PBB-TE) para activar la función de generación y análisis de flujos con tráfico de datos PBB-TE, incluida la configuración de B-MAC (origen y destino), B-VLAN e I-tag, así como para filtrar el tráfico recibido por cualquiera de los siguientes campos. PBB-TE es una opción de software y tiene que activarse para permitir el acceso a la función de la prueba PBB-TE (consulte *Opciones de software* en la página 442). PBB-TE no está disponible cuando la casilla de verificación MPLS o IPTV (FTB-8510B) está seleccionada. Consulte *PBB-TE* en la página 218 para obtener más información.
- 4d. Seleccione la casilla de verificación MPLS para activar la función de generación y análisis de flujos de hasta dos capas de etiquetas MPLS y para filtrar el tráfico recibido por la etiqueta MPLS o COS.
 MPLS es una opción de software y tiene que activarse para permitir el acceso a la función de la prueba MPLS (consulte *Opciones de software* en la página 442). MPLS no está disponible cuando la casilla de verificación PBB-TE o IPTV (FTB-8510B) está seleccionada. Consulte *MPLS* en la página 224 para obtener más información.
- **Nota:** para puertos duales, si la función **PBB-TE** o **MPLS** se ha activado en el primer puerto, sólo se podrá activar la misma función en el segundo puerto.
- **Nota:** para las pruebas **IPTV** y **Through Mode** (Modo directo), press **Finish** (Terminar) o, en caso contrario, press **Next** (Siguiente).

- 5. Configuración del flujo de tráfico:
 - 5a. Seleccione el flujo de tráfico que desea configurar y, a continuación, establezca sus parámetros. Se pueden configurar hasta 10 flujos con la prueba Frame Analyzer (Analizador de tramas).

		IPv4		
		Traffic Stream 1 Config		IPv6
Traffic Stream 1	Traffic Stream 6	Source MAC Address Dest. MAC Address	_	
		00:00:00:00:00:00 FE:FE:FE:FE:FE		Traffic Stream 1 Config
		Resolve MACAddress	-	Source MAC Address Dest. MAC Address
Traffic Stream 2	Traffic Stream 7	Automatic IP Address		MAC Address Status
		Source IP Address Dest. IP Address		Resolve MACAddress
		10.10.0.0 10.10.0.0		TPy6 Config
Traffic Stream 3	Traffic Stream 8	Subnet Mask		in the country in the
		255.255.0.0 Ping		Link-Local IPv6 Address
		Default Gateway		Global IPv6 Address
Traffic Stream 4	Traffic Stream 9	Enable		
Thanke Stateant 1	Hanc Stream 5	Frame Format		Default Gateway Address
				FE80:0000:0000:0000:0000:0000:0000
		Enable VLAN		Destination IPv6 Address
Traffic Stream 5	Traffic Stream 10	VLAN #1 ID VLAN #2 ID VLAN #3 ID		FE80:0000:0000:0000:0200:00FF:FE00:0000
				Frame Format
Path Setup: Modify the traffic stream propertie	es. Then press 'Finish'. Tree Grid			
				Enable VLAN
	Path Setup: Modify the traf	fic stream properties. Then press 'Finish'.	Tree Grid	VLAN #1 ID VLAN #2 ID VLAN #3 ID

- 5b. Para IPv4, seleccione la casilla de verificación Automatic IP Address (Dirección IP automática) para obtener de forma dinámica una dirección IP de un servidor DHCP (protocolo de configuración dinámica de host) o establezca las direcciones de origen y de destino, Subnet Mask (Máscara de subred) y Default Gateway (Puerta de enlace por defecto). Consulte *IPv4 Configuration (Configuración de IPv4)* en la página 570 para obtener más información.
- 5c. Para IPv6, configure la dirección IP de destino y, si es necesario, press el botón IPv6 Config (Configuración de IPv6) para acceder a las opciones adicionales de IPv6. Consulte IPv6 Addresses Configuration (Configuración de direcciones IPv6) en la página 572 para obtener más información.

- 5d. Si es necesario, configure la dirección MAC de origen de la red. Seleccione la casilla de verificación Resolve MAC Address (Resolver dirección MAC) o configure la dirección MAC de destino. Consulte MAC en la página 221 para obtener más información.
- **5e.** Seleccione **Frame Format** (Formato de trama). Las opciones son **Ethernet II** y **802.3 SNAP**. Consulte *Frame Format (Formato de trama)* en la página 221 para obtener más información.
- *5f.* Configure los parámetros de **VLAN** si es necesario. Consulte *MAC* en la página 221 para obtener más información.
- *5g.* Press **Finish** (Terminar) para finalizar la configuración de prueba. La ficha de resumen **Alarm** (Alarma) aparece automáticamente.
- **6.** Para ver parámetros de configuración adicionales tales como Framed Layer 3 y Layer 4 (Capa de trama 3 y 4), consulte *Fichas de generación de flujo* en la página 197.
- 7. Press el botón Start (Iniciar) para comenzar la prueba. .
- **8.** Para ver resultados adicionales, consulte *Fichas de analizador de tráfico* en la página 151 y *Fichas de analizador de flujos* en la página 241.

Caso de prueba de bucle invertido Smart Ethernet

Permite volver a transmitir el flujo de datos de Ethernet recibido, mientras se intercambian las direcciones de origen y de destino de **MAC** e **IP**, además de los puertos de origen y de destino para las capas **UDP** y **TCP**.

Para crear un caso de prueba de bucle invertido Smart:

- 1. Configuración de la prueba:
 - 1a. Seleccione Ethernet 10/100/1000 o Ethernet 10G como el Interface Type (Tipo de interfaz). Interface Type (Tipo de interfaz) no está disponible con FTB-8510G.

Test Config
Test Name
TEST
Interface Type
Ethernet 10/100/1000
Topology
Single Port 👻
ApplicationType
Smart Loopback

- 1b. Seleccione Single Port (Puerto único) como Topology (Topología). Topology (Topología) sólo está disponible con FTB-8510B.
- **1c.** Seleccione **Smart Loopback** (Bucle invertido Smart) como el **Application Type** (Tipo de aplicación).
- 1d. Press Next (Siguiente).
- 1e. Seleccione el Connector
 Optical
 Electrical RJ-45

 Type (Tipo de conector)
 (Optical or Electrical RJ-45) (Óptico o Eléctrico RJ-45) del puerto. Optical (Óptico) está seleccionado automáticamente para la interfaz Ethernet 10G.

Caso de prueba de bucle invertido Smart Ethernet

1f. Para FTB-8510B, seleccione el número del puerto pressing Port 1 (Puerto 1) o Port 2 (Puerto 2).

> Para FTB-8510B en **Dual Ports** (Puertos duales), seleccione el primer puerto y complete el resto de la configuración para el primer puerto. Sin embargo, antes de pressing **Finish** (Finalizar),

press **Back** (Atrás) varias veces para volver a la ventana de configuración de puertos, seleccione el segundo puerto y complete el resto de la configuración para el segundo puerto.

1g. Para RJ-45 eléctrico, si es necesario, seleccione la casilla de verificación **Ethernet port crossover** (Puerto

Ethernet cruzado) para invertir la asignación pin/par del cable UTP utilizado.

Nota: En este punto debería disponer de un enlace activo indicado en la ficha de visualización **Tree** (Árbol). Un LED verde indica un enlace activo mientras que un LED rojo indica un enlace roto. para un puerto eléctrico, si el enlace está roto, asegúrese de que el ajuste **Ethernet port crossover** (Puerto Ethernet cruzado) es correcto.

1h. Press Next (Siguiente).

Caso de prueba de bucle invertido Smart Ethernet

- 2. Configuración óptica sólo para la interfaz Ethernet 10G:
 - **2a.** Seleccione **Transceiver Mode** (Modo de transceptor) Las opciones son de red de área local (LAN) para la interfaz regular de Ethernet (10,31250 Gbps) y de red de área extensa (WAN) para un

Optical Config	
Transceiver Mode	
10GigE WAN	•
Clock Mode	
Internal	•

flujo de Ethernet encapsulado dentro de una estructura de trama SONET/SDH (9,95328 Gbps). Las opciones disponibles dependen del modelo de la unidad y las opciones; consulte *Opciones de software* en la página 442 para obtener más información.

- **2b.** Seleccione el modo de reloj de origen (sólo para el modo de transceptor WAN). Consulte *Sincronización del reloj* en la página 448 para obtener más información.
- 2c. Press Next (Siguiente).
- **2d.** Introduzca los mensajes de traza J0 Trace y J1 (sólo para el modo de transceptor WAN). Consulte *WIS TX* en la página 281 para obtener más información.
- **2e.** Press Next (Siguiente).

WIS Config	
J0 Trace	
EXFO 10GigE ^{NULNULNULNUL}	4
J1 Trace	
EXFO 10GigE ^{NULNULNULNUL}	*

Caso de prueba de bucle invertido Smart Ethernet

- **3.** Configuración del entramado:
 - Sa. Establezca los parámetros
 Auto-Negotiation (Negociación automática), Speed (Velocidad), Duplex
 (Dúplex) y Flow Control (Control de flujo).
 Consulte Interface Setup (Configuración de la interfaz) (Ethernet) en la página 258 para obtener más información.

concructivanie	o coyer z conni	,	-		
Auto-Negotial	ion				
Speed	Duplex	Flow Control			
1Gbps 💌	Full 💌	None			
Enable VLAN	VLAN Config.	Ethernet Frame	d Layer 2 Confi	9	
		OL 🔽 Auto-Negotia	tion		
		Speed	Duplex	Flow Control	
		1Gbps 💌	Full 💌	None	•
		— — — — — — — — — —		Frame Format	
IP Version		Enable VLAN	VLAN Config.	EthernetII	-
IPv4				OUI	
					-
IP Address				,	
10.10.0.0	Enable DF	ICP			
Subnet Mask	_				
255.255.0.0		IP Version	m		
Default Gateway		IPv6	IPv6 Config.		
0.0.0.0	• Enable	Link-Local IPv6 A	ddress		
					_
		Global IPv6 Addr	ess		
		Default Gateway	Address		

- 3b. Seleccione Frame Format (Formato de trama). Las opciones son Ethernet II y 802.3 SNAP. Consulte Network (Red) en la página 268 para obtener más información.
- **3c.** Configure **IP Version**(Versión de IP) (IPv4 o IPv6)**IP Version** (Versión de IP) sólo está disponible cuando las opciones de software IPv6 (SK-IPv6) están activadas.
- 3d. Establezca los parámetros IP Address (Dirección IP), Enable DHCP (Permitir DHCP), Subnet Mask (Máscara de subred), y Default Gateway (Puerta de enlace por defecto). Consulte Configuración de IP fuente en la página 270 para obtener más información.
- *3e.* Press Finish (Terminar) para finalizar la configuración de prueba. La ficha de resumen Alarm (Alarma) aparece automáticamente.
- 4. Press el botón Start (Iniciar) para comenzar la prueba. .
- **5.** Para ver resultados adicionales, consulte *Fichas de analizador de tráfico* en la página 151.

Caso de prueba de caudal de tráfico TCP Ethernet

TCP Throughput (*Caudal de tráfico TCP*) (*no está disponible con la interfaz de Ethernet 10 G*): permite enviar el tráfico TCP/IP a la red y proporcionar una media del caudal de tráfico TCP basada en los bytes transportados correctamente durante el tiempo de prueba. Se necesitan dos unidades para llevar a cabo una prueba **TCP Throughput** (Caudal de tráfico TCP). Una unidad actuará como origen (local) y la otra como destino (remota).

Nota: la opción de software **TCP Throughput** (Caudal de tráfico TCP) debe estar activada para estar disponible. Consulte Available Options (opciones disponibles) en la página 444.

Serie FTB-8500 y FTB-8120NGE/8130NGE

Caso de prueba de caudal de tráfico TCP Ethernet

Para crear un caso de prueba de caudal de tráfico TCP, primero cree una prueba en el módulo remoto de la siguiente manera:

- **1.** Configuración de la prueba:
 - 1a. Seleccione Ethernet 10/100/1000 como **Interface Type** (Tipo de interfaz).
 - **1b.** Seleccione **Single Port** (Puerto único) como **Topology** (Topología). Topology (Topología) sólo está disponible con FTB-8510B.
 - 1c. Seleccione TCP Throughput (Caudal de tráfico TCP) como Application Type (Tipo de aplicación).
 - 1d. Press Next (Siguiente).
- 2. Configuración del puerto:

Port 1 (Puerto 1)(sólo para FTB-8510B) se selecciona automáticamente.

2a. Seleccione el Connector Optical Type (Tipo de conector) (Optical or Electrical RJ-45) (Óptico o Eléctrico RJ-45) del

puerto. **Optical** (Óptico) está seleccionado automáticamente para la interfaz Ethernet 10G.

2b. Para RJ-45 eléctrico, si es necesario, seleccione la casilla de verificación Ethernet port crossover (Puerto

> Ethernet cruzado) para invertir la asignación pin/par del cable UTP utilizado.

- **Nota:** En este punto debería disponer de un enlace activo indicado en la ficha de visualización Tree (Árbol). Un LED verde indica un enlace activo mientras que un LED rojo indica un enlace roto. para un puerto eléctrico, si el enlace está roto, asegúrese de que el ajuste Ethernet port crossover (Puerto Ethernet cruzado) es correcto.
 - **2c.** Press Next (Siguiente).

Test Config	
Test Name	
TEST	
Interface Type	
Ethernet 10/100/1000	-
Topology	
Single Port	
ApplicationType	
TCP Throughput	

Electrical RJ-45

Caso de prueba de caudal de tráfico TCP Ethernet

- 3. Configuración del entramado:
 - 3a. Establezca los parámetros
 Auto-Negotiation (Negociación automática), Speed (Velocidad),
 Duplex (Dúplex) y Flow Control (Control de flujo). Consulte Interface Setup (Configuración de la interfaz) (Ethernet) en la página 258 para obtener más información.

Auto-Negotiat	ion		
Speed	Duplex	Flow Control	
1Gbps 💌	Full 💌	None	-
Enable VI AN		Frame Format	
	VLAN Config.	EthernetII	-
		OUI	
			-
			-
			-
			-
			Ŧ
			Ŧ
			T
IP Address			Ŧ
IP Address	Enable DF	ICP	¥
IP Address 10.10.0.0 Subnet Mask	Enable DF	ICP	Ŧ
IP Address 10.10.0.0 Subnet Mask 255.255.0.0	Enable DH	ICP	Ŧ

3b. Seleccione **Frame Format** (Formato de trama). Las opciones son **Ethernet II** y

802.3 SNAP. Consulte *Network (Red)* en la página 268 para obtener más información.

- 3c. Establezca los parámetros IP Address (Dirección IP) (IPv4), Automatic IP address (Dirección IP automática), Subnet Mask (Máscara de subred) y Default Gateway (Puerta de enlace por defecto). Consulte Configuración de IP fuente en la página 270 para obtener más información.
- 3d. Press Finish (Terminar) para finalizar la configuración de prueba.La ficha de resumen Alarm (Alarma) aparece automáticamente.

Caso de prueba de caudal de tráfico TCP Ethernet

4. Press (Configuración) las fichas **TCP Throughput** (Caudal de tráfico TCP) y **TCP Throughput Configuration** (Configuración de caudal de tráfico TCP).

TCP Mode Remote 💌	
TCP Connection Configuration	TCP Throughput Configuration
Listening IP Address 0.0.0.0	Unit
Port 50201	Initial Window Size
IP TOS/DS Binary	Minimum Window Size
TCP Connection Status TCP Session	Maximum Window Size
TCP Throughput Configuration TCP Throughput Analysis	J

- 4a. Seleccione Remote (Remoto) como TCP Mode (Modo TCP).
- **4b.** Introduzca la dirección IP del módulo local en el campo **Listening IP Address** (Dirección IP de escucha).

Cree la prueba en el módulo local de la siguiente manera:

- En el módulo local, realice la creación de la prueba tal y como se describe anteriormente (empiece con el paso 1 de la página 126 hasta el paso 4 inclusive). No obstante, en el paso 4 realice lo siguiente:
 - 1a. Seleccione Local como TCP Mode (Modo TCP).
 - **1b.** Introduzca la dirección IP del módulo remoto en el campo **Remote IP Address** (Dirección IP remota).
- **2.** Para ver parámetros de configuración adicionales, consulte *TCP Throughput Configuration (Configuración de caudal de tráfico TCP)* en la página 408.
- 3. Press el botón Start (Iniciar) para comenzar la prueba. .
- **4.** Para ver resultados adicionales, consulte *TCP Throughput Analysis* (*Resultados de análisis de caudal de tráfico TCP*) en la página 413.

Caso de prueba BERT de canal de fibra

Caso de prueba BERT de canal de fibra

Aplicación típica de BERT de canal de fibra en Single Port (Puerto único):

Aplicación típica de BERT en Dual Ports (Puertos duales):

Caso de prueba BERT de canal de fibra

Para crear una prueba de canal de fibra:

- 1. Compruebe la configuración:
 - 1a. Seleccione Fibre Channel (Canal de fibra) como Interface Type (Tipo de interfaz). Fibre Channel (Canal de fibra) sólo está disponible con la prueba BERT.

Test Config		
Test Name		
TEST		
Interface Type		
Fibre Channel		-
Topology		
Single Port	-	
ApplicationType		
BERT	-	

- **1b.** Para FTB-8510B: seleccione el tipo de **Topology** (Topología) de prueba: **Single Port** (Puerto único) o **Dual Ports** (Puertos duales).
- 1c. Seleccione BERT como Application Type (Tipo de aplicación).
- 1d. Press Next (Siguiente).
- 2. Configuración del puerto:
 - 2a. Para FTB-8510B, seleccione el número del puerto pressing Port 1 (Puerto 1) o Port 2 (Puerto 2).

Para FTB-8510B en **Dual Ports** (Puertos duales), seleccione el primer puerto y complete el resto de la configuración para el primer puerto. Sin embargo, antes de pressing **Finish** (Finalizar),

Port 1	Port 2
Port Setup: Select a port	Tree Grid

press **Back** (Atrás) varias veces para volver a la ventana de configuración de puertos, seleccione el segundo puerto y complete el resto de la configuración para el segundo puerto.
Creación e inicio de un caso de prueba

Caso de prueba BERT de canal de fibra

Seleccione la velocidad del canal de fibra. Las opciones son **1X**, **2X** para FTB-8510B/FTB-8525/FTB-8120NGE y **1X**, **2X**, **4X** y **10X** para FTB-8535/FTB-8130NGE.

Optical Config	
Speed	
1X	-
 PSP (Link Protocol) Link 	

2b. Seleccione la casilla de verificación PSP si es necesario establecer una serie de enlaces (máquina de estado) para disponer de un estado de enlace activo. Cuando la casilla de verificación PSP está desactivada, no se establece ningún enlace y sólo es necesario realizar una sincronización de bits para disponer de un estado de enlace activo. La casilla de verificación PSP (Link Protocol) [PSP (protocolo de enlace)] está seleccionada por defecto.

Link, indica el estado de enlace en el puerto de entrada de la interfaz del canal de fibra. Un LED verde indica que dispone de un enlace activo mientras que un LED gris indica que un enlace está roto o desactivado. La vista **Tree** (Árbol) también muestra respectivamente **Link up** (Enlace activo) en verde o **Link down** (Enlace roto) en rojo.

2c. Press Next (Siguiente).

Creación e inicio de un caso de prueba

Caso de prueba BERT de canal de fibra

- **3.** Selección del entramado:
 - **3a.** Seleccione el modo entramado de la prueba.

FC Unframed FC Framed Layer 1 FC Framed Layer 2

FC Unframed (FC no entramado) consiste en enviar una trama sin EOF (fin de trama).

FC Unframed (FC no entramado) con la casilla de verificación **Enable Sync** (Permitir sincronización) seleccionada consiste en enviar de forma continua tramas de aproximadamente 1 segundo. De esta manera, se envía un patrón de sincronización que mantiene de forma periódica el enlace sincronizado. Las tramas se separan mediante tiempos de separación entre tramas (IFG) mínimos.

FC Framed Layer 1 (Capa de trama 1 de FC) consiste en enviar una trama válida (de 8 a 2148 bytes) sin encabezado ni CRC (comprobación de redundancia cíclica). Consulte **Size** (Tamaño) en la página 233 para obtener más información sobre el tamaño de la trama.

SOF	Data Field	EOF
4 Bytes	2140 Bytes	4 Bytes

FC Framed Layer 2 (Capa de trama 2 de FC) consiste en enviar una trama válida (de 36 a 2148 bytes) con encabezado y CRC. Consulte **Size** (Tamaño) en la página 233 para obtener más información sobre el tamaño de la trama.

SOF 4 Bytes	Frame Header 24 Bytes	Data Field 2112 Bytes	CRC 4 Bytes	EOF 4 Bytes
----------------	-----------------------------	--------------------------	----------------	----------------

Nota: no es necesario configurar nada para FC Framed Layer 1 (Capa de trama 1 de FC) ni para FC Framed Layer 2 (Capa de trama 2 de FC).

3b. Press Next (Siguiente).

Caso de prueba BERT de canal de fibra

- **4.** Configuración del entramado [disponible únicamente con **FC Framed** Layer 2 (Capa de trama 2 de FC)]:
 - **4a.** Configure los parámetros de red. Consulte *Interface Setup (Configuración de la interfaz) (canal de fibra)* en la página 263 para obtener más información.
 - 4b. Seleccione la casilla de verificación Login (Inicio de sesión) (Permitir) para crear un proceso de inicio de sesión cuando pressing el botón Login (Inicio de sesión).

Network Config
₩ Login
WWN Source
20-00-00-30-10-00-00-01
WWN Destination
00-00-00-00-00-00-00
Discovered Topology
Fabric Login Status
Logged-Out
Port Login Status
Logged-Out
Login

- **4c.** Seleccione las direcciones de origen y destino del nombre WWN. WWN sólo está disponible cuando la casilla de verificación Enable login (Permitir inicio de sesión) está seleccionada.
- 4d. Press el botón Login (Inicio de sesión) para comenzar el proceso de inicio de sesión con Advertised BB_Credit (BB_Credit anunciado) seleccionado (consulte la página 264). La función de inicio de sesión está disponible sólo con Framed Layer 2 (Capa de trama 2) si se ha establecido correctamente un enlace.
- 4e. Press Next (Siguiente).

Caso de prueba BERT de canal de fibra

- **5.** Configuración del patrón:
 - 5a. Establezca los parámetros del patrón. Consulte Pattern TX (TX de patrón) en la página 292 para obtener más información.
 - **5b.** Press **Finish** (Terminar) para finalizar la configuración de prueba. La ficha de resumen **Alarm** (Alarma) aparece automáticamente.

Pattern Config	
Coupled TX/RX	
Test Pattern	
PRBS 2^31-1	•
Invert	
Pattern #	
Value	

- **6.** Para ver parámetros de configuración adicionales, consulte *Fichas de generación de flujo* en la página 197.
- 7. Press el botón Start (Iniciar) para comenzar la prueba. .
- **8.** Para ver resultados adicionales, consulte *Fichas de analizador de tráfico* en la página 151 y *Fichas de patrón* en la página 291.

7 Fichas de resumen

Las fichas de resumen permiten configurar los parámetros de la prueba y ver el estado y resultados de la misma.

	Dispon		
Ficha	Ethernet	Canal de fibra ^a	Página
Test Summary (Resumen de la prueba)	Х	Х	136
Alarm Summary (Resumen de la alarma)	Х	Х	145

a. No es compatible con FTB-8510G.

Test Summary (Resumen de la prueba)

Indica la configuración de la prueba, estado y configuración del temporizador.

Press (Resumen de la prueba)TEST (PRUEBA), Summary (Resumen) y Test (Prueba).

Test1/Summary			à
Test Status Start Time: -:: ● Port 1 Link	Timer Configuration Start Time 2010-05-21 Stop Time	Clock Configuration Clock Mode Internal	
Expert Mode Verdict RFC 2544 	2010-05-21 Duration 15 minutes User Duration		
Test Configuration Application Type RFC 2544 - Single Port Test Name	Ood:00: 15:00 On/Off Test Preferences Couple Start/Enable TX		
Test Description	Alarm Analysis H C Seconds C		
Alarm			

Test Status (estado de la prueba)

- Start Time (hora de inicio): indica la fecha y la hora de inicio de la prueba. La fecha y la hora se restablecen cada vez que se reinicia la prueba. El formato de hora por defecto es ISO (aaaa-mm-dd hh:mm:ss), a no ser que se configure otro en *Preferences (Preferencias de la aplicación)* en la página 428.
- Port Link (Enlace de puerto): indica el estado de enlace en el puerto de entrada de la interfaz Ethernet/canal de fibra. Un LED verde indica que el enlace está activo, mientras que un LED rojo indica que el enlace está inactivo.

Expert Mode Verdict (Veredicto de modo experto): indica el estado del modo experto. Esta información sólo está disponible con las pruebas RFC 2544 y BERT Ethernet.

Se declara **Pass** (Éxito) si todos los valores de los resultados cumplen los criterios configurados.

Se declara **Fail** (Fallo) si alguno de los valores de los resultados no cumple los criterios configurados.

Aparece -- cuando se cumple al menos una de las condiciones siguientes:

- Expert Mode (Modo experto) está desactivado.
- No hay ningún criterio definido.

- Para la prueba **RFC 2544**, cuando la prueba específica aún no se ha ejecutado.

- Para la prueba **BERT**, cuando la prueba sigue en curso o aún no se ha ejecutado.

Aparece **Disabled** (desactivado) con la prueba **RFC 2544** cuando una prueba específica [**Throughput** (caudal de tráfico), **Back-to-Back** (transmisión recíproca), **Frame Loss** (pérdida de trama) o **Latency** (latencia)] tiene desactivada la casilla de verificación **Enable Criteria** (permitir criterios) del modo experto.

Global Verdict (Veredicto global) para la prueba EtherSAM: indica el veredicto real de la prueba, PASS (ÉXITO) o FAIL (FALLO). Un veredicto FAIL (FALLO) se declara cuando Link Down (Enlace roto), LOS o cualquier parámetro SLA falla durante la prueba.

Fichas de resumen

Test Summary (Resumen de la prueba)

► SAM Test Status (Estado de la prueba SAM): indica el mensaje de estado de la prueba EtherSAM.

Estado de la prueba	Descripción
Pendiente ()	No se ha comenzado ninguna prueba secundaria.
Running (En ejecución)	Se está ejecutando una prueba secundaria.
Data Transfer (Transferencia de datos)	Se está ejecutando una prueba secundaria pero no se está transmitiendo ningún tráfico de prueba.
Completed (Completado), <verdict> (Veredicto)</verdict>	La prueba secundaria se ha completado. <verdict> (Veredicto) representa el veredicto global de la prueba al completar la prueba secundaria.</verdict>
Aborted (Cancelado), <reason> (Motivo)</reason>	Se ha cancelado la prueba secundaria de forma manual mediante la opción Stop (Detener) o mediante una alarma. <reason> (Motivo) representa el motivo por el que se ha cancelado la prueba. Los posibles motivos son:</reason>
	➤ Alarma de enlace roto
	► Alarma LOS
	 Fallo en la conexión DTS
	 Tiempo de espera durante la ejecución (DTS)
	 Direcciones no resueltas
	 Prueba no activada
	➤ Detenida

RFC 2544: indica el estado de ejecución de la prueba RFC 2544. Esta configuración sólo está disponible con la prueba RFC 2544. Los estados posibles son:

--: indica que aún no se ha ejecutado la prueba.

Throughput/Back-to-Back/Frame Loss/Latency - In Progress (Caudal de tráfico/Transmisión recíproca/Pérdida de tramas/Latencia -En curso): indica que las pruebas Throughput (Caudal de tráfico), Back-to-Back (Transmisión recíproca), Frame Loss (Pérdida de tramas) o Latency (Latencia) están en curso.

None - In Progress (Ninguno - En curso): indica que el enlace está roto y no se ejecuta ninguna prueba.

Completed (Completada): indica que todas las pruebas seleccionadas se han completado.

Aborted (Cancelada): indica que se ha interrumpido la prueba (detenida).

Configuración de prueba

- Interface Type (tipo de interfaz): indica el tipo de interfaz de la prueba: Ethernet 10/100/1000, Ethernet 10G (FTB-8130NGE y FTB-8535), o Fibre Channel (Canal de fibra). No disponible con FTB-8510G.
- Application Type (Tipo de aplicación): indica el tipo: EtherSAM (Y.1564), Frame Analyzer (Analizador de tramas), BERT, RFC 2544, Smart Loopback (Bucle invertido Smart) o TCP Throughput (Caudal de tráfico TCP) (no está disponible en FTB-8510G). Únicamente la prueba BERT está disponible con canal de fibra.
- ➤ Test Name (nombre de la prueba): el nombre de la conexión de prueba se usa para identificar la prueba. Se permite un máximo de 8 caracteres. La configuración por defecto es TEST.

Configuración del reloj

 Clock Mode (Modo de reloj) indica el modo del reloj seleccionado durante la configuración de la prueba. Disponible sólo con la interfaz 10Gig-E WAN. Las opciones posibles son:

Modo de reloj	LAN	WAN
Internal (interno): reloj interno de la unidad (STRATUM 3). El reloj interno es el único reloj disponible cuando está seleccionado el modo de transceptor 10GigE LAN con las pruebas Frame Analyzer (Analizador de tramas), BERT o RFC 2544 .	Х	Х
External (externo): reloj de la señal del reloj externo DS1/E1/2M conectado (paraFTB-8510G: puerto EXT. CLK DS1/2M IN; para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535: puerto AUX). Una vez creada la prueba, consulte <i>Clock Synchronization</i> (Sincronización del reloj) <i>-RX</i> para completar la configuración del reloj externo. Para FTB-8120NGE y FTB-8130NGE, External (Externo) no está disponible en el modo de latencia unidireccional del Dual Test Set (Conjunto de pruebas duales).	-	Х
Recovered (recuperado): Reloj recibido desde la señal de entrada del puerto óptico de la prueba. El recuperado es el único reloj disponible cuando se selecciona el modo de transceptor 10GigE WAN con la prueba Smart Loopback (Bucle invertido Smart). Recovered está sólo disponible para la prueba de Smart Loopback.	Х	X
Backplane (plano posterior): reloj de 8 kHz de otro módulo en el FTB-500. En el FTB-8535, sólo está disponible con la interfaz 10Gig-E WAN. Tenga en cuenta que el otro módulo debe ser compatible con la función de reloj de plano posterior y debe estar activado (consulte <i>RX</i> en la página 448 para obtener más información).	-	X

Timer Configuration (configuración del temporizador)

Permite iniciar o detener automáticamente un caso de prueba en un momento dado o por una duración determinada.

- **Nota:** para la prueba EtherSAM, sólo se puede configurar el valor **Start Time** (Hora de inicio).
 - Start Time (hora de inicio): permite seleccionar la hora específica a la que el caso de prueba creado comenzará automáticamente. La casilla de verificación de hora de inicio debe seleccionarse para que se incluya en el temporizador de la prueba.
- Nota: una hora de inicio válida debe ser posterior a la hora actual.
 - Stop Time (hora de detención): permite seleccionar la hora específica a la que el caso de prueba se detendrá automáticamente. La casilla de verificación de hora de detención debe seleccionarse para que se incluya en el temporizador de la prueba.
- **Nota:** cuando se activa, una hora de detención válida debe ser posterior al tiempo actual o al tiempo de inicio. La hora de detención no puede ser superior a 30 días desde la hora de inicio. La hora de detención no puede activarse si Duration (duración) está activado.

Test Summary (Resumen de la prueba)

- Duration (duración): permite seleccionar la duración de la prueba según la hora de inicio del caso de prueba. La hora de inicio del caso de prueba puede ser la hora en que pressing el botón de inicio o la hora a la que la prueba se inicia automáticamente, si se ha activado Start Time (Hora de inicio). La casilla de verificación Duration (duración) debe seleccionarse para que se incluya en el temporizador de la prueba. Las opciones son 15 minutes (15 minutos), 1, 2, 24, 48, 72 hours (72 horas), 7 days (7 días) o User Defined (definido por el usuario) (consulte User Duration [duración del usuario] más abajo). La configuración por defecto es de 15 minutos.
- **Nota:** la duración no puede activarse si Stop Time (hora de detención) está activado. Cuando la prueba se inicia con la duración activada, se calcula la hora de detención y el campo Stop Time (hora de detención) se actualiza para indicar la hora a la que se detendrá la prueba.
 - User Duration (duración del usuario): permite seleccionar la duración de la prueba si User Defined (definida por el usuario) se ha seleccionado como duración. Las opciones van de 1 segundo a 30 días. La configuración por defecto es de 15 minutos.

➤ El botón On/Off permite activar el temporizador de la prueba. Se muestra un mensaje de error y el temporizador de la prueba no se activa cuando la hora de inicio proporcionada o la hora de detención no son válidas. No es posible activar el temporizador de la prueba si se está ejecutando la prueba. Cuando el temporizador está activado (On), es posible desactivarlo aunque se esté ejecutando la prueba. Este elemento está desactivado por defecto (Off).

Cuando se activa el temporizador de la prueba, es posible detener manualmente un caso de prueba usando el botón Stop (detener) del caso de prueba principal. Sin embargo, no es posible iniciar el caso de prueba cuando se activa **Start Time** (hora de inicio).

El temporizador de prueba se desactiva automáticamente tanto si el usuario detiene manualmente la prueba como si se alcanza la hora de detención o la duración que se ha indicado.

Nota: cuando se usa Visual Guardian Lite como control remoto, los valores de configuración del temporizador se basan en el reloj del PC y no en el Serie FTB-8500 y FTB-8120NGE/8130NGE. Asegúrese de tener en cuenta la diferencia de zona horaria, si existe, entre el PC y el Serie FTB-8500 y FTB-8120NGE/8130NGE.

Alarm Analysis (análisis de alarma)

LOC indica que FTB-8510G no es capaz de sincronizarse con el reloj de prueba seleccionado. Disponible sólo con la interfaz 10Gig-E.

Test Preferences (Preferencias de prueba)

Nota: No disponible con FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535.

Couple Start/Enable TX (Acoplar al inicio/permitir TX) permite activar de forma automática la transmisión de flujo al iniciar la prueba. La transmisión de flujo para cuando se detiene la prueba. Esta configuración está desactivada por defecto. Consulte el botón *Enable TX - On/Off* (Permitir TX - activada/desactivada) en la página 201 para obtener más información.

Alarm Summary (Resumen de la alarma)

Pulse (Resumen de alarma)TEST (PRUEBA), Summary (Resumen) y Alarm (Alarma).

La ficha **Alarm Summary** (resumen de la alarma) proporciona acceso al resumen de alarmas, incluyendo el diario de la prueba. Consulte *Test Logger (Diario de la prueba)* en la página 148.

Resumen de la alarma

El resumen de la alarma proporciona el resumen actual e histórico de alarmas y errores detectados en la prueba.

Prueba de puertos duales (FTB-8510B)

Nota: La lista de alarmas y errores disponibles depende del caso de la prueba. Con la prueba Dual Ports (Puertos duales), disponible con FTB-8510B, las alarmas y los errores se muestran independientemente para Port 1 (Puerto 1) y Port 2 (Puerto 2) cuando proceda. Alarm Summary (Resumen de la alarma)

► Prueba

Global: indica la presencia de alguna alarma o error relacionados con la prueba, como **Port** (Puerto), **WIS**, **Ethernet**, **Pattern** (Patrón), **High Layer Protocol** (Protocolo de capa alta), **Fibre Channel** (Canal de fibra) y **Other** Otros). *Fibre Channel* (*Canal de fibra*) sólo está disponible con FTB-8510G.

Log Full (diario lleno): indica que el diario supera su capacidad máxima de 5000 eventos.

- Port (puerto): indica la presencia de alguna alarma o error relacionados con el puerto físico, como LOS, Frequency (Frecuencia) y LOC (Ethernet 10G WAN y FC 10x). También indica la medición de potencia del puerto Pwr (dBm) para un puerto óptico, frecuencia Freq (bps) y Offset (ppm) para todas las interfaces a excepción de la de 10 Mbps.
- WIS: indica la presencia de alguna alarma o error relacionados con la comprobación de Ethernet 10G WAN, tales como Section/RS (Sección/RS) (B1, LOF o SEF), Line/MS (Línea/MS) (B2, REI-L, AIS-L o RDI-L), High Order Path (Ruta de clase alta) (B3, REI-P, AIS-P, RDI-P, LCD-P, LOP-P, PLM-P, UNEQ-P, ERDI-PSD, ERDI-PCD o ERDI-PPD) y WIS Link Down (Enlace roto WIS). WIS no está disponible con FTB-8510B.
- Ethernet: indica la presencia de alguna alarma o error relacionados con la prueba de Ethernet, como Errors (Errores) [FCS, Jabber (Farfulleo), Runt (Enano), Oversize (Tamaño grande) cuando está activado (consulte *Control de tamaño grande en la página 156*), Undersize (Tamaño pequeño), Idle (Inactivo), Symbol (Símbolo), Collisions (Colisiones), Alignment (Alineación), False Carrier (Transporte erróneo), Block Error (Error de bloque), Out-of-sequence (Fuera de secuencia) o Frame Loss (Pérdida de tramas)], Link (Enlace) y Fault (Fallo). Idle (Inactivo), Symbol (Símbolo), Collisions (Colisiones), Alignment (Alineación) y False

Carrier (Transporte erróneo) no están disponibles con FTB-8510G. **Block Error** (Error de bloque) y **Fault** (Fallo) no están disponibles con FTB-8510B.

- Fibre Channel (Canal de fibra): indica la presencia de alguna alarma o error relacionados con la prueba de canal de fibra, tales como Errors (Errores) (FCS, Oversize (Tamaño grande), Undersize (Tamaño pequeño), Symbol (Símbolo) para 1x/2x/4x, o Block (Bloque) para 10x), Link (Enlace) y Fault (Fallo) para 10x. no disponible con FTB-8510G.
- Higher Layer Protocol (Protocolo de capa superior) (Ethernet): indica la presencia de un error relacionado con HLP a través de Ethernet (IP header checksum (Comprobación de encabezado IP), UDP checksum (Comprobación de UPD) TCP Checksum (Comprobación de TCP) (FTB-8510B) y IPTV (FTB-8510B)).
- Pattern (Patrón) (BERT): indica la presencia de cualquier alarma o error relacionados con las pruebas de disposición, tales como No Traffic (Sin tráfico), Pattern Loss (Pérdida de trama) y Bit Error (Error de bit). Indica también la tasa y el recuento de Bit Error (Error de bit).
- Other (otros): indica las demás alarmas o errores, como, por ejemplo,
 SDT (sólo disponible con pruebas Ethernet BERT).

Test Logger (Diario de la prueba)

Press **(Diario de pruebas)TEST (PRUEBA), Summary** (Resumen) y **Alarm** (Alarma).

La ficha **Test Logger** (Diario de pruebas) muestra el estado y los eventos de la prueba.

ts					
Date/Time 🔺	Data Path	Event	Duration	Count	Rate
	ts Date/Time	is Date/Time A Data Path	is	Is Date/Time A Data Path Event Duration	Is Date/Time A Data Path Event Duration Count

Total Events (Total de eventos)

Indica la cantidad total de eventos registrados.

Nota: El diario enumera como máximo 5000 eventos; por encima de dicha cantidad, el diario deja de registrar y se activa la alarma de diario lleno.

Tabla del diario

Los eventos se enumeran automáticamente en el diario y se guardan en la unidad de disco duro por si acaso se produce una condición de pérdida de alimentación.

El diario se borra cuando se cumple una de las siguientes condiciones:

- > Se detiene y se reinicia un caso de prueba.
- ► El caso de prueba se borra.
- ▶ pressing $\boxed{?}_{\text{Reset}}$.

Loe eventos se enumeran por **ID - Date/Time** (identificación, fecha/hora) de manera predeterminada. Los eventos también se pueden ordenar por **Data Path** (Ruta de datos) o **Event** pressing (Evento) pulsando el correspondiente título de la columna.

- ID: indica el número de evento. Los eventos se numeran de forma secuencial.
- Date/Time (fecha/hora): Indica la fecha y la hora en que se ha detectado un estado de alarma o error.
- Data Path (ruta de datos): indica el origen de la alarma/el error. [P1] y [P2] en la ruta de datos representan respectivamente el puerto 1 y el puerto 2. El puerto 2 sólo está disponible con FTB-8510B.
- **Event** (evento): indica el tipo de alarma/error.
- Duration (duración): indica el número de segundos (formato día:hora:minutos:segundos) en el que se ha producido la alarma/el error.
- Count (recuento): indica el número de veces que se ha producido el error.
- **Rate** (valor): indica el valor del error.
- Nota: En las columnas Duration (Duración), Count (Recuento) y Rate (Valor), Pending (Pendiente) indica que el estado de alarma/error persiste o persistía en el momento de detener la prueba.

Fichas de analizador de tráfico

Nota: las fichas de **Traffic Analyzer** (Analizador de tráfico) disponibles dependen de la ruta de prueba que esté activada.

	Disponible con						
Prueba	Ficha	Analizador de tramas	BERT	RFC 2544	Bucle invertido Smart	Caudal de tráfico TCP ^a	Página
Ethernet	Ethernet TX (TX de Ethernet)		Х				153
	Ethernet RX (RX de Ethernet)	Х	Х	Х	X	Х	156
	Ethernet Statistics (Estadísticas de Ethernet)	Х	Х	Х	X	Х	160
	PBB-TE	Х					163
	Capas superiores	Х	Х	X	X	Х	165
	Flow Control (Control de flujo)	Х		X		Х	167
	Traffic Filters (Filtros de tráfico)	Х					170
	Traffic Filter Configuration (Configuración de filtros de tráfico)	Х					176
	Traffic Filter Stats (Estadísticas de filtros de tráfico)	X					179
	Capture (Capturar)	Х					181
	Graph (Gráfico)	Х					186
	Performance Monitoring (Supervisión del rendimiento) (PM)		Xb				421

8

Fichas de analizador de tráfico

		Disponible con					
Prueba	Ficha	Analizador de tramas	BERT	RFC 2544	Bucle invertido Smart	Caudal de tráfico TCP ^a	Página
Canal de	FC TX		Х				187
fibra ^c	FC RX		Х				190
	FC Latency (Latencia de FC)		Х				192
	FC Statistics (Estadísticas de FC)		Х				194
	Performance Monitoring (Supervisión del rendimiento) (PM)		Х				421

a. Sólo está disponible con FTB-8510B.

b. Para FTB-8510B, FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535: disponible con Framed Layer 2 (Capa de trama 2) y Frame Layer 1 (Capa de trama 1) con el patrón xPAT (sólo interfaz Ethernet de 1000 Mbps y canal de fibra).

Para FTB-8510G: disponible para Framed Layer 2 (Capa de trama 2) con modo de transceptor LAN.

c. No disponible con FTB-8510G.

Ethernet TX (TX de Ethernet)

Nota: Disponible sólo con la prueba **BERT** con **Framed Layer 1** (capa de trama 1) y **Framed Layer 2** (capa de trama 2).

Press **(TX de Ethernet)TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **Eth. TX** (TX de Ethernet).

PHY Alarm Generation (Generación de alarmas PHY)

Nota: disponible sólo con la interfaz 10Gig-E.

Type (tipo): Están disponibles las siguientes alarmas:

Link Down (enlace roto): genera un error PCS continuo (error de bloque).

Local Fault (defecto local): genera una secuencia de defecto local.

Remote Fault (defecto remoto): genera una secuencia de defecto remoto.

Botón On/Off (activar/desactivar): el botón On/Off (activar/desactivar) se usa para activar/desactivar la alarma seleccionada. Este elemento está desactivado por defecto (Off).

inyección de errores PHY

- Type (tipo): El siguiente error está disponible en modos de inyección manual y automática: Symbol (Símbolo) (100/1000 Mbps) o Block (Bloque) (10 Gbps).
- Amount (cantidad): permite seleccionar la cantidad de error manual que se va a generar. Las opciones van de 1 a 50. La configuración por defecto es 1.
- Botón Send (enviar): Press Send (Enviar) para generar manualmente los errores según el tipo de error y la cantidad de errores seleccionados.
- Rate (valor): Press el campo Rate (Valor) para seleccionar el valor del error automático. Las opciones son: 1.0E-02, 1.0E-03, 1.0E-04, 1.0E-05, 1.0E-06, 1.0E-07, 1.0E-08, 1.0E-09 o definible por el usuario de 1.0E-09 a 1.0E-02. La configuración por defecto es 1.0E-04.
- Continuous (continuo): genera el error seleccionado para cada trama generada cuando está activada la casilla de verificación Continuous (continuo) y el botón On/Off (activar/desactivar) está activado (On). La casilla de verificación Continuous (continuo) está desactivada por defecto.
- Botón On/Off (activar/desactivar): el botón On/Off (activar/desactivar) se usa para activar/desactivar el error automático seleccionado en el valor especificado o de forma continua. Este elemento está desactivado por defecto (Off).

MAC Error Injection (inyección de errores MAC)

- **Nota:** la inyección de errores MAC sólo está disponible con Framed Layer 2 (Capa de trama 2).
 - ► **Type** (tipo): El siguiente error está disponible en modos de inyección manual y automática: **FCS**.
 - Amount (cantidad): permite seleccionar la cantidad de error manual que se va a generar. Las opciones van de 1 a 50. La configuración por defecto es 1.
 - Botón Send (enviar): Press Send (Enviar) para generar manualmente los errores según el tipo de error y la cantidad de errores seleccionados.
 - Rate (valor): Press el campo Rate (Valor) para seleccionar el valor del error automático. Las opciones son: 1.0E-02, 1.0E-03, 1.0E-04, 1.0E-05, 1.0E-06, 1.0E-07, 1.0E-08, 1.0E-09 o definible por el usuario de 1.0E-09 a 1.0E-02. La configuración por defecto es 1.0E-04.
 - Continuous (continuo): genera el error seleccionado para cada trama generada cuando está activada la casilla de verificación Continuous (continuo) y el botón On/Off (activar/desactivar) está activado (On). La casilla de verificación Continuous (continuo) está desactivada por defecto.
 - Botón On/Off (activar/desactivar): el botón On/Off (activar/desactivar) se usa para activar/desactivar el error automático seleccionado en el valor especificado o de forma continua. Este elemento está desactivado por defecto (Off).

Ethernet RX (RX de Ethernet)

Pulse **(RX de Ethernet)TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **Eth. RX** (RX de Ethernet).

Configuration (configuración)

Oversize Monitoring (Control de tamaño grande)

activa la supervisión del error Oversize (tamaño grande).

Análisis de alarmas

- Link Down (enlace roto): indica que la conexión Ethernet se ha interrumpido. La conexión Ethernet se interrumpe cuando hay un estado de fallo local o remoto.
- Local Fault (Fallo local) (10Gig-E): indica que se ha detectado al menos uno de los siguientes eventos: LOS, Loss of bit synchronization (Pérdida de sincronización de bits), Loss of Block synchronization (Pérdida de sincronización de bloques), WIS Link down (Enlace roto WIS) o High BER (BER alto) (este evento se da cuando la proporción de errores de bit es > 10⁻⁴ en un periodo fijo de 125 μs).
- Remote Fault (Fallo remoto) (10Gig-E): indica que se ha detectado un evento de defecto remoto.
- **Nota:** las alarmas y los errores sólo se actualizan durante la ejecución de la prueba.

Análisis de errores

- Block (Bloque) (10Gig-E): número de tramas recibido con un estado de bloque con errores.
- Symbol (Símbolo) (100/1000 Mbps): un error de Symbol (Símbolo) se declara cuando se detecta un grupo de código no válido en el código de transmisión.
- ➤ Idle (Inactivo) (100/1000Mbps): un error de Idle (inactivo) se declara cuando se detecta un error entre el final de una trama y el comienzo de la trama siguiente.
- False Carrier (Transporte erróneo) (100/1000Mbps): se declara un transporte erróneo cuando los datos se reciben sin un inicio de trama válido.

Los siguientes errores sólo están disponibles con **Framed Layer 2** (Capa de trama 2) o **Framed Layer 1** (Capa de trama 1) con patrón **xPAT** (10/100/1000 Mbps).

- **FCS**: el número de tramas recibidas con una FCS no válida.
- ➤ Alignment (Alineación) (10/100 Mbps): indica el número de tramas recibidas sin un número entero de octetos de longitud.

Los siguientes errores sólo están disponibles con Framed Layer 2 (Capa de trama 2).

- ➤ Jabber/Giant (farfulleo/gigante): número de tramas recibidas superior a 1518 (sin VLAN), 1522 (C-VLAN), 1526 (S-VLAN) o 1530 (E-VLAN) bytes con una FCS no válida.
- Oversize (tamaño grande): número de tramas recibidas superior a 1518 (sin VLAN), 1522 (C-VLAN), 1526 (S-VLAN) o 1530 (E-VLAN) bytes con una FCS válida. El análisis de errores de Oversize (Tamaño grande) sólo está disponible cuando Oversize Monitoring (Control de tamaño grande) está activado (consulte la página 156).
- Runt (enano): el número de tramas recibidas inferior a 64 bytes con una FCS no válida.
- Undersize (tamaño pequeño): el número de tramas recibidas inferior a 64 bytes con una FCS válida.

Los siguientes errores sólo están disponibles con el modo **Half Duplex** (Medio dúplex). No disponible cuando **Through Mode** (Modo directo) (FTB-8510B) está seleccionado. No disponible con FTB-8510G.

- Collision (Colisión) (10/100/1000 Mbps): indica el número de colisiones en el enlace.
- Late Collision (Colisión tardía) (10/100/1000 Mbps): indica el número de colisiones que se han producido tras una transmisión de 64 bytes.
- Excessive Collision (Colisión excesiva) (10/100/1000 Mbps): indica el número de tramas que se han enviado 16 veces de forma incorrecta debido a colisiones consecutivas.

Total Error Count (recuento total de errores): indica el número total de errores, incluidos todos los errores anteriores.

Ethernet Statistics (Estadísticas de Ethernet)

Pulse **(Estadísticas de Ethernet)TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **Eth. Stats** (Estadísticas de Ethernet).

Valid Frame Counts (recuentos de tramas válidas)

- Nota: Valid Frame Counts (Recuento de tramas válidas) sólo está disponible con Framed Layer 2 (Capa de trama 2).
 - Multicast (multidifusión): número de tramas de multidifusión transmitidas/recibidas sin errores FCS. Las tramas de difusión no se cuentan como tramas multidifusión.
 - Broadcast (difusión): número de tramas de difusión transmitidas/recibidas sin errores FCS. Las tramas de difusión tienen una dirección MAC igual a FF-FF-FF-FF-FF-FF.
 - Unicast (unidifusión): número de tramas de unidifusión transmitidas/recibidas sin errores FCS.
 - N-Unicast (no unidifusión): suma de las tramas de multidifusión y difusión transmitidas/recibidas sin errores FCS.
 - > Total: número de tramas transmitidas/recibidas sin errores FCS.

Frame Size (tamaño de trama)

- Count (recuento): proporciona el recuento de cada tamaño de trama recibido (válido y no válido).
- Total: ofrece la proporción en porcentaje de cada tamaño de trama recibido basado en el recuento total de tramas.
- ► < 64: tramas con menos de 64 bytes.
- ▶ **64**: tramas de 64 bytes.
- ▶ 65 127: tramas de 65 a 127 bytes.
- ▶ 128 255: tramas de 128 a 255 bytes.
- ▶ 256 511: tramas de 256 a 511 bytes.
- ▶ **512 1023**: tramas de 512 a 1023 bytes.
- ▶ 1024 1518: tramas de 1024 a 1518, o 1522 (C-VLAN), 1526 (S-VLAN) o 1530 (E-VLAN) bytes.
- ➤ > 1518: tramas con más de 1518, o 1522 (C-VLAN), 1526 (S-VLAN) o 1530 (E-VLAN) bytes.

Throughput (caudal de tráfico)

- Bandwidth (ancho de banda): proporciona la velocidad de datos recibidos expresada en Mbps.
- Utilization (utilización): indica el porcentaje de utilización de la velocidad de línea.
- Frame Rate (velocidad de tramas): indica el número de tramas recibido (incluidas tramas malas, tramas de difusión y tramas de multidifusión) en fps (tramas por segundo).

Total Frame Counts (Recuento total de tramas)

► **RX/TX Count** (Recuento de RX/TX): proporciona el total de todas las tramas recibidas/transmitidas, válidas y no válidas.

PBB-TE

Permite analizar los flujos con tráfico de datos PBB-TE.

Nota: la casilla de verificación **PBB-TE** se ha activado durante la configuración de la prueba para proporcionar acceso al análisis PBB-TE. Consulte PBB-TE en la página 118 para obtener más información.

Pulse TEST (PRUEBA), Traffic Analyzer (Analizador de tráfico) y PBB-TE.

Valid PBB-TE Frame Counts	PBB-TE RX Throughput	
IX Count RX Count	< 82 0.00	00% Bandwidth Mbps
Nelloicast	82 - 255 0.00	00% Utilization %
Total	256 - 511 0.00	00% Frame Rate fps
	512 - 1023 0.00	00%
	1024 - 1536 0.00	00%
	> 1536 0.00	10%
	Total	
Eth. RX Eth. Stats PBB-TE Higher La	vers Stream Stats Jitter Flow	Control Filters Cfg. Filters Stats Graph

Recuentos de tramas PBB-TE válidas

- **Nota:** *TX Count* (*Recuento de TX*) no está disponible cuando *Through Mode* (Modo directo) está seleccionado.
 - ► Unicast (unidifusión): número de tramas PBB-TE de unidifusión transmitidas/recibidas sin errores FCS.
 - N-Unicast (no unidifusión): suma de tramas PBB-TE transmitidas/recibidas sin errores FCS.
 - Total: número de tramas PBB-TE transmitidas/recibidas sin errores FCS.

PBB-TE Frame Size (Tamaño de trama PBB-TE)

- Count (recuento): proporciona el recuento de cada tamaño de trama PBB-TE recibido (válido y no válido).
- Total: ofrece la proporción en porcentaje de cada tamaño de trama PBB-TE recibido basado en el recuento total de tramas.
- ► < 82: tramas PBB-TE con menos de 82 bytes.
- ▶ 82 255: tramas PBB-TE de 82 a 255 bytes.
- ▶ **256 511**: tramas PBB-TE de 256 a 511 bytes.
- ▶ **512 1023**: tramas PBB-TE de 512 a 1023 bytes.
- ▶ 1024 1536: tramas PBB-TE de 1024 a 1536 bytes.
- > **1536**: tramas PBB-TE con más de 1536 bytes.

Caudal de tráfico de RX de PBB-TE

- Bandwidth (ancho de banda): proporciona la velocidad de datos PBB-TE recibidos expresada en Mbps.
- Utilization (utilización): indica el porcentaje de utilización de la velocidad de línea PBB-TE.
- Frame Rate (velocidad de tramas): indica el número de tramas PBB-TE recibido (incluidas tramas malas) en fps (tramas por segundo).

Capas superiores

Press **TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **Higher Layers** (Capas superiores).

Higher Layer Protocol				MPLS			
нс	Seconds	Count	Rate		TX	RX	
IP Header Checksum				Frame Count			
UDP Checksum				RX Throughput			
TCP Checksum				Bandwidth		Mbps	
				Utilization		%	
				Frame Rate		fps	
Eth. RX Eth. Stats PBB-TE Higher Layers Stream Stats Jitter Flow Control Filters Cfg. Filters Stats Graph							

Protocolo de capa superior

Nota: cuando MPLS está activado, las siguientes estadísticas no incluyen tramas MPLS.

IP Header Checksum (Comprobación de encabezado IP): Indica que los datagramas de IP recibidos tienen una comprobación de encabezado IP errónea. **IP Header Checksum** (Comprobación de encabezado IP) sólo está disponible con IPv4.

UDP Checksum (Comprobación de UDP): indica que los segmentos UDP recibidos tienen una comprobación de UDP no válida. UDP Checksum (Comprobación de UDP) no está disponible con la prueba TCP Throughput (Caudal de tráfico TCP) (FTB-8510B).

TCP Checksum (Comprobación de TCP) (FTB-8510B): indica que los segmentos TCP recibidos tienen una comprobación de TCP no válida. TCP Checksum (Comprobación de TCP) sólo está disponible con la prueba TCP Throughput (Caudal de tráfico TCP).

MPLS

Nota: MPLS sólo está disponible cuando se activa en la configuración de la prueba.

Frame Count (Recuento de tramas): indica respectivamente el recuento de tramas EtherType de MPLS transmitidas (TX) y recibidas (RX) (0x8847 o 0x8848) independientemente de si FCS es válida o no.

Caudal de tráfico de RX

- Bandwidth (ancho de banda): proporciona la velocidad de datos MPLS recibidos expresada en Mbps.
- Utilization (utilización): indica el porcentaje de utilización de la velocidad de la línea MPLS.
- Frame Rate (velocidad de tramas): indica el número de tramas MPLS recibido (incluidas tramas malas) en fps (tramas por segundo).
Flow Control (Control de flujo)

Press **(Control de lujo)TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **Flow Control** (Control de flujo).

Injection Packet Pause Time 100 Quanta Inject Pause Destination Address Enable	Statistics Pause Time Pause Frames Last Pause Time Abort Frames Max. Pause Time Frames TX Min. Pause Time Frames RX
Destination MACAddress 01:80:C2:00:001	Unit Quanta 💌
Eth. RX Eth. Stats PBB-TE Higher Layers	Stream Stats Jitter Flow Control Filters Cfg. Filters Stats Graph

Nota: una cuanta equivale a 512 bits por periodo. En una interfaz 1 Gbps, un Quanta equivale a $0,512 \mu s$; en una interfaz de 10 Gbps, un Quanta equivale a 51,2 ns.

Injection (Inyección) (Inyectar pausa)

- Nota: La inyección de control de flujo está disponible sólo con la prueba Frame Analyzer (analizador de tramas). No está disponible cuando Through Mode (Modo directo)(FTB-8510B) está seleccionado.
 - Packet Pause Time (Tiempo de pausa del paquete): introduzca el valor de tiempo de pausa que desea transmitir. La configuración por defecto es 100 Quanta. Las opciones son:

Interfaz	Intervalo				
Interiaz	Quanta	μs/ns			
10 Mbps	de 0 a 65535	0 a 3355392 μs			
100 Mbps	de 0 a 65535	De 0 a 335539,2 μs			
1000 Mbps	de 0 a 65535	De 0 a 33553.92 μs			
1 Gbps	de 0 a 65535	De 0 a 3355.392 <i>µs</i>			
10 Gbps	de 0 a 65535	De 0 a 3355392 <i>ns</i>			

Nota: Al introducir un valor en μs/ns se redondeará al múltiplo más cercano de 0,512 μs para 1000 Mbps, 5,12 μs para 100 Mbps, 51,2 μs para 10 Mbps y 51,2 ns.

Unit (unidad): seleccione la unidad de medida. Las opciones son Quanta y μsns (nanosegundos). La configuración por defecto es Quanta.

Botón **(Enviar)Inject Pause** (Inyectar pausa): inyecta el tiempo de pausa del paquete definido.

> Dirección MAC de destino

Enable (permitir): permite activar la dirección MAC de destino. Esta configuración está desactivada por defecto.

Destination MAC Address (dirección MAC de destino): permite introducir la dirección MAC de destino una vez activada. La configuración por defecto es la dirección multidifusión del protocolo de control: **01:80:C2:00:00:01**.

Estadísticas

- Pause Time (Tiempo de pausa): indica el número total del tiempo de pausa recibido del equipo enlazado.
- ► Last Pause Time (último tiempo de pausa): indica el último tiempo de pausa recibido del equipo enlazado.
- Max. Pause Time (Tiempo máx. de pausa) (Máximo): indica el tiempo máximo de pausa recibido del equipo enlazado.
- ➤ Min. Pause Time (Tiempo mín. de pausa) (Mínimo): indica el tiempo mínimo de pausa recibido del equipo enlazado.
- Unit (unidad): Permite seleccionar la unidad de medida. Las opciones son Quanta, ns, μs, ms y s. La configuración por defecto es Quanta.
- Pause Frame (recuento de tramas de pausa): número de tramas de control de flujo válidas recibidas. Las tramas con un campo de tipo/longitud de 8808h se contarán como tramas de pausa.
- Abort Frames (cancelar tramas): indica el número de tramas de pausa recibidas con un valor de Quanta de cero tras cancelar las tramas de pausa.
- Frames TX: indica el número de tramas de pausa de control de flujo transmitidas.
- Frames RX: indica el número de tramas de pausa de control de flujo recibidas con una dirección MAC de 01:80:C2:00:00:01 o igual a la dirección MAC del puerto receptor.

Traffic Filters (Filtros de tráfico)

Permite recopilar estadísticas de acuerdo con los filtros programados. Se pueden activar y definir hasta 10 filtros.

Nota: La ficha **Filters** (Filtros) sólo está disponible cuando la opción de software Advanced Traffic Filtering (Filtro de tráfico avanzado) (SK-ADV-FILTERS) no está activada. Consulte Opciones de software en la página 442.

Press **(Filtros)TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **Filters** (Filtros).

Número de filtro [Filter No. (Nº de filtro)]

Permite seleccionar el número de filtro (de 1 a 10). Un filtro utilizado (activado) para capturar datos no puede configurarse y se mostrará el mensaje **Filter in use for data capture** (Filtro en uso para captura de datos); consulte *Filter (Filtro)* en la página 182.

Filter Configuration (Configuración de filtro)

Permite configurar los criterios para el filtro seleccionado. Sólo es posible realizar la configuración cuando la casilla de verificación **Enable** (Permitir) no está activada.

➤ Filtro

permite seleccionar el filtro que se va a utilizar. La configuración por defecto es **None** (ninguno). Las opciones son **None** (Ninguno) y:

Categoría	Filtro	Comentario
Ethernet	MAC Destination Address (Dirección MAC de destino)	
	MAC Source Address (Dirección MAC de origen)	
	EtherType	Se aplica sólo a la última incidencia de EtherType cuando se utiliza VLAN.
	Formato de trama	Las opciones son Ethernet II, 802.3 LLC y 802.3 SNAP.
	VLAN #1 ID (ID de VLAN nº 1)	ID de C-VLAN
	VLAN #2 ID (ID de VLAN nº 2)	ID de S-VLAN
	VLAN #3 ID (ID de VLAN nº 3)	ID de E-VLAN
	VLAN #1 Priority (Prioridad de VLAN nº 1)	Prioridad de C-VLAN
	VLAN #2 Priority (Prioridad de VLAN nº 2)	Prioridad de S-VLAN
	VLAN #3 Priority (Prioridad de VLAN nº 3)	Prioridad de E-VLAN

Fichas de analizador de tráfico

Traffic Filters (Filtros de tráfico)

Categoría	Filtro	Comentario
IPv4	IPv4 Destination Address (Dirección IPv4 de destino)	
	IPv4 Source Address (Dirección IPv4 de origen)	
	IPv4 TOS	
	IPv4 Precedence (Precedencia de IPv4)	
	IPv4 Protocol (Protocolo de IPv4)	
	IPv4 DiffServ (DiffServ de IPv4)	
IPv6 ^a	IPv6 Destination Address (Dirección IPv6 de destino)	
	IPv6 Source Address (Dirección IPv6 de origen)	
	IPv6 Flow Label (Etiqueta de flujo de IPv6)	
	IPv6 Next Header (Encabezado de IPv6 siguiente)	Se aplica sólo a la última incidencia del siguiente encabezado cuando se utilizan encabezados de ampliación.
	IPv6 Traffic Class (Clase de tráfico de IPv6)	
	IPv6 Precedence (Precedencia de IPv6)	
	IPv6 DiffServ (DiffServ de IPv6)	

Fichas de analizador de tráfico

Traffic Filters (Filtros de tráfico)

Categoría	Filtro	Comentario
Higher Layer (Capa	TCP Destination Port (Puerto de destino de TCP)	Se aplica a IPv4 e IPv6.
superior)	TCP Source Port (Puerto de origen de TCP)	
	UDP Destination Port (Puerto de destino de UDP)	
	UDP Source Port (Puerto de origen de UDP)	
MPLS ^a	MPLS Label 1 (Etiqueta 2 de MPLS)	
	MPLS Label 2 (Etiqueta 2 de MPLS)	
	MPLS COS 1	
	MPLS COS 2	
PBB-TE ^a	PBB-TE-MAC Source (Origen de PBB-TE-MAC)	
	PBB-TE B-MAC Destination (Destino de B-MAC de PBB-TE)	
	PBB-TE B-VLAN ID (ID de B-VLAN de PBB-TE)	
	PBB-TE B-VLAN Priority (Prioridad de B-VLAN de PBB-TE)	
	PBB-TE I-TAG SID (SID de I-TAG de PBB-TE)	
	PBB-TE I-TAG Priority (Prioridad de I-TAG de PBB-TE)	

a. Estos filtros sólo están disponibles cuando la opción de software correspondiente está activada. Consulte *Opciones de software* en la página 442.

➤ Valor

permite introducir el valor asociado al filtro seleccionado. Consulte *Overview (Resumen)* en la página 198 para obtener más información sobre posibles valores.

➤ Máscara

permite aplicar una máscara al valor del filtro definido. Una máscara de bit de **1** indica que se compara el bit que corresponde al valor para la coincidencia. Una máscara de bit de **0** indica que el bit que corresponde al valor se ignora.

- Para valores binarios, introduzca el valor de la máscara con formato binario.
- Para valores decimales, introduzca el valor de la máscara con formato hexadecimal.
- Para el campo de dirección IPv4, introduzca la máscara con formato decimal.
- Para el campo de dirección IPv6, introduzca la máscara con formato hexadecimal.
- Para la dirección MAC, introduzca el valor de la máscara con formato hexadecimal.

Enable (Permitir)

Una vez configurado el filtro, active la casilla de verificación **Enable** (Permitir) para activarlo. Un filtro se puede activar o desactivar incluso cuando la prueba esté en ejecución.

Enabled Time (Tiempo permitido)

Indica el tiempo durante el que está activo el filtro (consulte *Enable (Permitir)* en la página 174).

Filter in use for data capture (Filtro en uso para captura de datos)

El mensaje **Filter in use for data capture** (Filtro en uso para captura de datos) se muestra para indicar que la herramienta de captura está usando el filtro seleccionado. Consulte *Filter (Filtro)* en la página 182 para obtener más información.

Nota: No se puede modificar o desactivar un filtro que ya se esté usando para la captura.

Recuento de tramas

Indica el número de tramas que coinciden con los criterios del filtro configurado.

Throughput (caudal de tráfico)

Indica las estadísticas de caudal de tráfico de la trama que coincide con los criterios del filtro configurado.

- Bandwidth (ancho de banda): proporciona la velocidad de datos recibidos expresada en Mbps.
- Utilization (utilización): indica el porcentaje de utilización de la velocidad de línea.
- Frame Rate (velocidad de tramas): indica el número de tramas recibido (incluidas tramas malas) en fps (tramas por segundo).

Traffic Filter Configuration (Configuración de filtros de tráfico)

Permite recopilar estadísticas de acuerdo con los filtros programados. Se pueden definir y activar un máximo de 10 filtros con hasta cuatro operandos cada uno.

Nota: La ficha **Filter Cfg** (Configuración de filtro) sólo está disponible cuando la opción de software Advanced Traffic Filtering (Filtro de tráfico avanzado) (SK-ADV-FILTERS) está activada. Consulte Opciones de software en la página 442.

Press (Filtros)TEST (PRUEBA), Traffic Analyzer (Analizador de tráfico) y Filters Cfg (Configuración de filtro).

Filter No.	Filter Con	îgurati	on			
1 🔻	(Not	Filter	Value	Mask) Oper.
	Y	Г	MACDestinationAddress	00:00:00:00:00:00	FF:FF:FF:FF:FF	AND V
Filter in use for	v	Г				Y AND Y
	_	Г				AND V
	_	Γ	_			Ŧ
Eth. RX Eth. Stats F	BB-TE	Highe	r Layers Flow Control	ilters Cfg. Filters S	Stats Capture Gra	ph

Número de filtro [Filter No. (Nº de filtro)]

Permite seleccionar el número de filtro (de 1 a 10).Un filtro utilizado (activado) para capturar datos no puede configurarse y se mostrará el mensaje **Filter in use for data capture** (Filtro en uso para captura de datos); consulte *Filter (Filtro)* en la página 182.

Filter Configuration (Configuración de filtro)

La sección de configuración de filtro permite configurar los criterios de filtro para el filtro seleccionado. Sólo es posible realizar la configuración cuando la casilla de verificación **Enable** (Permitir) no está activada.

"(" y ")": los paréntesis de apertura y cierre pueden ser útiles para controlar la precedencia de operandos cuando se utilizan más de dos. Sólo se admite un nivel de paréntesis. Cuando no se utilizan paréntesis, un **AND** (Y) lógico tendrá precedencia sobre un **OR** (O) lógico.

Not (No): si se activa, se añade el operador lógico de negación (no igual) para el filtro de operandos definido a la derecha.

Filter (Filtro): permite seleccionar el filtro que se va a utilizar. La configuración por defecto es **None** (Ninguno). Consulte *Filtro* en la página 171 para ver la lista de filtros.

Value (Valor): permite introducir el valor asociado al filtro seleccionado. Consulte *Overview (Resumen)* en la página 198 para obtener más información sobre posibles valores.

Mask (Máscara): permite aplicar una máscara al valor del filtro definido. Una máscara de bit de **1** indica que se compara el bit que corresponde al valor para la coincidencia. Una máscara de bit de **0** indica que el bit que corresponde al valor se ignora.

- Para valores binarios, introduzca el valor de la máscara con formato binario.
- Para valores decimales, introduzca el valor de la máscara con formato hexadecimal.
- Para el campo de dirección IP, introduzca la máscara con formato decimal.
- Para la dirección MAC, introduzca el valor de la máscara con formato hexadecimal.

Oper. (Operador): permite seleccionar el operador lógico [**AND** (Y) o **OR** (O)] entre dos operandos.

Enable (Permitir)

Una vez configurado el filtro, active la casilla de verificación **Enable** (Permitir) para activarlo. No obstante, si la configuración de filtro contiene errores, no será posible activarlo Un filtro se puede activar o desactivar incluso cuando la prueba esté en ejecución.

Filter in use for data capture (Filtro en uso para captura de datos)

El mensaje **Filter in use for data capture** (Filtro en uso para captura de datos) se muestra para indicar que la herramienta de captura está usando el filtro seleccionado. Consulte *Filter (Filtro)* en la página 182 para obtener más información.

Nota: No se puede modificar o desactivar un filtro que ya se esté usando para la captura.

Traffic Filter Stats (Estadísticas de filtros de tráfico)

Permite recopilar estadísticas de acuerdo con los filtros programados (consulte *Traffic Filters (Filtros de tráfico)* en la página 170).

Nota: La ficha **Filter Stats** (Estadísticas de filtros) sólo está disponible cuando la opción de software Advanced Traffic Filtering (Filtro de tráfico avanzado) (SK-ADV-FILTERS) está activada. Consulte Opciones de software en la página 442.

Press **TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **Filters Stats** (Estadísticas de filtro).

Número de filtro [Filter No. (Nº de filtro)]

Permite seleccionar el número de filtro (de 1 a 10).

Enabled Time (Tiempo permitido)

Indica el tiempo durante el que está activo el filtro (consulte *Enable (Permitir)* en la página 178).

Recuento de tramas

Indica el número de tramas que coinciden con los criterios del filtro configurado.

Throughput (caudal de tráfico)

Indica las estadísticas de caudal de tráfico de la trama que coincide con los criterios del filtro configurado.

- Bandwidth (ancho de banda): proporciona la velocidad de datos recibidos expresada en Mbps.
- Utilization (utilización): indica el porcentaje de utilización de la velocidad de línea.
- ➤ Frame Rate (velocidad de tramas): indica el número de tramas recibido (incluidas tramas malas) en fps (tramas por segundo).

Errores

Indica, respectivamente, el número de tramas que coincide con los criterios del filtro configurado con errores **IP Header Checksum** (Comprobación de encabezado IP), **UDP Checksum** (Comprobación de UDP), **Jabber/Giant** (Farfulleo/gigante), **Oversize** (Tamaño grande), **Runt** (Enano), **Undersize** (Tamaño pequeño) o **FCS**. Consulte *Ethernet RX (RX de Ethernet)* en la página 156 y *Capas superiores* en la página 165 para obtener más información.

Capture (Capturar)

Capturar es una herramienta de solución de problemas que se utiliza para capturar el tráfico de datos recibidos y guardar tramas completas o truncadas en un archivo. Permite observar con exactitud los datos de red para entender errores y comportamientos no deseados.

Nota: La ficha Capturar sólo está disponible con el tipo de aplicación de Frame Analyzer (Analizador de tramas) del **Port 1** (Puerto 1) cuando está activada la opción de software de captura (SK-DATA-CAPTURE). Consulte Opciones de software en la página 442. No está disponible en modo directo.

Press **(Capturar)TEST** (Prueba), **Traffic Analyzer** (Analizador de tráfico) y **Capture** (Capturar).

Filter	Trigger	Status and Controls
Filter Selection None	Trigger Type	Capture Status
Frame Length	Manual	Frame Count Capture
 Complete 	C On Error	Triggered Error
C Truncated Bytes	C Field Match Configuration	Triggered Frame Details
Truncation	Cfg. Status	
Calculator	Trigger Position Post-trigger	Export
Eth. RX Eth. Stats PBB-TE	Higher Layers Flow Control Filte	ers Cfg. Filters Stats Capture Graph

Filter (Filtro)

Permite seleccionar los criterios de las tramas que se desean capturar.

- Filter Selection (Selección de filtro) permite la selección del número de filtro que se usará como criterio para la captura de tramas. Consulte *Filter Selection (Selección de filtro)* en la página 595 para obtener más información. None (Ninguno) indica que no hay ningún filtro seleccionado lo que significa que se capturarán todas las tramas recibidas.
- **Nota:** El filtro seleccionado se conservará para la captura de datos y no estará disponible para la configuración del filtro.
 - ► Frame Length (Longitud de trama)

Permite seleccionar la longitud de la trama que se guardará en el búfer de captura.

- > Complete (Completa) captura las tramas enteras.
- Truncated (Truncada) captura solamente el primer número de bytes por trama especificado. Utilice el campo Bytes para introducir manualmente el número de bytes por trama y haga clic en el botón Truncation Calculator (Calculadora de truncamiento) para realizar un cálculo automático de los bytes por trama.

Bytes permite seleccionar el número de bytes que se guardará en el búfer de captura para cada trama capturada. Las opciones van de **14** a **1023** bytes. El valor predeterminado es 18 bytes.

Truncation Calculator (Calculadora de truncamiento) permite definir la longitud de trama en bytes mediante la selección de la capa de encabezado, la versión de IP, la encapsulación y la longitud de carga útil adicional de la trama. Consulte *Truncation Calculator (Calculadora de truncamiento)* en la página 597 para obtener más información.

Disparador

- Trigger Type (Tipo de disparador): permite definir los criterios del origen del disparador que se usará para iniciar y detener automáticamente la captura cuando una trama recibida coincida con los criterios del disparador.
 - Manual: inicia automáticamente la captura de tramas cuando el botón Capture (Capturar) está activado (LED verde) y se inicia la prueba (consulte *Estado de prueba global y controles* en la página 43).
 - On Error (En error): seleccione el error que se usará cuando el disparador inicie la captura de tramas.

FCS

Jabber (Farfulleo)

Oversize (Tamaño grande) (disponible cuando **Oversize Monitoring** (Control de tamaño grande) está activado. Consulte *Oversize Monitoring (Control de tamaño grande)* en la página 156) **Runt (Enano)**

Kunt (Enano)

Undersize (Tamaño pequeño) IP Checksum (Comprobación de IP) UDP Checksum (Comprobación de UDP) TCP Checksum (Comprobación de TCP) Any Type (Cualquier tipo) (cualquiera de los errores anteriores).

Any type (Cualquier upo) (cualquiera de los errores antenores).

Field Match (Coincidencia de campos): seleccione la coincidencia de campos que se usará cuando el disparador inicie la captura de tramas. Consulte *Field Match Configuration* (*Configuración de la coincidencia de campos*) en la página 599 para obtener más información.

Cfg. Status (Estado de configuración): indica el estado de la configuración de la coincidencia de estado configurada: **Valid** (Válido) o **Invalid** (No válido). Se requiere un estado válido para poder iniciar la captura.

- Trigger Position (Posición de disparador): permitir seleccionar la posición de trama disparada en el búfer.
 - Post-Trigger (Después del disparador): la trama del disparador se sitúa al principio del búfer, lo que significa que el búfer contendrá la trama del disparador con las tramas siguientes.
 - Mid-Trigger (En mitad del disparador): la trama del disparador se sitúa en el medio del búfer, lo que significa que el búfer contendrá la trama del disparador con las tramas anteriores y las siguientes.
 - Pre-Trigger (Antes del disparador): la trama del disparador se sitúa al final del búfer, lo que significa que el búfer contendrá la trama del disparador con las tramas anteriores.

Estado y controles

- Capture Status (Estado de captura): indica el estado de la captura de datos.
 - ▶ "--": la captura no se inicia y aún no se ha ejecutado.
 - Armed... (Armado): la captura se ha iniciado pero espera al evento del disparador.
 - ➤ Capturing... (Capturando): la captura está en curso. Para los modos Post-Trigger (Después del disparador) y Mid-Trigger (En mitad del disparador), se ha capturado el evento del disparador y el búfer se está llenando.
 - **Completed** (Completada): la captura ha finalizado.
- Frame Count (Recuento de tramas): indica el número de tramas capturadas que coinciden con los criterios del filtro seleccionado. Sin embargo, para Mid-trigger (En mitad del disparador) y Pre-Trigger (Antes del disparador), el contador de tramas sólo estará disponible cuando finalice la captura.

- ► **Triggered Error** (Error disparado): cuando se selecciona un disparador en error, indica el error que ha activado el disparador.
- Triggered Frame Details (Trama disparada Detalles): ofrece detalles de la trama disparada. Consulte *Triggered Frame Details* (*Detalles de trama disparada*) en la página 601 para obtener más información.
- Botón Capture (Capturar): permite iniciar/detener la captura de datos. La prueba debe estar ejecutándose (consulte Estado de prueba global y controles en la página 43) para iniciar la captura y la grabación de datos en el búfer. El botón Capture (Capturar) no está disponible cuando se selecciona el disparador en la coincidencia de campo cuando sus parámetros de disparador no son válidos.

No se grabarán datos en el búfer si ninguna trama coincide con los criterios de disparador y filtro durante la captura de datos.

La captura de datos se detiene automáticamente cuando el búfer está lleno. La capacidad máxima del búfer es de 65 KBytes para FTB-8510B, y de 256 MBytes para FTB-8510G, FTB-8525, FTB-8535, FTB-8120NGE y FTB-8130NGE.

Cuando la captura se para o se detiene manualmente, aparece el mensaje siguiente: **Capture completed. Press Export to save captured data (the test must be stopped)** [Captura completada. Pulse Exportar para guardar los datos capturados (la prueba debe detenerse)]. Para evitar perder los datos capturados, estos deben exportarse y guardarse en un archivo antes de reiniciar la prueba o de crear una prueba nueva.

Botón Export (Exportar): permite exportar la captura de datos en un formato de archivo .pcap y ver el archivo mediante Wireshark.
 Consulte Data Capture Export (Exportación de captura de datos) en la página 602 para obtener más información.

Graph (Gráfico)

Proporciona el gráfico que muestra los resultados de las mediciones de la prueba.

Press **(Gráfico)TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **Graph** (Gráfico).

El eje X muestra el tiempo en segundos mientras que el eje Y muestra el porcentaje de utilización.

FC TX

Press TEST (PRUEBA), Traffic Analyzer (Analizador de tráfico) y FC TX.

Alarm Generation	Link Down	0n/Off	
PHY Error Injectio	n		FC Error Injection
Manual Type	Amount	Cut	Manual Type Amount
Automated —	·]]	Senu	Automated
Type Symbol	Rate	On/Off	Type Rate FCS V 1.0E-04 Continuous On/Off
FC TX FC RX	Latency FC Stats PM		

Alarm Generation (generación de alarmas)

- Type (tipo): está disponible el siguiente error: Link Down (Enlace roto). Tenga en cuenta que se detectará una alarma Pattern Loss (Pérdida de patrón) al inyectar un error Link Down (Enlace roto) mientras esté activada la casilla de verificación PSP (Link Protocol) [PSP (protocolo de enlace)] (consulte PSP (protocolo de enlace) en la página 263).
- Botón On/Off (activar/desactivar): el botón On/Off (Activado/desactivado) se usa para activar/desactivar el error automático seleccionado de forma continuada. Este elemento está desactivado por defecto (Off).

inyección de errores PHY

- ➤ Type (tipo): Están disponibles los siguientes errores en modo de inyección manual y automático: Symbol Error (Error de símbolo) para FC 1x/2x/4x, y Block Error (Error de bloque) para FC 10x.
- Amount (cantidad): permite seleccionar la cantidad de error manual que se va a generar. Las opciones van de 1 a 50. La configuración por defecto es 1.
- Botón Send (enviar): Press Send (Enviar) para generar manualmente los errores según el tipo de error y la cantidad de errores seleccionados.
- Rate (valor): Press el campo Rate (Valor) para seleccionar el valor del error automático. Las opciones son: 1.0E-02, 1.0E-03, 1.0E-04, 1.0E-05, 1.0E-06, 1.0E-07, 1.0E-08, 1.0E-09 o definible por el usuario de 1.0E-09 a 1.0E-02. La configuración por defecto es 1.0E-04.
- Continuous (continuo): genera el error seleccionado para cada trama generada cuando está activada la casilla de verificación Continuous (continuo) y el botón On/Off (activar/desactivar) está activado (On). La casilla de verificación Continuous (continuo) está desactivada por defecto.
- Botón On/Off (activar/desactivar): el botón On/Off (activar/desactivar) se usa para activar/desactivar el error automático seleccionado en el valor especificado o de forma continua. Este elemento está desactivado por defecto (Off).

Inyección de errores FC

- **Nota:** FC Error Injection (inyección de errores FC) sólo está disponible con Framed Layer 2 (capa de trama 2).
 - Type (tipo): Están disponibles los siguientes errores en modo de inyección manual y automático: FCS (FTB-8510B), CRC (FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535), Oversize (Tamaño grande) y Undersize (Tamaño pequeño).
 - Amount (cantidad): permite seleccionar la cantidad de error manual que se va a generar. Las opciones van de 1 a 50. La configuración por defecto es 1.
 - Botón Send (enviar): Press Send (Enviar) para generar manualmente los errores según el tipo de error y la cantidad de errores seleccionados.
 - Rate (valor): Press el campo Rate (Valor) para seleccionar el valor del error automático. Las opciones son: 1.0E-02, 1.0E-03, 1.0E-04, 1.0E-05, 1.0E-06, 1.0E-07, 1.0E-08, 1.0E-09 o definible por el usuario de 1.0E-09 a 1.0E-02. La configuración por defecto es 1.0E-04.
 - Continuous (continuo): genera el error seleccionado para cada trama generada cuando está activada la casilla de verificación Continuous (continuo) y el botón On/Off (activar/desactivar) está activado (On). La casilla de verificación Continuous (continuo) está desactivada por defecto.
 - Botón On/Off (activar/desactivar): el botón On/Off (activar/desactivar) se usa para activar/desactivar el error automático seleccionado en el valor especificado o de forma continua. Este elemento está desactivado por defecto (Off).

FC RX

Press TEST (PRUEBA), Traffic Analyzer (Analizador de tráfico) y FC RX.

Alarm Analysis		Error Analysis				
нс	Seconds	нс	Seconds	Count	Rate	
Link Down		Symbol				
		FCS				
		Oversize				
		Ondersize				
		Total E	rror Count			
C TX FC RX	Latency FC	Stats PM				

Alarm Analysis (análisis de alarma)

- Link Down (enlace roto): indica que se ha roto la conexión de canal de fibra. La conexión de canal de fibra se rompe si hay un estado de fallo local o remoto, incluidos LOS, pérdida de sincronización de grupo de código y fallo de PSP (cuando está activado).
- Local Fault (Fallo local) (FC 10x): indica que se ha detectado al menos uno de los siguientes eventos: LOS, Loss of bit synchronization (Pérdida de sincronización de bits), Loss of Block synchronization (Pérdida de sincronización de bloques), Link down (Enlace roto) o High BER (BER alto) (este evento se da cuando la proporción de errores de bit es > 10⁻⁴ en un periodo fijo de 125 μs).
- ► **Remote Fault** (Fallo remoto) (FC 10x): indica que se ha detectado un evento de defecto remoto.
- **Nota:** las alarmas y los errores sólo se actualizan durante la ejecución de la prueba.

Error Analysis (análisis de errores)

- Block (Bloque) (FC 10x): número de tramas recibido con un estado de bloque con errores.
- ➤ Symbol (Símbolo) (FC 1x, 2x y 4x): Un error de Symbol (Símbolo) se declara cuando se detecta un símbolo no válido, excepto SOF y OEF.
- FCS: número de Framed Layer 2 (Capa de trama 2) o Framed Layer 1 (Capa de trama 1) recibido (con xPAT) con una FCS no válida.
- Oversize (tamaño grande): un error de Oversize (Tamaño grande) se declara cuando una capa de trama 2 con un FCS válido tiene una longitud superior a 2148 bytes.
- Undersize (tamaño pequeño): un error de Undersize (Tamaño pequeño) se declara cuando una capa de trama 2 con un FCS válido tiene una longitud inferior a 36 bytes.

Total Error Count (recuento total de errores): indica el número total de errores, incluidos todos los errores anteriores.

FC Latency (Latencia de FC)

Nota: Disponible sólo con **FC Framed Layer 1** (Capa de trama 1 de FC) y **FC Framed Layer 2** (Capa de trama 2 de FC).

Press **(Latencia)TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **Latency** (Latencia).

Configuration	Latency Meas	surement		
Latency Tag		Round Trip Delay	Unit	
	Minimum		ms	-
Buffer-To-Buffer Credit	Maximum		1	
Estimated bb_Credit	Average		1	
	Last		1	
	Samples		1	
FC TX FC RX Latency FC Stats	PM			

Latency (latencia) sólo está disponible cuando se cumplen las dos condiciones siguientes:

- Framed Layer 1 (Capa de trama 1) o Framed Layer 2 (Capa de trama 2) se ha seleccionado en el panel de configuración de BERT en la configuración de TX y en la configuración de RX.
- > El patrón de prueba debe ser distinto a CRPAT, CSPAT y CJTPAT.

Configuración

Latency Tag (Etiqueta de latencia): permite las mediciones de latencia y de crédito entre búferes cuando la casilla de verificación Latency Tag (Etiqueta de latencia) está activada. La casilla de verificación Latency Tag (Etiqueta de latencia) está desactivada por defecto.

Latency Measurement (Medición de latencia)

Retardo de ida y vuelta

- Maximum (Máximo): indica el tiempo máximo que tarda un bit en volver desde el transmisor Serie FTB-8500 y FTB-8120NGE/8130NGE hasta su receptor después de cruzar un conjunto de pruebas de bucle invertido de extremo lejano.
- Minimum (Mínimo): indica el tiempo mínimo que tarda un bit en volver desde el transmisor Serie FTB-8500 y FTB-8120NGE/8130NGE hasta su receptor después de cruzar un conjunto de pruebas de bucle invertido de extremo lejano.
- Average (promedio): indica el tiempo medio que tarda un bit en volver desde el transmisor Serie FTB-8500 y FTB-8120NGE/8130NGE hasta su receptor después de cruzar un conjunto de pruebas de bucle invertido de extremo lejano.
- Last (último): indica el último tiempo que ha tardado un bit en volver desde el transmisor Serie FTB-8500 y FTB-8120NGE/8130NGE hasta su receptor después de cruzar un conjunto de pruebas de bucle invertido de extremo lejano.
- Samples (Muestras): indica el número de muestras utilizadas para la prueba Round Trip Delay (retardo de ida y vuelta).
- Unit (unidad): permite seleccionar la unidad de medida de la latencia.
 Las opciones son s, ms y μs. La configuración por defecto es ms.

Buffer-to-Buffer Credit (Crédito entre búferes)

Estimated BB_Credit (BB_Credit estimado): indica el número estimado de búferes de trama con los que cuenta el puerto remoto para recibir tramas basadas en las mediciones de latencia de ida y vuelta.

FC Statistics (Estadísticas de FC)

Nota: Disponible sólo con **FC Framed Layer 1** (Capa de trama 1 de FC) y **FC Framed Layer 2** (Capa de trama 2 de FC).

Press **(Estadísticas de FC)TEST** (PRUEBA), **Traffic Analyzer** (Analizador de tráfico) y **FC Stats** (Estadísticas de FC).

Court			
Count	RX Count		
		% 💌	
atency FC Stats	PM		
	atency FC Stats	ency FC Stats PM	

Traffic Statistics (estadísticas de tráfico)

- TX Frames (Tramas de TX): indica el número de tramas de canal de fibra transmitidas, incluidas las tramas con errores y tramas canceladas.
- RX Frames (Tramas de RX): indica el número de tramas de canal de fibra recibidas, incluidas las tramas con errores y tramas canceladas.
- ➤ TX Bytes (Bytes de TX): indica el número de bytes de canal de fibra transmitidos, incluidos los delimitadores de trama.
- RX Bytes (Bytes de RX): indica el número de bytes de canal de fibra recibidos, incluidos los delimitadores de trama.
- ➤ TX Bandwidth (Ancho de banda de TX): muestra el tráfico medio transmitido.
- RX Bandwidth (Ancho de banda de RX): muestra el tráfico medio recibido.
- ➤ En la lista de unidades, seleccione la unidad TX and RX bandwidth (Ancho de banda de TX y RX). Las opciones son %, Mbps, MBps y fps. La configuración por defecto es %.

9 Fichas de generación de flujo

 Nota: la generación de flujo no está disponible en las pruebas de bucle invertido Smart ni caudal de tráfico TCP(FTB-8510B). Cuando la IPTV (televisión sobre protocolo de Internet) está activada (FTB-8510B), la configuración de flujo sólo está disponible en la topología Dual Ports (Puertos duales) en Port 2 (Puerto 2). Las fichas de generación de flujo no están disponibles cuando Through Mode (Modo directo) está seleccionado.

Ficha		Ethernet	Canal de fibra ^a	Página	
	Analizador de tramas	BERT	RFC 2544	BERT	
Overview (Resumen)	X	X	X		198
Stream Configuration (Configuración de flujo)	X	Xc			207
PBB-TE	X		-		218
МАС	X	Xb	X		221
MPLS	X		-		224
IP/UDP/TCP	X	Х	X		226
Payload (Carga útil)	X		X ^c		230
Frame Configuration (Configuración de trama) (canal de fibra) ^a				Х	231

a. No disponible con FTB-8510G.

b. Disponible sólo con la capa de trama 2.

c. No disponible con FTB-8120NGE/FTB-8130NGE ni FTB-8525/FTB-8535.

Overview (Resumen)

La ficha **Overview** (Resumen) permite configurar y activar hasta 10 flujos para la prueba **Frame Analyzer** (Analizador de tramas) y sólo uno para las pruebas **RFC 2544** y **BERT** Ethernet.

Press **(Resumen) TEST** (PRUEBA), **Stream Gen** (Generación de flujo) y **Overview** (Resumen).

- > Para la prueba **Frame Analyzer** (Analizador de tramas), consulte a continuación.
- ➤ Para las pruebas BERT y RFC 2544 en FTB-8510B y FTB-8510G, consulte la página 202.
- ➤ Para las pruebas BERT y RFC 2544 en FTB-8120NGE, FTB-8130NGE, FTB-8525 y FTB-8535, consulte la página 203.

Para la prueba Frame Analyzer (Analizador de tramas)

	No.	Stream Name	Rate	Enable	No.	Stream Name	Rate	Enable
1010 0101	1	Stream 1	0.0		1010 0101 6	Stream 6	0.0	
1010 0101	2	Stream 2	0.0		1010 0101 7	Stream 7	0.0	
1010 0101	3	Stream 3	0.0		1010 0101 8	Stream 8	0.0	
1010 0101	4	Stream 4	0.0		1010 0101 9	Stream 9	0.0	
1010 0101	5	Stream 5	0.0		1010 0101 10	Stream 10	0.0	
Total	Total Enabled TX Rate 0.0 Unit Stream Tag							
Total	Availabl	e TX Rate 100)	% 🔹	Copy Stream	Enable E	nable IX On/C	off 🕘
Over	Overview Stream Config. PBB-TE MAC MPLS IP/UDP/TCP Payload							

Nota: La configuración de flujo se reinicia cuando se completa la prueba.

- El icono en la parte frontal del flujo No (N.º) indica el perfil de flujo seleccionado; para voz, para vídeo o para datos.
- ▶ No (N°): indica el número de identificación del flujo.
- Stream Name (Nombre de flujo): muestra el nombre del flujo. Press el campo del nombre del flujo para cambiar el nombre del flujo. Se permiten hasta 16 caracteres. Los nombres del flujo por defecto son Stream 1 (Flujo 1) a Stream 10 (Flujo 10).
- Rate (valor): indica la velocidad del flujo. La velocidad se calcula en relación con la forma de tráfico configurada [en los campos Transmit Mode (Modo de transmisión) y TX Rate (Velocidad de TX) de 214].
- Enable (permitir): permite activar el flujo correspondiente. Sin embargo, el flujo sólo se generará si el botón Enable TX - On/Off (Permitir TX - Activado/Desactivado) está en la posición On (Activado) al iniciar la prueba.

Fichas de generación de flujo

Overview (Resumen)

- **Nota:** el flujo particular se puede activar o desactivar incluso una vez que se ha iniciado la prueba y está en marcha. Los flujos pueden activarse uno después de otro, hasta 10, hasta alcanzar el valor máximo. Por ejemplo, si el primer flujo está utilizando la velocidad máxima disponible, no se puede activar ningún otro flujo. Sin embargo, si el primer flujo activado utiliza la mitad de la velocidad, se puede activar al menos otro flujo que utilice la otra mitad de la velocidad. Por lo tanto, para permitir un segundo flujo, primero se debe configurar el valor de velocidad máxima o de TX dentro de la velocidad no utilizada y, a continuación, activarlo. No se puede activar un flujo si la dirección MAC no es válida, puede ser que no esté resuelta o que haya sido introducida de forma errónea.
 - Total Enabled TX Rate (Velocidad de TX total activada): muestra la velocidad total activada que se generará por parte de los flujos activados.
 - Total Available TX Rate (Velocidad de TX total disponible): muestra la velocidad total disponible para la generación de tráfico.
 - ➤ Las opciones para Unit (Unidad) %, bps, Kbps, Mbps, Gbps, Bps, KBps, MBps y GBps. La configuración por defecto es %.
 - ► Botón Copy Stream (Copiar flujo)

Copy Stream Network Configuration							
Copy from Stream No.	To the following Stream(s)						
1	Сору То	No.	Stream Name	Сору То	No.	Stream Name	
		1	Stream 1		6	Stream 6	
	Γ	2	Stream 2		7	Stream 7	
		3	Stream 3		8	Stream 8	
		4	Stream 4		9	Stream 9	
		5	Stream 5		10	Stream 10	
0						OK Cancel	

Para copiar la configuración del flujo a uno o varios flujos.

En la lista Copy from Stream No (Copiar desde el flujo nº), seleccione el número de flujo desde el que se va a copiar la configuración.

- Seleccione las casillas de verificación de todos los flujos que heredarán la configuración del flujo seleccionado.
- Press OK (Aceptar) para confirmar la copia de configuración del flujo para todos los flujos seleccionados.
- Stream Tag (Etiqueta de flujo) permite añadir automáticamente una etiqueta de análisis de flujo que contenga etiquetas de fluctuación, latencia, caudal de tráfico y secuencia en todos los flujos que se generarán. Sin embargo, sólo se generarán las etiquetas de fluctuación y caudal de tráfico si el códec de voz VoIP G.723.1 o VoIP G.729 están seleccionados. La configuración Stream Tag (Etiqueta de flujo) se aplica a todos los flujos, por tanto su casilla de verificación sólo está disponible cuando no hay ningún flujo activado. Esta configuración está seleccionada por defecto a no ser que se establezca lo contrario en Default/Ethernet Test Preferences (Preferencias de prueba Ethernet/por defecto) en la página 430.
- Enable TX On/Off (Permitir TX Activado/desactivado): Press el botón On/Off (Activado/desactivado) para activar la generación de tráfico así como las pruebas de análisis cuando la prueba ha comenzado. Algunas condiciones, como ARP no resuelta, enlace roto, etc., pueden impedir que se transmita el flujo. El botón Enable TX On/Off (Permitir TX Activado/desactivado) no está disponible cuando Coupled Start/Enable TX (Inicio acoplado/permitir RX) (consulte Default/Ethernet Test Preferences (Preferencias de prueba Ethernet/por defecto) en la página 430) está seleccionado.

Para las pruebas BERT y RFC 2544 en FTB-8510B y FTB-8510G

1	No.	Stream Name	Rate	Enable
	1	RFC 2544 Stream	0.0	
			Lloit	
			Unit	
	_		%	<u>•</u>
Overvi	iew	MAC IP/UDP/TCP	Payload	

- No (N°): indica el número de identificación del flujo. Sólo un flujo está disponible con BERT y RFC 2544.
- Stream Name (Nombre de flujo): indica el nombre del flujo y no se puede editar. Los nombres de flujo por defecto son: RFC 2544 Stream (Flujo de RFC 2544) para la prueba RFC 2544 y BERT Stream (Flujo de BERT) para la prueba BERT.
- Rate (valor): indica la velocidad del flujo. La velocidad se calcula en relación con la forma de tráfico configurada [en los campos Transmit Mode (Modo de transmisión) y TX Rate (Velocidad de TX) de 214].
- Enable (permitir): permite activar el flujo correspondiente. Sin embargo, el flujo se generará sólo en el momento de iniciar la prueba.
- ➤ Las opciones para Unit (Unidad) %, bps, Kbps, Mbps, Gbps, Bps, KBps, MBps y GBps. La configuración por defecto es %.
- **Nota:** el flujo puede activarse/desactivarse aunque la prueba ya haya empezado y se esté realizando. **Enable Stream** (Permitir flujo) no está disponible para la prueba **RFC 2544**. No se puede activar un flujo si la dirección MAC no es válida, puede ser que no esté resuelta o que haya sido introducida de forma errónea.
Para las pruebas BERT y RFC 2544 en FTB-8120NGE, FTB-8130NGE, FTB-8525 y FTB-8535

- Stream Enable (Flujo Permitir): para BERT, permite activar el flujo. El flujo no se generará hasta que empiece la prueba. Enable Stream (Permitir flujo) no está disponible para la prueba RFC 2544.
- **Nota:** el flujo puede activarse/desactivarse aunque la prueba ya haya empezado y se esté realizando. No se puede activar un flujo si la dirección MAC no es válida, puede ser que no esté resuelta o que haya sido introducida de forma errónea.
- **Nota:** Los parámetros de **Frame Configuration** (configuración de trama) sólo están disponibles para su edición cuando la casilla de verificación **Stream** (flujo) **Enable** (permitir) está desactivada.

Overview (Resumen)

- > Configuración de trama
 - ➤ Velocidad de TX: para RFC 2544, indica la velocidad del flujo. Para BERT, permite seleccionar la velocidad del flujo.
 - Las opciones para Unit (unidad) son %, bps, Kbps, Mbps, Gbps, Bps, KBps, MBps, GBps, fps e IFG. La configuración por defecto es %.
 - Payload (Carga útil): para RFC 2544, permite seleccionar el patrón de prueba que se va a repetir dentro de toda la carga útil de datos. Las opciones van de 00 a FF. La configuración por defecto es CC.

Binary (binario): el patrón se convertirá de forma automática a sistema binario o hexadecimal cuando se active o desactive **Binary** (binario).

- Nota: Network (Red) y Transport (Transporte) no están disponibles con la prueba RFC 2544. El tamaño de trama de enlace de datos sólo está disponible con la prueba BERT Framed Layer 1 (BERT Capa de trama 1).
 - ➤ Data Link (Enlace de datos): seleccione el tipo de enlace de datos (capa 2). Las opciones son Ethernet II y 802.3 SNAP.
- Nota: Network (Red) y Transport (Transporte) no están disponibles con la prueba RFC 2544. El tamaño de trama de enlace de datos sólo está disponible con la prueba BERT Framed Layer 1 (BERT Capa de trama 1).
 - Network (Red): Seleccione el tipo de tráfico de red (capa 3). Las opciones son IPv4 o IPv6 y None (Ninguno). La configuración por defecto es IPv4.
 - ➤ Transport (Transporte): Transport (Transporte) está configurado en UDP. Transport (Transporte) se desactiva automáticamente cuando Network (Red) está configurado como None (Ninguno).

Size (Tamaño): seleccione el tamaño de trama para cada tipo de tráfico.

Para **Framed Layer 1** (Capa de trama 1), sólo se puede configurar **Data Link** (Enlace de datos) de **48** a **10000** para 10 Mbps, y **16000** para 100 Mbps/1000 Mbps/10 Gbps.

Para Framed Layer 2 (Capa de trama 2), las opciones son:

	Frame Size (tamaño de trama)			
Tipo de tráfico	Mínimo	М	áximo	
•		10 Mbps	100/1000 Mbps y 10 Gbps	
Data Link (Enlace de datos)	48 ^a	10000	16000	
Red	46 ^a	9982	15982	
transporte UDP TCP	26 ^a 38 ^a	9962	15962	

a. El tamaño mínimo de la trama se ajustará según la estructura de la trama y los componentes seleccionados.

La siguiente tabla muestra todos los componentes que pueden afectar a los valores de tamaño mínimo.

Componente	Description (Descripción)
VLAN	4 bytes por VLAN (hasta 3 VLAN)
UDP	8 bytes
ТСР	20 bytes
Encabezado de Ethernet	14 bytes
Encabezados de LLC y SNAP	8 bytes
IPv4	20 bytes
IPv6	40 bytes

- **Nota:** si se cambia alguno de los valores de tipo de tráfico, los otros dos valores de tipo de tráfico se verán afectados.
- **Nota:** el envío de tráfico con tamaño de trama >1518 en una red conmutada puede dar como resultado la pérdida de todas las tramas.

Stream Configuration (Configuración de flujo)

Pulse (Configuración de flujo)TEST (PRUEBA), Stream Gen (Generación de flujo) y Stream Config (Configuración de trama).

N° de flujo

Para **Frame Analyzer** (Analizador de tramas), seleccione el número de flujo de la lista. Sólo el número de flujo 1 está disponible para la prueba **BERT**.

Stream Profile (Perfil de flujo)

Nota: Sólo para la prueba Frame Analyzer (Analizador de tramas), permite emular los flujos de Voice (Voz) (≤), Video (Vídeo) (≥) o Data (Datos) (. La configuración por defecto es Data (Datos).

Para Voice (Voz):

- Voice Codec (Códec de voz): las opciones son VoIP G.711, VoIP
 G.723.1 y VoIP G.729. La configuración por defecto es VoIP G.711.
- Nb Calls (Nº de llamadas): permite seleccionar el número equivalente de llamadas que se generarán para el flujo seleccionado. La configuración por defecto es 1.

Para Video (Vídeo):

- Video Codec (Códec de vídeo): las opciones son SDTV (MPEG-2), HDTV (MPEG-2) y HDTV (MPEG-4). Sólo SDTV (MPEG-2) está disponible con la interfaz de 10 Mbps. La configuración por defecto es SDTV (MPEG-2).
- Nb Channels (Nº de canales): permite seleccionar el número equivalente de canales que se generarán para el flujo seleccionado. La configuración por defecto es 1.

Configuración de trama

- **Nota:** el tamaño de trama de enlace de datos sólo está disponible con la prueba **BERT - Framed Layer 1** (BERT - Capa de trama 1).
 - Data Link (Enlace de datos): seleccione el tipo de enlace de datos (capa 2). Las opciones son Ethernet II, PBB-TE/Ethernet II, 802.3 SNAP y PBB-TE/802.3 SNAP.
- Nota: Network (Red) y Transport (Transporte) no están disponibles con la prueba RFC 2544. El tamaño de trama de enlace de datos sólo está disponible con la prueba BERT Framed Layer 1 (BERT Capa de trama 1).
 - Network (Red): Seleccione el tipo de tráfico de red (capa 3). Las opciones son:
 - Cuando la interfaz de prueba está establecida en IPv4: IPv4, MPLS/None (MPLS/Ninguno), MPLS/IPv4 y None (Ninguno).
 MPLS/None (MPLS/ninguno) y MPLS/IPv4 sólo están disponibles cuando MPLS está activado. La configuración por defecto es IPv4 cuando MPLS no está activado y MPLS/IPv4 cuando MPLS está activado.
 - Cuando la interfaz de prueba está establecida en IPv6: IPv6, MPLS/None (MPLS/ninguno), MPLS/IPv6 y None (Ninguno).
 MPLS/None (MPLS/ninguno) y MPLS/IPv6 sólo están disponibles cuando MPLS está activado. La configuración por defecto es IPv6 cuando MPLS no está activado y MPLS/IPv6 cuando MPLS está activado.
- **Nota:** cuando el perfil del flujo está configurado en voz o vídeo, la red se configura de forma automática en **IPv4** o **IPv6**.

Stream Configuration (Configuración de flujo)

- ➤ Transport (Transporte): seleccione el tipo de tráfico de transporte (capa 4). Las opciones son UDP, TCP y None (Ninguno). La configuración por defecto es UDP. El transporte se configura de forma automática en None (Ninguno) al establecer Network (Red) en None (Ninguno). El transporte se configura de forma automática en UDP al establecer el perfil del flujo en voz o vídeo.
- Size (Tamaño): seleccione el tamaño de trama para cada tipo de tráfico. Sólo se puede configurar cuando el perfil del flujo está configurado en Data (Datos). Las opciones son:

	Frame Size (tamaño de trama)			
Tipo de tráfico	Mínimo	Máximo		
·		10 Mbps	100/1000 Mbps y 10 Gbps	
Data Link (Enlace de datos)	48 ^a	10000	16000	
Red	30 ^a	9982	15982	
transporte UDP TCP	10 ^a 22 ^a	9962	15962	

> Para la prueba Frame Analyzer (Analizador de tramas):

a. El tamaño mínimo de la trama se ajustará según la estructura de la trama y los componentes seleccionados.

Componente	Description (Descripción)
VLAN	4 bytes por VLAN (hasta 3 VLAN)
PBB-TE	18 bytes
B-VLAN	4 bytes
MPLS	4 bytes por etiqueta (hasta dos etiquetas)
Etiqueta de flujo	50 bytes
UDP	8 bytes
ТСР	20 bytes
Encabezado de Ethernet	14 bytes
Encabezados de LLC y SNAP	8 bytes
IPv4	20 bytes
IPv6	40 bytes

La siguiente tabla muestra todos los componentes que pueden afectar a los valores de tamaño mínimo.

► Para la prueba BERT.

Para **Framed Layer 1** (Capa de trama 1), el enlace de datos (Ethernet) se puede configurar de **48** a **10000** para 10 Mbps, y **16000** para 100 Mbps/1000 Mbps/10 Gbps.

Para Framed Layer 2 (Capa de trama 2), las opciones son:

	Frame Size (tamaño de trama)			
Tipo de tráfico	Mínimo	Máximo		
		10 Mbps	100/1000 Mbps y 10 Gbps	
Data Link (Enlace de datos)	48 ^a	10000	16000	
Red	46 ^a	9982	15982	
transporte UDP TCP	26 ^a 38 ^a	9962	15962	

a. El tamaño mínimo de la trama se ajustará según la estructura de la trama y los componentes seleccionados.

Componente	Description (Descripción)
VLAN	4 bytes por VLAN (hasta 3 VLAN)
UDP	8 bytes
ТСР	20 bytes
Encabezado de Ethernet	14 bytes
Encabezados de LLC y SNAP	8 bytes
IPv4	20 bytes
IPv6	40 bytes

La siguiente tabla muestra todos los componentes que pueden afectar a los valores de tamaño mínimo.

- **Nota:** si se cambia alguno de los valores de tipo de tráfico, los otros dos valores de tipo de tráfico se verán afectados.
- **Nota:** el envío de tráfico con tamaño de trama >1518 en una red conmutada puede provocar la pérdida de todas las tramas.

Stream Configuration (Configuración de flujo)

Forma de tráfico

- Transmit Mode (Modo de transmisión): permite seleccionar el modo de transmisión sólo para Stream 1 (Flujo 1). Las opciones son Continuous (Continuo), Burst (Ráfaga), Ramp (Rampa), n-Frame (N-trama), n-Burst (N-ráfaga) y n-Ramp (N-rampa). La configuración por defecto es Continuous (continuo).
- **Nota:** Los flujos de 2 a 10 no se pueden configurar y están establecidos en **Continuous** (continuo).
- Nota: Transmit Mode (Modo de transmisión) queda forzado a Continuous (Continuo) con la prueba BERT o con Frame Analyzer (Analizador de tramas) cuando el perfil del flujo está configurado en Voice (Voz) o Video (Vídeo).

Fichas de generación de flujo

Stream Configuration (Configuración de flujo)

Continuous (Continuo) transfiere la trama seleccionada de forma continua según el % seleccionado de ancho de banda.

n-Frame (N-trama) transfiere el número seleccionado de tramas.

Burst (Ráfaga) transfiere la trama seleccionada con el ancho de banda máximo según el % seleccionado de ciclo de servicio y el periodo de ráfagas. El **Period** (Periodo) es igual al valor de **Burst Time** (Periodo de ráfagas) dividido por el **Duty Cycle** (Ciclo de servicio).

n-Burst (N-ráfaga) transfiere el número seleccionado de ráfaga.

Ramp (rampa) transfiere el ancho de banda seccionado en forma de escalera según el tiempo de paso seleccionado, el número de pasos y el ancho de banda máximo.

n-Ramp (N-rampa) transfiere el número seleccionado de rampa.

Ramp Transmit Mode

Stream Configuration (Configuración de flujo)

➤ TX Rate (Velocidad de TX): introduzca la velocidad de transmisión. La velocidad de transmisión de flujo disponible se calculará según el modo de transmisión seleccionado. La configuración por defecto es 100% para 10/100/1000 Mbps y 10Gig-E LAN y 92.8% para 10Gig-E WAN.

Las opciones de **Unit** (Unidad) son **%**, **bps**, **Kbps**, **Mbps**, **Gbps**, **Bps**, **KBps**, **MBps**, **GBps**, **fps** e **IFG**. La configuración por defecto es **%**.

- **Nota:** *TX Rate* (*Velocidad de TX*) no se puede configurar cuando el perfil del flujo está establecido en Voice (*Voz*) o Video (*Vídeo*). La velocidad de TX se calcula según el número de llamadas (voz) o canales (vídeo) del códec seleccionado.
 - Frame Count (Recuento de tramas): Disponible sólo con el modo de transmisión de n-tramas. Introduzca el número de recuento de tramas. Las opciones van del 1 al 26785714285. La configuración por defecto es 1.
 - > Botones Shaping Config (Configuración de forma)

Para la forma de tráfico de ráfagas

- **Nota:** disponible para el flujo 1 con los modos de transmisión Burst (Ráfaga) y n-Burst (N-ráfaga).
 - Bandwidth (Duty Cycle): introduzca el ancho de banda (ciclo de servicio): Las opciones van de 1 a 100%. La configuración por defecto es 50%.
 - Burst Time (Periodo de ráfagas): introduzca el periodo de ráfagas. Las opciones van de 1 a 8000 milisegundos. La configuración por defecto es 1000 milisegundos.

Las opciones para **Unit** (Unidad) son **ms** (milisegundos) y **s** (segundos). La configuración por defecto es **ms** (milisegundos).

Burst Count (Recuento de ráfagas): disponible sólo con el modo de transmisión de n-ráfagas. Introduzca el recuento de ráfagas. Las opciones van del 1 al 225. La configuración por defecto es 1.

Para la forma de tráfico de rampa

- **Nota:** disponible para el flujo 1 con los modos de transmisión Ramp (Rampa) y n-Ramp (N-rampa).
 - Number of Steps (Número de pasos): introduzca el número de pasos. Las opciones van del 2 al 100. La configuración por defecto es 10.
 - Step Time (Tiempo de paso): introduzca la duración de cada paso. Las opciones van de 100 a 8000 milisegundos. La configuración por defecto es 1000 milisegundos.
 - Las opciones para Unit (Unidad) son ms (milisegundos) y s (segundos). La configuración por defecto es ms (milisegundos).
 - Ramp Cycle Count (Recuento de ciclo de rampa): disponible sólo con el modo de transmisión de n-rampas. Introduzca el número de recuento de ciclo de rampa. Las opciones van del 1 al 225. La configuración por defecto es 1.

PBB-TE

Permite configurar los flujos PBB-TE, incluidos B-MAC (origen y destino), B-VLAN e I-Tag (según 802.1ah).

Nota: PBB-TE tiene que estar activado durante la configuración de la prueba (consulte PBB-TE en la página 118) y **Data Link** (enlace de datos) establecido en **Ethernet/PBB-TE** (consulte Stream Configuration (Configuración de flujo) en la página 207) para proporcionar acceso a la configuración de PBB-TE para el flujo seleccionado.

Press TEST (PRUEBA), Stream Gen (Generación de flujo) y PBB-TE.

Stream No.	Destination B-MAC Address 00:00:00:00:00:00		
B-MAC Address	I-TAG	B-VLAN	
00:00:00:00:00:00	SID 256	ID	
	Priority 0 (000 - Low) 💌	Priority	
	Drop Eligible	🗖 DropEligible	
Overview Stream Conf	IG. PBB-TE MAC MPL	.S IP/UDP/TCP Payload	

N° de flujo

Seleccione el número de flujo de la lista.

Source (Origen)

B-MAC Address (Dirección B-MAC): Indica la dirección MAC troncal de origen del flujo seleccionado. **B-MAC Address** (Dirección B-MAC) de origen sólo se puede configurar en *Network (Red)* ficha en la página 268.

Destination (Destino)

- B-MAC Address (Dirección B-MAC): introduzca la dirección MAC troncal de destino del flujo seleccionado. La configuración por defecto es 00:00:00:00:00.
- > I-TAG (etiqueta de instancia de servicio troncal)

SID (Identificador de instancia de servicio): introduzca el valor SID de I-TAG que identifica la instancia de servicio troncal del flujo seleccionado. Las opciones van de **0** a **16777215**. La configuración por defecto es **256**.

Priority (prioridad): seleccione el punto de código de prioridad (PCP) del usuario de B-VLAN. Las opciones van del **0** al **7**. La configuración por defecto es **0** (**000** - Low) [0 (0000 - baja)].

Drop Eligible (Seleccionable para descarte): cuando la casilla de verificación **Drop Eligible** (Seleccionable para descarte) está activada (DEI = 1), estas tramas transmitidas se descartarán primero en la recepción cuando se produzca una congestión durante la prueba. Esta configuración está desactivada por defecto.

> B-VLAN (red de área local virtual troncal)

ID: introduzca el identificador de B-VLAN. Las opciones van de **0** a **4095**. Consulte *VLAN/B-VLAN* en la página 561 para obtener más información.

Priority (prioridad): seleccione el punto de código de prioridad (PCP) del usuario de B-VLAN. Las opciones van de **0** a **7**; consulte *VLAN/B-VLAN* en la página 561 para obtener más información. La configuración por defecto es **0** (**000** - Low) [0 (0000 - baja)].

Drop Eligible (Seleccionable para descarte): cuando la casilla de verificación **Drop Eligible** (Seleccionable para descarte) está activada (DEI = 1), estas tramas transmitidas se descartarán primero en la recepción cuando se produzca una congestión durante la prueba. Esta configuración está desactivada por defecto.

MAC

Nota: Disponible sólo con Framed Layer 2 (Capa de trama 2).

Press TEST (PRUEBA), Stream Gen (Generación de flujo) y MAC.

Stream No.	Destination	Frame Format	
1 🔹	MACAddress Status	OUI	EtherType
	FE:FE:FE:FE:FE	-	8847
MAC Address	Resolve MACAddress		,
00:00:00:00:00:00	VLAN		
	Enable VLAN Config.		
	VLAN #1 ID VLAN #2 ID VLAN #3 ID		
	, , ,		
Overview Stream Conf	ig. PBB-TE MAC MPLS IP/UDP/TCP	Payload	

N° de flujo

Para la prueba **Frame Analyzer** (Analizador de tramas), seleccione el número de flujo de la lista. Sólo el número de flujo 1 está disponible para las pruebas **RFC 2544** y **BERT**.

Frame Format (Formato de trama)

OUI está disponible cuando Data Link (Enlace de datos) está configurado en 802.3 SNAP y permite la selección del OUI. Las opciones son RFC1042, 802.1H y User Defined (Definido por el usuario) [cuando Network (Red) está configurado en None (Ninguno)].

Al seleccionar **User Defined** (Definido por el usuario), introduzca un valor hexadecimal para **OUI** (de **000000** a **FFFFFF**).

- EtherType está disponible cuando Network (Red) está configurado en None (Ninguno) y permite introducir un valor hexadecimal de EtherType (de 0000 a FFFF).
- **Nota:** Consulte Stream Configuration (Configuración de flujo) en la página 207 para obtener más información.

Source (Origen)

MAC Address (Dirección MAC): muestra la dirección MAC del flujo seleccionado.

Nota: *MAC Address* (*Dirección MAC*) *de origen sólo se puede configurar en Network (Red)* en la página 268.

Destination (Destino)

MAC Address (Dirección MAC): introduzca la dirección MAC de destino del flujo seleccionado. La configuración por defecto es **FE:FE:FE:FE:FE:FE:FE**.

Nota: el campo MAC Address (Dirección MAC) de destino no está disponible si se activa Resolve MAC Address (Resolver dirección MAC).

Resolve MAC Address (Resolver dirección MAC): si se activa, enviará una solicitud a la red para recuperar la dirección MAC correspondiente a la dirección IP de destino seleccionada. Esta configuración está desactivada por defecto.

Status (estado): indica el estado de Resolve MAC address (Resolver dirección MAC). Los estados posibles son:

estado	Description (Descripción)
	Resolve MAC address (Resolver dirección MAC) no está activada.
Resolving (Resolviendo)	La dirección MAC se está resolviendo.
Resolved (Resuelta)	La dirección MAC está resuelta y se confirma la accesibilidad del siguiente paso para la IPv6.
Inaccesible	Sólo para IPv6, la dirección MAC está resuelta y no se puede acceder al siguiente paso.
Failed (Fallo)	La dirección MAC no se puede resolver.

VLAN

- **Nota:** en la prueba **RFC 2544**, la VLAN sólo se puede configurar mediante Network (Red) en la página 268.
- **Nota:** La activación o desactivación de la VLAN afectará al valor del enlace de datos (consulte Overview (Resumen) en la página 198).
 - ► Enable (permitir): si se activa, se puede configurar la VLAN. Esta configuración está desactivada por defecto.
 - VLAN nº 1 (C-VLAN)/nº 2(S-VLAN) /nº 3 ID (E-VLAN) indica el ID de VLAN para cada capa de VLAN activada. Los valores posibles van de 0 a 4095. El valor 4095 está reservado, mientras que 0 y 1 tienen una utilidad específica.
 - VLAN Config. (Configuración de VLAN): permite la configuración de parámetros de VLAN. Consulte VLAN Configuration (Configuración VLAN) en la página 566 para obtener más información.

MPLS

Permite la configuración de MPLS de flujos con hasta dos capas de etiquetas MPLS, COS/EXP y parámetros TTL.

Nota: MPLS tiene que estar activado durante la configuración de la prueba (consulte MPLS en la página 118) y Network (Red) establecida en MPLS/IPv4, MPLS/IPv6 o MPLS/None (MPLS/Ninguno) (consulte Stream Configuration (Configuración de flujo) en la página 207) para permitir el acceso a la configuración de MPLS para el flujo seleccionado.

Press TEST (PRUEBA), Stream Gen (Generación de flujo) y MPLS.

Stream No.	MPLS Configuration Stacked Headers 1	T		
	Label 1 16 2	COS / EXP 0 (000 - Low)	TTL 128	
Overview Stream Conf	ig. PBB-TE MAC	MPLS IP/UC	P/TCP Payload	

N° de flujo

Seleccione el número de flujo de la lista.

MPLS Configuration (Configuración de MPLS)

- Stacked Headers (Encabezados apilados): permite la activación de hasta dos encabezados MPLS. La configuración por defecto es 1.
- ➤ Label (Etiqueta): permite seleccionar etiquetas MPLS TX (de 0 a 1048575). El valor por defecto de la etiqueta es 16.
- COS/EXP (clase de servicio/experimental): seleccione el tipo de servicio. El valor por defecto es 0 (0000 - Low) [0 (0000 - baja)]

0 (000 - Low) [0 (000 - baja)] 1 (001 - Low) [1 (001 - baja)] 2 (010 - Low) [2 (010 - baja)] 3 (011 - Low) [3 (011 - baja)] 4 (100 - High) [6 (110 - alta)] 5 (101 - High) [6 (110 - alta)] 6 (110 - High) [6 (110 - alta)] 7 (111 - High) [7 (111 - alta)]

➤ TTL (Tiempo de vida): seleccione el valor de TTL. Las opciones van del 0 al 255. La configuración por defecto es 128.

IP/UDP/TCP

Nota: Disponible sólo cuando la configuración de flujo de red está establecida como IPv4, MPLS/IPv4, IPv6 o MPLS/IPv6.

Press TEST (PRUEBA), Stream Gen (Generación de flujo) y IP/UDP/TCP.

Subream No. Source PAdvess Subnet Mask 10.10.0 Subnet Mask 255.255.0.0 PMultiplicator UDP Port Range P49184	Destination Ping ID.10.0.0 Ping MAC.Address Status	<u>t</u>
Overview Stream Config.	No. Source Ink-Local IPv6 Address - Global IPv6 Address - Default Gateway Address - FE80:0000:0000:0000:0000:0000:0000 - IP Multiplicator UDP Port Yes - Yes -	Destination Address Address Feso-0000:0000:0000:0000:0000 FEso-0000:0000:0000:0000:0000:0000 Ping Mac Address Status raffic Class (TOS/DS) Traffic Class (TOS/DS) Advanced TOS/DS HOP Limit (TTL) Flow Label UDP Port 128 0 7

N° de flujo

Para la prueba **Frame Analyzer** (Analizador de tramas), seleccione el número de flujo de la lista. Sólo el número de flujo 1 está disponible para las pruebas **RFC 2544** y **BERT**.

Source (Origen)

Para IPv4:

- ➤ IP Address (Dirección IP): introduzca la dirección IP del flujo seleccionado La configuración por defecto es 10.10.x.x, donde x e y son respectivamente los dos bytes de menor importancia de la dirección MAC por defecto para el puerto.
- Subset Mask (Máscara de subred): introduzca la máscara de subred del flujo seleccionado. La configuración por defecto es 255.255.0.0.

Para IPv6:

Muestra Link-Local IPv6 Address (dirección IPv6 local de enlace), Global IPv6 Address (dirección IPv6 global) y Default Gateway Address (dirección de la puerta de enlace por defecto).

El botón **IPv6 Config** (Configuración de IPv6) permite configurar las direcciones IPv6. Consulte *IPv6 Addresses Configuration* (*Configuración de direcciones IPv6*) para obtener más información.

Para IPv4 y IPv6:

➤ IP Multiplicator (Multiplicador IP): permite cambiar el LSB (bit de menor significado) nº 7 de la dirección IP de origen según esté especificado en el intervalo. Esta configuración está desactivada por defecto.

Range (Intervalo): seleccione el intervalo del multiplicador IP Las opciones son **1-128** y **0-127**. La configuración por defecto es **1-128**.

➤ UDP/TCP - Port: (UDP/TCP - puerto): permite seleccionar el número de puerto de origen. Las opciones van del 0 al 65535. La configuración por defecto es 49184 (Número de puerto público).

Destination (Destino)

- (Dirección IP): introduzca la dirección IP de destino del flujo seleccionado.
- Botón Ping: Press Ping para iniciar automáticamente la utilidad de ping rápida para la dirección IP de destino del flujo mediante los parámetros de ping de Setup (Configuración) en la página 462. Consulte Ping en la página 593 para obtener más información.
- MAC Address Status (Estado de la dirección MAC): indica el estado de resolución de la dirección MAC cuando la casilla de verificación Resolve MAC Address (Resolver dirección MAC) está seleccionada. Consulte la página 223 para ver la lista de estados posibles.
- Resolve MAC Address (Resolver dirección MAC): si se activa, enviará una solicitud a la red para recuperar la dirección MAC correspondiente a la dirección IP de destino seleccionada. Esta configuración está desactivada por defecto.
- ➤ UDP/TCP Port (Puerto UDP/TCP): permite seleccionar el número de puerto de destino. Las opciones van del 0 al 65535. La configuración por defecto es 7 (echo) [7 (eco)].
- IP TOS/DS para IPv4 o Traffic Class (Clase de tráfico) (TOS/DS) para IPv6

Introduzca el valor definido por el usuario. El cambio del valor de IP TOS/DS afectará a la configuración de Advanced TOS/DS (TOS/DS avanzada) y viceversa. Las opciones van de **00** a **FF**. La configuración por defecto es **00**.

Binary (binario): muestra el valor de IP TOS/DS definido por el usuario con formato binario cuando está activado.

Botón Advanced TOS/DS (TOS/DS avanzada): permite definir la configuración de TOS/DS. El cambio de la configuración de Advanced TOS/DS (TOS/DS avanzada) afectará al valor de IP TOS/DS y viceversa. Consulte Advanced TOS/DS (TOS/DS avanzado) en la página 590 para obtener más información.

- TTL (tiempo de vida) para IPv4
 HOP Limit (TTL) [Límite HOP (TTL)] para IPv6
 Seleccione el valor TTL. Las opciones van del 0 al 255. La configuración por defecto es 128.
- Flow Label (Etiqueta de flujo) (sólo IPv6): introduzca el número de Flow Label (Etiqueta de flujo) que se utilizará para identificar una serie de paquetes relacionados de un origen a un destino. Las opciones van del 0 al 1048575. La configuración por defecto es 0.
- Default Gateway (Puerta de enlace por defecto) (sólo IPv4): introduzca la dirección IP de la puerta de enlace por defecto. Enable Default Gateway (Permitir puerta de enlace por defecto) debe estar activado para habilitar el campo de la dirección IP de la puerta de enlace por defecto. La configuración por defecto es 0.0.0.0.

Enable (permitir): permite activar **Default Gateway** (Puerta de enlace por defecto).

Payload (Carga útil)

Nota: Para FTB-8510B y FTB-8510G, no está disponible con la prueba BERT. Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535, sólo está disponible con la prueba del analizador de tramas. No está disponible cuando la casilla de verificación Stream Tag (Etiqueta de flujo) (Analizador de tramas) está seleccionada; en este caso, se utiliza una PRBS como carga útil.

Press (Carga útil)TEST (PRUEBA), Stream Gen (Generación de flujo) y Payload (Carga útil).

N° de flujo

Para la prueba **Frame Analyzer** (Analizador de tramas), seleccione el número de flujo de la lista. Sólo el número de flujo 1 está disponible para las pruebas **RFC 2544** y **BERT**.

Pattern (Patrón)

- Pattern (patrón): permite seleccionar el patrón de prueba que se va a repetir dentro de toda la carga útil de datos. Las opciones van de 00 a FF. La configuración por defecto es CC.
- Binary (binario): el patrón se convertirá de forma automática a sistema binario o hexadecimal cuando se active o desactive Binary (binario).

Frame Configuration (Configuración de trama) (canal de fibra)

Nota: la configuración de trama sólo está disponible con Framed Layer 1 (Capa de trama 1) o Framed Layer 2 (Capa de trama 2) de canal de fibra.

Press (Configuración de trama)TEST (PRUEBA), Stream Gen (Generación de flujo) y Frame Config (Configuración de trama).

Frame Delimiters	FC2 Headers
SOF SOFn3 EOF EOFt	R_CTL 01 D_ID FF FF FE
Frame Parameter	CS_CTL 00 S_ID 00 00 00
Size 2148	TYPE FF F_CTL 38 00 00
Rate 100.0 %	SEQ_ID 01 DF_CTL 00 SEQ_CNT 00 01
	0X_ID 00 01 RX_ID FF FF
	PARAM 00 00 00 00 00 Default
Frame Config.	

Frame Delimiters (Delimitadores de trama)

SOF: SOF hace referencia al delimitador de inicio de trama. La configuración por defecto es SOFn3 para Framed Layer 1 (Capa de trama 1) y es la única opción para Framed Layer 2 (Capa de trama 2). Las opciones para Framed Layer 1 (Capa de trama 1) son:

SoF	Description (Descripción)	SoF	Description (Descripción)
SOFc1	SOF - Clase Connect 1	SOFi3	SOF - Clase Initiate 3
SOFi1	SOF - Clase Initiate 1	SOFn3	SOF - Clase Normal 3
SOFn1	SOF - Clase Normal 1	SOFc4	SOF - Clase Activate 4
SOFi2	SOF - Clase Initiate 2	SOFi4	SOF - Clase Initiate 4
SOFn2	SOF - Clase Normal 2	SOFn4	SOF - Clase Normal 4
		SOFf	SOF - Fabric

Frame Configuration (Configuración de trama) (canal de fibra)

➤ EOF: EOF representa el delimitador de fin de trama. La configuración por defecto es EOFn3 para Framed Layer 1 (Capa de trama 1) y es la única opción para Framed Layer 2 (Capa de trama 2). Las opciones para Framed Layer 1 (Capa de trama 1) son:

EOF	Description (Descripción)
EOFt	EOF - Terminate
EOFdt	EOF - Clase Disconnect-Terminate 1 o EOF - Clase Deactivate-Terminate 4
EOFa	EOF - Abort
EOFn	EOF - Normal
EOFni	EOF - Normal-Invalid
EOFdti	EOF - Clase Disconnect-Terminate-Invalid 1 o EOF - Clase Disconnect-Deactivate-Invalid 4
EOFrt	EOF - Clase Remove-Terminate 4
EOFrti	EOF - Clase Remove-Terminate-Invalid 4

Parámetro de trama

Size (Tamaño): permite seleccionar el tamaño de trama. La configuración por defecto es 2148 bytes. El tamaño de trama se puede configurar en intervalos de 4 bytes. Las opciones son:

	Tamaño de trama en bytes		
	Desde		Hasta
Entramado	Etiqueta de latencia no activada	Etiqueta de latencia activada	
Framed Layer 1 (Capa de trama 2)	12	36	2148
Framed Layer 2 (Capa de trama 2)	40	64	2148

- Rate (valor): permite seleccionar la velocidad de la trama. Las opciones van de 0.1 a 100% cuando la unidad de velocidad es el porcentaje. La configuración por defecto es 100%.
- Unit (unidad): permite seleccionar la unidad de velocidad de transmisión. Las opciones son %, MBps y Mbps. La configuración por defecto es %.

Frame Configuration (Configuración de trama) (canal de fibra)

Encabezado FC

Nota: FC Header (Encabezado FC) sólo está disponible con Framed Layer 2 (Capa de trama 2) de canal de fibra.

En la siguiente tabla se presenta la estructura del encabezado de trama de **Framed Layer 2** (Capa de trama 2).

Palabra	Bits			
raidora	31 24	23 16	15 8	7 0
0	R_CTL		D_ID	
1	CS_CTL		S_ID	
2	TYPE	F_CTL		
3	SEQ_ID	DF_CTL	SEQ	CNT
4	OX_ID		RX_ID	
5	PARAM			

 R_CTL: el control de enrutamiento está establecido en 01 hexadecimal.

01 Tramas de datos de _____ Datos solicitados D_ID: el identificador de destino especifica la ubicación (dirección) donde un puerto N puede encontrar servicios comunes. La configuración por defecto es FFFFFE hexadecimal. Los valores posibles son:

D_ID	Description (Descripción)
000000 a FFFC00	Identificador de puerto N
FFFC01 a FFFCFE	Reservados para los controladores de dominio
FFFFF0 a FFFFF4	Reservado
FFFF5	Servidor de multidifusión
FFFF6	Servidor de sincronización del reloj
FFFFF7	Servidor de distribución de claves de seguridad
FFFFF8	Servidor de alias
FFFFF9	Calidad del facilitador de servicios - Clase 4 (QoSF)
FFFFA	Servidor de gestión
FFFFB	Servidor de tiempo
FFFFC	Servidor de directorios
FFFFD	Controlador de Fabric
FFFFE	Puerto F de Fabric
FFFFF	ID de alias de difusión

Nota: la dirección del identificador de destino puede verse afectada por el proceso de inicio de sesión.

Fichas de generación de flujo

Frame Configuration (Configuración de trama) (canal de fibra)

 CS_CTL: el campo de control específico de clase contiene información de gestión para la clase de servicio identificada por el SOF. La configuración por defecto es 00 hexadecimal que corresponde a un DSCP sin preferencia y no específico. Los valores posibles para la clase 3 de servicio son:

Bit	Description (Descripción)
31	PREF (preferencia) 0 = La trama se envía sin preferencia 1 = La trama se puede enviar con preferencia
30	Reservado para la función de preferencia adicional
29-24	DSCP (punto de código de servicios diferenciados)

- S_ID: el identificador de origen especifica la dirección del puerto de origen. Las opciones se indican en la tabla D_ID. Consulte D_ID para obtener más información. La configuración por defecto es 000000 hexadecimal.
- **Nota:** la dirección del identificador de origen puede verse afectada por el proceso de inicio de sesión.
 - ➤ TYPE: el tipo de estructura de datos indica el tipo de datos incluidos en el campo de datos. El valor por defecto es FF que corresponde a un proveedor específico.

➤ F_CTL: el control de tramas contiene información de control relacionada con el contenido de la trama. La configuración por defecto es 380000 hexadecimal. Los valores posibles son:

Bit	Campo	Description (Descripción)
23	Exchange Context	0 = Remitente de intercambio1 = Contestador de intercambio
22	Sequence Context	0 = Iniciador de secuencia 1 = Destinatario de secuencia
21	First Sequence	0 = Secuencia distinta a la primera secuencia de intercambio 1 = Primera secuencia de intercambio
20	Last_Sequence	0 = Secuencia distinta a la última secuencia de intercambio 1 = Última secuencia de intercambio
19	End_Sequence	0 = Trama de datos distinta a la última de la secuencia 1 = Última trama de la secuencia
18	End_Connection (Class 1 or 6) or Deactivate Class 4 circuit	 0 = Conexión activa 1 = Fin de la conexión pendiente (clase 1 o 6) o fin del circuito activo de clase 4
17	CS_CTL/Priority Enable	0 = Palabra 1, bits 31-24 = CS_CTL 1 = Palabra 1, bits 31-24 = Prioridad
16	Sequence Initiative	 0 = Mantener iniciativa de secuencia 1 = Transferencia de iniciativa de secuencia
15	X_ID reassigned	Obsoleto
14	Invalidate X_ID	Obsoleto
13 12	ACK_Form	00 = Sin asistencia proporcionada 01 = Ack_1 requerido 10 = Reservado 11 = Ack_0 requerido
11	Data Compression	Obsoleto
10	Data Encryption	Obsoleto

Fichas de generación de flujo

Frame Configuration (Configuración de trama) (canal de fibra)

Bit	Campo	Description (Descripción)
9	Retransmitted Sequence	 0 = Transmisión de la secuencia original 1 = Retransmisión de la secuencia
8	Unidirectional Transmit (Class 1) or Remove Connection (Class 4 only)	 0 = Transmisión bidireccional (clase 1), o bien retención o desactivación del circuito (clase 4) 1 = Transmisión unidireccional (clase 1) o eliminación de circuito (clase 4)
7 6	Continue Sequence Condition	Last Data frame - Sequence initiator 00 = Sin información 01 = Secuencia para seguimiento inmediato 10 = Secuencia para seguimiento temprano 11 = Secuencia para seguimiento retardado
5 4	Abort Sequence Condition	ACK frame - Sequence Recipient 00 = Continuar secuencia 01 = Cancelar secuencia, realizar ABTS 10 = Detener secuencia 11 = Retransmisión inmediata de la secuencia solicitada
		Data frame (1st of Exchange) - Sequence initiator 00 = Cancelar, descartar varias secuencias 01 = Cancelar, descartar una sola secuencia 10 = Política de proceso con búferes infinitos 11 = Descartar varias secuencias con retransmisión inmediata
3	Relative offset present	 0 = Campo de parámetro definido para algunas tramas 1 = Campo de parámetro = desviación relativa
2	Exchange reassembly	Reservado para reagrupación de intercambio
1 0	Fill Data Bytes	Campo de fin de datos - bytes de llenado 00 = 0 bytes de llenado 01 = 1 byte de llenado (último byte del campo de datos) 10 = 2 bytes de llenado (últimos 2 bytes del campo de datos) 11 = 3 bytes de llenado (últimos 3 bytes del campo de datos)
- SEQ_ID: el identificador de secuencia especifica la secuencia a la que pertenece la trama. Las opciones van de 00 a FF. La configuración por defecto es 01 hexadecimal.
- DF_CTL: el control del campo de datos indica si se incluye algún encabezado opcional en el comienzo del campo de datos y cuál es el formato, si corresponde. La configuración por defecto es 00 hexadecimal (sin encabezados opcionales presentes).

Nota: no se admiten encabezados opcionales.

- SEQ_CNT: el recuento de secuencia indica el orden secuencial de la trama en la secuencia. Los valores posibles van de 0 (0000 hexadecimal) a 65535 (FFFF hexadecimal). La configuración por defecto es 0001 (identificador de secuencia único).
- ➤ OX_ID: el identificador del remitente es el ID de intercambio asignado por el remitente del intercambio. Los valores posibles van de 0 (0000 hexadecimal) a 65535 (FFFF hexadecimal). La configuración por defecto es 0001 hexadecimal (sólo una trama que contar en cada secuencia).
- RX_ID: el identificador del contestador es el ID de intercambio asignado por el contestador del intercambio. La configuración por defecto es FFFF hexadecimal (no asignado).
- PARAM: El parámetro (PARAM) en las tramas de datos es la desviación relativa, que es el desplazamiento relativo del primer byte del campo de datos (carga útil) desde una dirección base especificada por el protocolo de capa superior (ULP) Los valores posibles van de 00000000 a FFFFFFFF hexadecimales. La configuración por defecto es 00000000 hexadecimal.

Botón **Reset To Default** (Restablecer a valores por defecto): permite revertir los campos **FC2 Headers** (Encabezados FC2) a sus valores por defecto.

10 Fichas de analizador de flujos

Nota: el analizador de flujos sólo está disponible con la prueba Frame Analyzer (Analizador de tramas). Las fichas del analizador de flujos no están disponibles cuando **Through Mode** (Modo directo) (FTB-8510B) está seleccionado.

Overview (Resumen)

Sólo para la prueba **Frame Analyzer** (Analizador de tramas), la ficha **Overview** (Resumen) proporciona estadísticas del análisis de flujo y el caudal de tráfico para todos los flujos.

Press **(Resumen)TEST** (PRUEBA), **Stream Analyzer** (Analizador de flujo) y **Overview** (Resumen).

Stream	Through. Cur. (Mbps)	Frame Loss	Jitter Cur. (ms)	Latency Cur. (ms)	Out-Of-Sequence	- Total Through.
1	100.0	0	< 0.015	0.027	0	100.0
2	-					100.0
3						
4	-					
5						
6						
7	-					
8						
9						
10						
Overview	Stream					

- > Stream (Flujo): indica el número de identificación del flujo.
- Throughput Cur. (Mbps) (Caudal de tráfico actual en Mbps) indica el caudal de tráfico actual medido en Mbps para cada flujo de todas las tramas válidas (etiqueta de caudal de tráfico válida sin errores FCS) recibido en el último segundo.
- Frame Loss (Pérdida de tramas) indica el recuento total de las tramas que se han perdido.
- Jitter Cur. (ms) (Fluctuación actual en ms) indica la variación de retardo actual medida para cada flujo de todas las tramas válidas (tramas de secuencia, etiqueta de fluctuación válida sin errores FCS) recibida en el último segundo.

Overview (Resumen)

- Latency Cur. (ms) (Latencia actual en ms) indica la latencia de ida y vuelta (retardo) actual medida para cada flujo de todas las tramas válidas (etiqueta de latencia válida, valor esperado del identificador del remitente sin errores FCS) recibida en el último segundo.
- Out-Of-Sequence (Fuera de secuencia) (OOS) indica el recuento total de paquetes válidos para cada flujo cuyo número de secuencia menor que el paquete recibido con anterioridad. En el informe, se indican los segundos, el recuento, la velocidad y el porcentaje.
- ➤ Total Throughput (Caudal de tráfico total) indica el total de caudal de tráfico medido en Mbps de todas las tramas (etiqueta de caudal de tráfico válida sin errores FCS).

Stream (Flujo)

Press (Flujo)TEST (PRUEBA), Stream Analyzer (Analizador de flujo) y Stream (Flujo).

Nota: Disponible sólo con la prueba del Frame Analyzer (Analizador de tramas).

Stream No.	RX Frame Count 3234106	Throughput Maximum Minimum Current Average Unit
Stream Errors Analysis		100.000 0.000 1.249 49.201 % <u>•</u>
H C G Out-Of-Sequence	H C Frame Loss	Round Trip Latency Maximum (ms) Minimum (ms) Current (ms) Average (ms)
Seconds Count	Seconds Count	0.028 0.027 0.027 0.028
Rate Percentage 0.00E00 0.000	Rate Percentage	Maximum (ms) Minimum (ms) Current (ms) Average (ms) Estimate (ms) < 0.015
Overview Stream		-)

N° de flujo

Seleccione el número de flujo de la lista.

RX Frame Count (Recuento de tramas de RX):

Indica el número de tramas recibidas que coinciden con el ID de flujo seleccionado.

Stream Errors Analysis (Análisis de errores de flujo)

- Se declara Out-Of-Sequence (fuera de secuencia) (OOS) cuando el número de secuencia de un paquete es menor que el paquete recibido con anterioridad.
- Se declara Frame Loss (Pérdida de tramas) cuando se detectan tramas que faltan.

Throughput (caudal de tráfico)

El caudal de tráfico se mide para cada flujo en todas las tramas válidas (etiqueta de caudal de tráfico válida sin errores FCS). En el informe, se indican los resultados de caudal de tráfico máximo, mínimo, actual y medio.

Las opciones para **Unit** (Unidad) son % y **Mbps**. La configuración por defecto es %.

Round Trip Latency (Latencia de ida y vuelta)

La latencia de ida y vuelta (retardo) se mide para cada flujo en todas las tramas válidas (etiqueta de latencia válida, valor esperado del identificador del remitente, sin errores FCS). En el informe, se indican los valores de retardo máximo, mínimo, actual y medio.

- **Nota:** Las estadísticas de **Round Trip Latency** (Latencia de ida y vuelta) sólo están disponibles en la topología de prueba de bucle invertido.
- Nota: Se descartarán las mediciones de retardo inferiores a 15 μs, no se usarán para el proceso de muestreo y se mostrará "< 0,015". Para el valor de *Current* (Actual), se mostrará *Not measurable* (No medible) si no se ha medido ningún retardo en el último segundo.

Nota: Para el valor **Current** (Actual), se muestra **0** cuando no se ha medido ninguna velocidad de RX en el último segundo.

Fluctuación

La fluctuación se mide para cada flujo en todas las tramas válidas (tramas de secuencia, etiqueta de fluctuación válida, sin errores FCS). En el informe, se indican los valores de fluctuación estimada y de retardo máximo, mínimo, actual y medio.

Nota: Se descartarán las mediciones de variaciones de retardo inferiores a 15 μs, no se usarán para el proceso de muestreo y se mostrará "< 0,015" como el valor mínimo. Para el valor de Current (Actual), se mostrará
 Not measurable (No medible) si no se ha medido ningún retardo en el último segundo.

11 Fichas de puerto

Las fichas de puerto permiten configurar distintos parámetros de puerto y ver el análisis de puerto.

Nota: las fichas disponibles listadas dependen de la ruta de prueba activada.

Ficha	Dis	Página	
Ticita	Ethernet	Canal de fibra ^a	ragina
Electrical TX (TX eléctrica) ^a	Х		248
Electrical RX (RX eléctrica) ^a	X		250
Optical TX (TX óptica)	X	Х	252
Optical RX (RX óptica)	X	Х	255
Interface Setup (Configuración de la interfaz) (Ethernet)	X		258
Interface Setup (Configuración de la interfaz) (canal de fibra) ^a		Х	263
Network (Red)	Х		268
Advanced Auto-Neg. TX (TX de neg. auto. avanzada) ^a	X		273
Advanced Auto-Neg. RX (RX de neg. auto. avanzada) ^a	X		279

a. No disponible en el FTB-8510G.

Electrical TX (TX eléctrica)

Press **(TX eléctrica)TEST** (PRUEBA), **Port** (Puerto) y **Electrical TX** (TX eléctrica).

Configuration Ethernet port crossover	Frequency Offset (ppm) 0 On/Off O Actual Frequency (bps) - Nominal Frequency (bps) -
TX RX Interface	Network Auto-Neg. TX Auto-Neg. RX

Configuration (configuración)

Ethernet port crossover (puerto Ethernet cruzado): permite seleccionar el tipo de cable empleado.

- > Si está desactivado, el cable empleado debe ser no cruzado.
- > Si está activado, el cable empleado debe ser cruzado.

Frequency (frecuencia)

- **Nota:** la generación de desviación de frecuencia sólo está disponible en FTB-8510B. Sin embargo, no está disponible para la prueba 10Base-T y cuando **Through Mode** (Modo directo) está seleccionado.
 - Frequency Offset (ppm) (desviación de frecuencia en ppm): permite introducir un desfase de frecuencia positivo o negativo en ppm. Las opciones se enumeran en la siguiente tabla. La configuración por defecto es 0. El valor de desviación de frecuencia se puede cambiar sobre la marcha aunque esté activada (On).
 - Actual Frequency (bps) (frecuencia real en bps): indica la frecuencia (frecuencia real + desviación de frecuencia) que se va a emplear para la transmisión.
 - Nominal Frequency (bps) (frecuencia nominal en bps): indica la frecuencia nominal de la señal. Las frecuencias nominales se enumeran en la siguiente tabla.
 - Botón On/Off (activar/desactivar): permite activar la generación de desfase de frecuencia. Este elemento está desactivado por defecto (Off).

Interfaz	Desviación de frecuencia ^a	Frecuencia nominal	
100Base-T	± 120 ppm	125000000 bps	
1000Base-T	± 120 ppm	1250000000 bps	

 a. El intervalo de desviación de frecuencia está garantizado para una señal fuente a 0 ppm. En caso de que una señal fuente ya tenga un desfase, la señal de salida puede presentar un desfase mayor que el intervalo especificado.

Electrical RX (RX eléctrica)

Press **(RX eléctrica)TEST** (PRUEBA), **Port** (Puerto) y **Electrical RX** (RX eléctrica).

Alarn Analysis H C Seconds	Prequency Analysis Prequency (Dps) - Prequency Offset Offset Unit - Max. Negative Offset - Max. Positive Offset -
TX RX Interface Netwo	rk Auto-Neg. TX Auto-Neg. RX

Alarm Analysis (análisis de alarma)

Frequency (frecuencia): la alarma de frecuencia indica si la señal recibida cumple las especificaciones del valor estándar (verde) o no (rojo).

Interfaz	Especificación de valor estándar
100Base-T	Para FTB-8510B: 125000000 bps ±12500 bps (±100 ppm)
	Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535: 125000000 bps ±15000 bps (±120 ppm)
1000Base-T	Para FTB-8510B: 1250000000 bps ±125000 bps (±100 ppm)
	Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535: 1250000000 bps ±150000 bps (±120 ppm)

Frequency Analysis (análisis de frecuencia)

Nota: el análisis de frecuencia no está disponible para la prueba 10Base-T.

- Frequency (bps) (Frecuencia en bps): indica la frecuencia de la señal de entrada.
- Frequency Offset (desviación de frecuencia): indica la desviación entre la especificación de valor estándar y el valor de la señal de entrada.
- Max. Positive Offset (desviación positiva máxima): indica la desviación entre la especificación de valor estándar y el valor máximo registrado de la señal recibida.
- Max. Negative Offset (Desviación negativa máxima): indica la desviación entre la especificación de valor estándar y el valor mínimo registrado de la señal recibida.

Offset Unit (unidad de desviación): permite seleccionar la unidad de desviación de frecuencia. Las opciones son **bps** y **ppm**. La configuración por defecto es **ppm**.

Optical TX (TX óptica)

Press (TX óptica)TEST (PRUEBA), Port (Puerto) y Optical TX (TX óptica).

Signal Analysis Output Presence Wavelength (am)	Alarm Generation Type LOS On/Off O
[1310	Frequency Offset (ppm) 0 On/Off Actual Frequency (bps)
TX RX Interf	Nominal Frequency (bps) 'ace Network Auto-Neg. TX

Signal Analysis (análisis de señal)

- Output Presence (presencia de salida): indica la presencia de una señal en el puerto de salida (verde) o no (gris). El LED de presencia de salida está gris cuando no hay ningún SFP/XFP.
- Wavelength (nm) (longitud de onda en nm): indica las longitudes de onda detectadas SFP/XFP. Los valores posibles son 850, 1310, 1550 nm o unknown (desconocido) si falta SFP/XFP o no se reconoce.

Alarm Generation (generación de alarmas)

Nota: en la prueba RFC 2544 no está disponible la generación de alarmas.

► Tipo

LOS (pérdida de señal): desactiva la señal de láser del puerto de salida.

 Botón On/Off (activar/desactivar): permite activar la generación de alarma. Este elemento está desactivado por defecto (Off).

Frequency (frecuencia)

- **Nota:** La desviación de frecuencia no está disponible cuando está seleccionado **Through Mode** (Modo directo) (sólo FTB-8510B).
 - ➤ Frequency Offset (ppm) (desviación de frecuencia en ppm): disponible sólo con las interfaces FC 1x/2x/4x/10x y 10 Gig-E. permite introducir un desfase de frecuencia positivo o negativo en ppm. La configuración por defecto es 0.
 - ➤ Actual Frequency (bps) (frecuencia real en bps): disponible sólo con las interfaces FC 1x/2x/4x/10x y 10 Gig-E. indica la frecuencia (frecuencia real + desfase de frecuencia) empleada para la transmisión.
 - Nominal Frequency (bps) (frecuencia nominal en bps): indica la frecuencia nominal de la señal.

Fichas de puerto

Optical TX (TX óptica)

 Botón On/Off (activar/desactivar): permite activar la generación de desfase de frecuencia. Este elemento está desactivado por defecto (Off).

Interfaz	Desviación de frecuencia ^a	Frecuencia nominal
100 Mbps	± 120 ppm ^b	125000000 bps
1000 Mbps	± 120 ppm ^b	125000000 bps
10 Gig-E LAN	± 120 ppm (FTB-8510G) ± 50 ppm (FTB-8120NGE/FTB-8130NGE)	10312500000 bps
10 Gig-E WAN	± 120 ppm (FTB-8510G) ± 50 ppm (FTB-8120NGE/FTB-8130NGE)	9953280000 bps
FC 1x	± 50 ppm	1062500000 bps
FC 2x	± 50 ppm	2125000000 bps
FC 4x	± 50 ppm	4250000000 bps
FC 10x	± 50 ppm	10518750000 bps

 El intervalo de desviación de frecuencia está garantizado para una señal fuente con un desfase de 0 ppm. En caso de que una señal fuente ya tenga un desfase, la señal de salida puede presentar un desfase mayor que el intervalo especificado.

b. No es compatible con FTB-8120NGE/FTB-8130NGE.

Optical RX (RX óptica)

Press (RX óptica)TEST (PRUEBA), Port (Puerto) y Optical RX (RX óptica).

Signal Analysis Power Level (dBm)	Input Presence	Frequency Analysis Frequency (bps)	Offset Unit	
Alarm Analysis H C O LOS Frequency	Seconds 	Max. Negative Offset Max. Positive Offset		
TX RX Interface Network Auto-Neg. TX Auto-Neg. RX				

Signal Analysis (análisis de señal)

- Power Level (dBm) (Nivel de potencia en dBm): indica el nivel de potencia de la señal de entrada en dBm.
- ► Input Presence (presencia de entrada): indica si hay una señal válida en el puerto de entrada (verde) o no (gris).

Alarm Analysis (análisis de alarma)

- **LOS** (pérdida de señal): una **LOS** indica que no hay señal de entrada.
- Frequency (frecuencia): la alarma de frecuencia indica que la señal recibida cumple las especificaciones de velocidad estándar (verde) o no (rojo).

Interfaz	Especificación de valor estándar
100 Mbps	FTB-8510B: 0,125 Gbps ± 12,5 Kbps (±100 ppm) FTB-8120NGE/FTB-8130NGE/FTB-8525/FTB-8525: 0,125 Gbps ± 15 Kbps (±120 ppm)
1000 Mbps	FTB-8510B: 1,25 Gbps ± 125 Kbps (±100 ppm) FTB-8120NGE/FTB-8130NGE/FTB-8525/FTB-8525: 1,25 Gbps ± 150 Kbps (±120 ppm)
10 Gig-E LAN	FTB-8510G: 10,3125 Gbps ± 1031,25 Kbps (±100 ppm)
	FTB-8120NGE/FTB-8130NGE/FTB-8525/FTB-8525: 10,3125 Gbps ± 1392,1875 Kbps (±135 ppm)
10 Gig-E WAN	FTB-8510G: 9,95328 Gbps ± 995,33 Kbps (±100 ppm)
	FTB-8120NGE/FTB-8130NGE/FTB-8525/FTB-8525: 9,95328 Gbps ± 1343,6928 Kbps (±135 ppm)
FC 1x	1,0625 Gbps ± 127,5 Kbps (±120 ppm)
FC 2x	2,125 Gbps ± 255 Kbps (±120 ppm)
FC 4x	4,25 Gbps ± 510 Kbps (±120 ppm)
FC 10x	10,51875 Gbps ± 1262,25 Kbps (±120 ppm)

Frequency Analysis (análisis de frecuencia)

Frequency (bps) (Frecuencia en bps): indica la frecuencia de la señal de entrada en bps.

Frequency Offset (desviación de frecuencia): indica la desviación entre la especificación de valor estándar y el valor de la señal de entrada.

Max. Negative Offset (Desviación negativa máxima): indica la desviación entre la especificación de valor estándar y el valor mínimo registrado de la señal recibida.

Max. Positive Offset (desviación positiva máxima): indica la desviación entre la especificación de valor estándar y el valor máximo registrado de la señal recibida.

Offset Unit (unidad de desviación): permite seleccionar la unidad de desviación de frecuencia. Las opciones son **bps** y **ppm**. La configuración por defecto es **ppm**.

Interface Setup (Configuración de la interfaz) (Ethernet)

Nota: para los casos de prueba de canal de fibra, consulte Interface Setup (Configuración de la interfaz) (canal de fibra) en la página 263.

Press (Configuración del puerto)TEST (PRUEBA), Port1/2 (Puerto 1/2) e Interface (Interfaz).

Configuration		Status
Enable Auto-Negotiation		 Link
Speed	Flow Control	Auto-Negotiation
1Gbps 💌	None	J**
Duplex	Local Clock	
Full	Y	
TX RX Interface	Network Auto-Neg. TX Auto-Neg.	RX

Configuration (configuración)

- **Nota:** Los parámetros de configuración del puerto están desactivados cuando Advanced Auto-Neg. TX (TX de neg. auto. avanzada) en la página 273 está activado. Para FTB-8510B, todosTodos los parámetros de configuración de los puertos 1 y 2 se acoplan al seleccionar **Through Mode** (Modo directo).
 - Enable Auto-Negotiation (Permitir negociación automática) (No está disponible en FTB-8510G)

La negociación automática debe seleccionarse si el puerto remoto conectado está también configurado en Auto-Negotiation (Negociación automática). De lo contrario, debe desactivarse. Al seleccionarse, el Aplicación Ethernet y canal de fibra indicará al puerto remoto qué parámetros debe utilizar. **Auto-Negotiation** (Negociación automática) no está disponible con las interfaces ópticas de 100 Mbps y 10 Gbps. La casilla de verificación Auto-negotiation (Negociación automática) está seleccionada por defecto.

Cuando la casilla de verificación **Enable Auto-Negotiation** (Permitir negociación automática) está desactivada, se puede configurar **Speed** (Velocidad), **Duplex** (Dúplex) y **Flow Control** (Control de flujo) del puerto en valores específicos. Estos valores se aplican de inmediato al puerto.

Cuando la casilla de verificación **Auto-Negotiation** (Permitir negociación automática) está desactivada, se puede configurar **Speed** (Velocidad), **Duplex** (Dúplex) y **Flow Control** (Control de flujo) del puerto. Estos parámetros de configuración no se aplican al puerto inmediatamente; únicamente se usarán cuando se inicie el proceso de negociación y sólo tendrán efecto cuando se lleve a cabo con éxito la negociación automática. Sin embargo, la configuración actual se aplicará inmediatamente al puerto si la casilla de verificación **Auto-Negotiation** (Negociación automática) está desactivada.

Fichas de puerto

Interface Setup (Configuración de la interfaz) (Ethernet)

► Speed (Velocidad)(No está disponible en FTB-8510G)

seleccione la velocidad de la interfaz conectada. Las opciones son:

Para el puerto eléctrico: 10Mbps, 100Mbps y 1Gbps.

Para el puerto óptico: **100Mbps**, y **1Gbps**. **Auto-Negotiation** (Negociación automática) no es compatible cuando se selecciona la velocidad óptica de 100 Mbps.

- **Nota:** sólo se enumeran las velocidades activadas. Consulte Opciones de software en la página 442 para obtener más información.
 - > Duplex (Dúplex) (No está disponible en FTB-8510G)

Seleccione el modo dúplex para el puerto seleccionado. Las opciones son **Full** (Completo) y **Half** (Medio). Sin embargo, **Half** duplex (Medio dúplex) sólo está disponible para las pruebas **RFC 2544**, **Frame Analyzer** (Analizador de tramas) y **TCP Throughput** (Caudal de tráfico TCP) en las interfaces de 10 Mbps y 100 Mbps. ➤ Control de flujo

Disponible sólo con las pruebas **Frame Analyzer (Analizador de tramas) (**FTB-8510B **y** FTB-8510G**), RFC 2544** y **TCP Throughput** (Caudal de tráfico TCP). **Flow control** (Control de flujo) no es compatible [se establece en **None** (Ninguno)] con las pruebas **EtherSAM, BERT** y **Smart Loopback** (Bucle invertido Smart). Cuando **Flow Control** (Control de flujo) está activado, el Aplicación Ethernet y canal de fibra dejará de transmitir durante el periodo de tiempo solicitado especificado por la trama de control de flujo válida recibida. Las opciones son **None** (Ninguno), **Enable RX** (Permitir RX), **Enable TX** (Permitir TX) y **Enable RX and TX** (Permitir RX y TX). Sólo **None** (Ninguno) y **Enable RX** (Permitir RX) están disponibles en FTB-8510G. **Enable TX** (Permitir TX) y **Enable RX** (Permitir RX) sólo están disponibles cuando **Auto-Negotiation** (Negociación automática) está desactivado.

None (Ninguno)

(FTB-8510B/FTB-8120NGE/FTB-8130NGE/FTB-8525/FTB-8535): las tramas de pausa recibidas se ignoran y no se transmite ninguna.

- **Nota:** Flow Control (Control de flujo) se debe configurar como None (Ninguno) con el modo Half Duplex (Medio dúplex).
 - Local Clock (Reloj local) Sólo está disponible para 1 Gbps eléctrico cuando la negociación automática está desactivada. Las opciones son Local, Remote (Remoto) y Automatic (Automático). La configuración predeterminada es Automático.

estado

- ➤ Link (enlace): un LED de enlace verde indica que hay un enlace en el puerto de entrada de la interfaz Ethernet correspondiente. Un LED gris indica que no hay ningún enlace en el puerto de entrada de la interfaz Ethernet correspondiente.
- Auto-Negotiation (Negociación automática): indica el estado de la negociación automática (No está disponible en FTB-8510G).

"--" indica que el proceso de negociación automática no está activado.

Negotiating (negociando): indica que el proceso de negociación automática está en curso y no ha finalizado aún.

Completed (Completada): indica que el proceso de negociación automática ha finalizado correctamente.

Parallel Detect Fail (fallo de detección paralela): indica que el proceso de negociación automática ha fallado en el proceso de detección paralela mientras se negociaba en 10/100Base-T.

Interface Setup (Configuración de la interfaz) (canal de fibra)

Nota: para los casos de prueba de Ethernet, consulte Interface Setup (Configuración de la interfaz) (Ethernet) en la página 258.

Press (Interfaz)TEST (PRUEBA), Port1/2 (Puerto 1/2) e Interface (Interfaz).

Configuration	Buffer To Buf	fer Flow Control		World Wide N	lame	1
PSP (Link Protocol)	🔽 Enable			Source	20-00-00-30-10-00-00-01	
Speed 1X 💌	AvailableBB	_Credit		Destination	00-00-00-00-00-00-00	
Login						
✓ Enable						
Advertised BB_Credit 10		Discovered Topology				
_		Fabric Status	Logg	ed-Out		
	Login	Port Status	Logg	ed-Out		
TX RX Interface					,	

Configuration (configuración)

> PSP (protocolo de enlace)

El protocolo de secuencias de primitivas (PSP) permite la gestión de enlaces cuando la casilla de verificación **PSP (Link Protocol)** [PSP (protocolo de enlace)] está activada y obliga al puerto a establecerse en el modo **Active** (Activo) cuando la casilla de verificación **PSP (Link Protocol)** [PSP (protocolo de enlace)] está desactivada. La casilla de verificación **PSP (Link Protocol)** [PSP (protocolo de enlace)] está seleccionada por defecto.

➤ Velocidad

Selecciona la velocidad de la interfaz FC conectada. Las opciones son **1X**, **2X**, **4X** y **10X**.

Inicio de sesión

La función de inicio de sesión está disponible sólo si se ha establecido correctamente un enlace con **Framed Layer 2** (capa de trama 2).

- Enable (permitir): cuando la casilla de verificación Enable (permitir) está activada, permite generar un proceso de inicio de sesión al hacer clic en el botón Login (inicio de sesión), o bien aceptar una instrucción Login (inicio de sesión) remota.
- Advertised BB_Credit (BB_Credit anunciado): Advertised BB_Credit (BB_Credit anunciado) es el número de búferes de trama de los que dispone un puerto local para recibir tramas de otro puerto. Advertised BB_Credit (BB_Credit anunciado) se anuncia al puerto remoto a través del proceso de inicio de sesión. Las opciones van de 1 a 65535. La configuración por defecto es 10.
- Discovered Topology (Topología descubierta): indica la topología FC descubierta, que puede ser:

Fabric: puertos N interconectados a una red de conmutación Fabric.

Point-to-Point (Punto a punto): enlace entre dos puertos N.

" - " : cuando el inicio de sesión está desactivado.

 Fabric Status (Estado de Fabric): indica el estado de la red de conmutación Fabric. El estado no está disponible cuando la topología es Point-to-Point (Punto a punto). Los estados posibles son:

Logged-in (Sesión iniciada): el proceso de inicio de sesión se ha realizado correctamente.

Failed (Fallo): el proceso de inicio de sesión no ha podido completarse o se ha detectado un error. Sin embargo, el tráfico todavía puede transmitirse.

In Progress (En curso): el proceso de inicio de sesión se está ejecutando (aún no se ha completado).

Logged-out (Sesión cerrada): aún no ha cerrado la sesión en el sistema, el sistema ha recibido una instrucción de cierre de sesión válida del puerto remoto o se ha desactivado la casilla de verificación **Login** (inicio de sesión).

 Port Status (Estado del puerto): indica el estado del proceso de inicio de sesión del puerto. Los estados posibles son:

Logged-in (Sesión iniciada): el proceso de inicio de sesión se ha realizado correctamente.

Failed (Fallo): el proceso de inicio de sesión no ha podido completarse o se ha detectado un error. Sin embargo, el tráfico todavía puede transmitirse.

In Progress (En curso): el proceso de inicio de sesión se está ejecutando (aún no se ha completado).

Logged-out (Sesión cerrada): aún no ha cerrado la sesión en el sistema, el sistema ha recibido una instrucción de cierre de sesión válida del puerto remoto, se ha desactivado la casilla de verificación **Login** (inicio de sesión), o bien **Fabric Status** (estado de Fabric) es **Failed** (fracaso), **In Progress** (en curso) o **Logged Out** (sesión cerrada).

Fichas de puerto

Interface Setup (Configuración de la interfaz) (canal de fibra)

Botón Login (Inicio de sesión): permite iniciar el proceso de inicio de sesión con el valor de Advertised BB_Credit (BB_Credit anunciado) seleccionado cuando la casilla de verificación Enable (Permitir) de Login (Inicio de sesión) está activada. Si cambia el valor de Advertised BB_Credit (BB_Credit anunciado), es necesario enviar manualmente un inicio de sesión mediante el botón Login (Inicio de sesión). La función de inicio de sesión sólo está disponible con Framed Layer 2 (Capa de trama 2) cuando se ha establecido un enlace correctamente.

Control de flujo búfer a búfer

- Enable (permitir): la casilla de verificación Enable (Permitir) se selecciona obligatoriamente al seleccionar Login (Inicio de sesión). Serie FTB-8500 y FTB-8120NGE/8130NGE enviará automáticamente un mensaje de recepción lista (R_RDY) tras recibir una trama al activar la casilla de verificación Enable (Permitir).
- **Nota:** debido a que los mensajes R_RDY se insertan entre las tramas y tienen mayor prioridad, en algunos casos pueden afectar al caudal de tráfico de TX.
 - Available BB_Credit (BB_Credit disponible) es el número de búferes de trama de los que dispone el puerto remoto para recibir tramas del puerto local. Available BB_Credit (BB_Credit disponible) no se puede editar cuando está seleccionada alguna de las casillas de verificación Enable (Permitir) o Enable login (Permitir inicio de sesión). Las opciones van de 1 a 65535. La configuración por defecto es 10.
- **Nota:** después del proceso de inicio de sesión, en Available BB_Credit (BB_Credit disponible) se muestra el valor recibido de la interfaz remota mediante el proceso de inicio de sesión.

Nombre WWN

Sólo está disponible cuando Enable (Permitir) de Login (Inicio de sesión) está activado.

- **Source** (Origen): introduzca la dirección de origen del nombre WWN.
- Destination (Destino): aparecerá el nombre WWN de destino y se mostrará en gris después del proceso de inicio de sesión cuando se ha seleccionado Point-to-Point (Punto a punto). Introduzca la dirección de destino del nombre WWN.

Network (Red)

Nota: Network sólo está disponible con Framed Layer 2 (Capa de trama 2) y cuando Through Mode (Modo directo) (FTB-8510B) no está seleccionado.

Press (Configuración de red)TEST (PRUEBA), Port (Puerto) y Network (Red).

Source MAC Configuration	- Source IP Configuration	Coupled to stream	
00:00:00:00:00	Automatic IP Address	MPLS Source IP Configuration Image: Complex to stream Label MAC Address Image: Complex to stream	
VLAN Config	10.10.0.0	TX 16 00:00:00:00:00 Label	
#1 #2 #3	Subnet Mask	RX 16 Config Link-Local IPv6 Address TX 16	
Frame Format	255.255.0.0 Default Gateway	#1 #2 #3 Global IPv6 Address RX 16	
Format 802.3 SNAP	Enable	Frame Format	
001 RFC1042		Format 802.3 SNAP	
TX RX Interface	Network Auto-Neg. TX	Auto-Neg. RX 001 RFC1042	
		TX RX Interface Network Auto-Neg. TX Auto-Neg. RX	
	Source MAC Configuration	Source IP Configuration Coupled to stream	
	00:00:00:00:00	IPv6 Config. PBB-TE B-MAC Source Address 00:00:00:00:00:00	
	VLAN · Config	Link-Local IPv6 Address B-MAC Destination Address D0:00:00:00:00:00:00	
	#1 #2 #3	Global IPv6 Address I-TAG IB-VLAN	
	Format 802.3 SNAP	Default Gateway Address Priority 0 (000 - Low) Priority	
	OUI RFC1042	DropEligible DropEligible	
	TX RX Interface	Network Auto-Neg. TX Auto-Neg. RX	

Coupled to stream (Acoplado a flujo)

En la prueba **BERT** y **Frame Analyzer** (Analizador de tramas), los parámetros VLAN, IP y PBB-TE del puerto se acoplan al flujo [**Stream 1** (Flujo 1) para **Frame Analyzer** (Analizador de tramas)] cuando la casilla de verificación **Coupled to stream** (Acoplado a flujo) está activada. Por lo tanto, sólo pueden configurarse los parámetros **MAC Address** (Dirección MAC) de origen y **MPLS**. La casilla de verificación **Coupled to stream** (Acoplado a flujo) está seleccionada por defecto. La casilla de verificación **Coupled to stream** (Acoplada a flujo) no está disponible con las pruebas **RFC 2544**, **Smart Loopback** (Bucle invertido Smart) y **TCP Throughput** (Caudal de tráfico TCP).

Configuración MAC fuente

MAC Address (Dirección MAC): una dirección de control de acceso a medios (MAC) única y por defecto se asigna automáticamente al puerto Ethernet. Seleccione el campo **MAC Address** (Dirección MAC) si se debe cambiar la dirección MAC para este puerto e introduzca la nueva dirección MAC.

Nota: esta dirección de MAC se empleará como dirección MAC de origen para todos los flujos.

VLAN

- ➤ VLAN: al seleccionarla, se accede a la configuración de VLAN. La casilla de verificación VLAN no está activada por defecto.
- Botón Config (Config. de VLAN): permite la configuración de parámetros de VLAN. Consulte VLAN Configuration (Configuración VLAN) en la página 566 para obtener más información.

Configuración de IP fuente

Para IPv4:

- Automatic IP Address (Dirección IP automática): permite obtener una dirección IP dinámicamente de un servidor DHCP (protocolo de configuración dinámica de host).
- ► IP Address (Dirección IP): introduzca la dirección IP del puerto de Ethernet. La dirección IP por defecto es la dirección configurada en *Default/Ethernet Test Preferences (Preferencias de prueba Ethernet/por defecto)* en la página 430. La dirección IP por defecto de fábrica de Default Test Preferences (Preferencias de prueba por defecto) es 10.10.x.y, donde x e y son, respectivamente, los dos bytes menos significativos de la dirección MAC por defecto de fábrica del puerto.
- ➤ Subset Mask (Máscara de subred): introduzca la máscara de subred del puerto Ethernet. La configuración por defecto es 255.255.0.0.
- Default Gateway (Puerta de enlace por defecto): introduzca la dirección de puerta de enlace por defecto del puerto Ethernet. La configuración por defecto es 0.0.0.0.

Enable (permitir): permite activar y editar la dirección IP de la puerta de enlace por defecto. Esta configuración está desactivada por defecto.

Nota: IP Address (Dirección IP) y Subnet Mask (Máscara de subred) no están disponibles cuando la casilla de verificación Automatic IP Address (Dirección IP automática) está seleccionada. Sin embargo, la dirección IP obtenida a partir del servidor DHCP se mostrará en el campo IP Address (Dirección IP). Para IPv6:

- Muestra Link-Local IPv6 Address (dirección IPv6 local de enlace), Global IPv6 Address (dirección IPv6 global) y Default Gateway Address (dirección de la puerta de enlace por defecto).
- El botón IPv6 Config (Configuración de IPv6) permite configurar las direcciones IPv6. Consulte IPv6 Addresses Configuration (Configuración de direcciones IPv6) en la página 572 para obtener más información.

Formato de trama

- ➤ Frame Format (Formato de trama) permite seleccionar el formato de trama Ethernet II o 802.3 SNAP.
- OUI está disponible cuando se selecciona el formato de trama 802.3 SNAP y permite la selección del identificador único organizativo (OUI). Las opciones son RFC1042 y 802.1H. La selección de OUI no está acoplada cuando se selecciona la casilla de verificación Coupled to stream (Acoplado a flujo).

MPLS

La configuración de MPLS sólo está disponible si se activa MPLS en la configuración de la prueba y permite tanto transmitir como recibir las tramas de gestión (p. ej.: PING) dentro de una red MPLS central.

 Label TX (Etiqueta de TX) y Label RX (Etiqueta de RX): permite seleccionar las etiquetas MPLS de TX y RX de la interfaz (0 a 1048575). El valor por defecto de la etiqueta es 16 tanto para TX como para RX. Las etiquetas de TX y RX están disponibles cuando se activa la casilla de verificación MPLS en la configuración de prueba.

PBB-TE

La configuración de PBB-TE sólo está disponible si se ha activado la opción PBB-TE durante la configuración de la prueba. Permite configurar los parámetros de origen y destino de la interfaz que permiten acceder a una red PBB-TE. Consulte *PBB-TE Interface configuration (Configuración de la interfaz PBB-TE)* en la página 568 para obtener más información.

Advanced Auto-Neg. TX (TX de neg. auto. avanzada)

Nota: La negociación automática avanzada no está disponible con las interfaces ópticas de 100 Mbps y 10 Gig-E o cuando **Through Mode** (Modo directo) (FTB-8510B) está seleccionado.

Press **(RX de neg. auto. avanzada) TEST** (PRUEBA), **Port** (Puerto) y **Advanced Auto-Neg TX** (RX de neg. auto. avanzada).

Enable Advanced Auto-Neg. Mode		🕅 Enable Local Capabilities	Select All Clear All	
Configuration	Auto-Neg. Fault register	Local Capabilities		
Speed	Fault type	🔲 10Base-T, Half Duplex	🔲 1000Base-T, Full Duplex	
Duplex		🗖 10Base-T, Full Duplex	🔲 1000Base-X, Full Duplex	
Flow Control	Negotiate	🗖 100Base-TX, Half Duplex	🔲 Symmetric Pause	
		🔲 100Base-TX, Full Duplex	Asymmetric Pause	
TX RX Interface N	etwork Auto-Neg. TX Auto-N	leg. RX		

Enable Advanced Auto-Neg. Mode (Activar modo de negociación automática avanzada)

La negociación automática debe activarse si el puerto remoto conectado está también configurado en Auto-Negotiation (Negociación automática). De lo contrario, debe desactivarse. Al activarse, el Aplicación Ethernet y canal de fibra indicará al puerto remoto qué parámetros debe utilizar. Esta configuración está desactivada por defecto.

El proceso de negociación no comienza de inmediato después de activar la negociación automática, sino que se usa el botón Negotiate (Negociar) para empezar el proceso.

La negociación automática empleará los valores de configuración [**Speed** (Velocidad), **Duplex** (Dúplex) y **Flow Control** (Control de flujo)] o los valores de **Local Capabilities** (Funciones locales) cuando éstos estén activados.

Los valores de configuración del puerto de *Interface Setup (Configuración de la interfaz) (Ethernet)* en la página 258 se activan cuando **Advanced Auto-Neg. Mode** (Modo de neg. auto. avanzada) está activado.
Configuration (configuración)

Speed (Velocidad), **Duplex** (Dúplex) y **Flow Control** (Control de flujo) se pueden modificar sólo cuando la casilla **Enable Local Capabilities** (Activar funciones locales) está desactivada.

 Speed (Velocidad): seleccione la velocidad de la interfaz conectada. Las opciones son:

Para el puerto eléctrico: 10Mbps, 100Mbps, 1Gbps y Auto.

Para el puerto óptico: 1Gbps.

 Duplex (dúplex): seleccione el modo dúplex para el puerto seleccionado. Las opciones son:

Para las velocidades de 10 Mbps y 100 Mbps [excepto para las pruebas **BERT** y **Smart Loopback** (Bucle invertido Smart)]: **Full** (Completo), **Half** (Medio) y **Auto**.

Para la velocidad de 1Gbps, **BERT** o **Smart Loopback** (Bucle invertido Smart): **Full** (Completo).

 Flow Control (control de flujo): seleccione el control de flujo de la interfaz conectada. La configuración por defecto es None (ninguno). Las opciones son:

None (ninguno): las tramas de pausa recibidas se ignoran y no se transmite ninguna. **None** (Ninguno) es la única opción para las pruebas **BERT** y **Smart Loopback** (Bucle invertido Smart).

Asymmetrical (asimétrico): se puede transmitir la trama de pausa pero no se puede recibir.

Symmetrical (simétrico): la trama de pausa se puede transmitir y recibir dependiendo del tipo de flujo del equipo enlazado (L.P.) (consulte la tabla a continuación).

Asimétrico y simétrico (Asimétrico y simétrico): la trama de pausa se puede transmitir o recibir dependiendo del tipo de flujo del equipo enlazado (L.P.) (consulte la tabla a continuación).

Fichas de puerto

Advanced Auto-Neg. TX (TX de neg. auto. avanzada)

Auto: permite la negociación del control de flujo con el puerto asociado.

Local	Equipo enlazado	Description (Descripción)
Asym. (Asimétrico)	Asym. & Sym. (Asimétrico y simétrico)	Local: sólo esta activada la pausa de TX. L. P.: sólo esta activada la pausa de RX. La presión sólo se ejerce en el lado del L.P.
Sym. (Simétrico)	Sym. (Simétrico)	Las pausas de RX y TX están activadas a ambos lados La presión se ejerce en ambos lados.
Sym. (Simétrico)	Asym. & Sym. (Asimétrico y simétrico)	Las pausas de RX y TX están activadas a ambos lados La presión se ejerce en ambos lados.
Asym. & Sym. (Asimétrico y simétrico)	Asym. (Asimétrico)	Local: sólo esta activada la pausa de RX. La presión sólo se ejerce en el lado local. L. P.: sólo esta activada la pausa de TX.
Asym. & Sym. (Asimétrico y simétrico)	Sym. (Simétrico)	Las pausas de RX y TX están activadas a ambos lados La presión se ejerce en ambos lados.
Asym. & Sym. (Asimétrico y simétrico)	Asym. & Sym. (Asimétrico y simétrico)	Las pausas de RX y TX están activadas a ambos lados La presión se ejerce en ambos lados.

Nota: Sólo None (ninguno) está disponible para la prueba del analizador BERT.

Nota: *Flow Control* (Control de flujo) se debe configurar como *None* (Ninguno) con el modo *Half Duplex* (Medio dúplex).

Auto-Neg. Fault Register (Registro de defectos de negociación automática)

Fault Type (Tipo de error): permite generar un fallo durante el proceso de negociación. Al cambiar el tipo de error, mientras está activado, se reiniciará de forma automática el proceso de negociación. El estado de fallo se generará sólo una vez pressing en el botón Negotiate (Negociar). La configuración por defecto es No Error (Sin error). Las opciones son:

Para el puerto eléctrico: **No Error** (Sin error) y **Auto-Negotiation Error** (Error de negociación automática).

Para el puerto óptico de 1000 Mbps: **No Error** (Sin error), **Off-line** (Fuera de línea), **Link Failure** (Fallo en el enlace) y **Auto-Negotiation Error** (Error de negociación automática).

Enable Local Capabilities (Activar funciones locales)

Permite activar las funciones del puerto local comprobando todas las combinaciones predefinidas compatibles de velocidad, dúplex y control de flujo. Esta configuración está desactivada por defecto.

Nota: las funciones disponibles del puerto están basadas en el puerto físico seleccionado para la prueba, que será eléctrico u óptico.

Funciones locales

Cuando las funciones locales están activadas, seleccione las funciones compatibles del puerto. Las funciones locales están desactivadas por defecto. Las opciones son:

10Base-T, Half Duplex (Medio dúplex) 10Base-T, Full Duplex (Dúplex completo) 100Base-TX, Half Duplex (Medio dúplex) 100Base-TX, Full Duplex (Dúplex completo) 1000Base-T, Full Duplex (Dúplex completo) 1000Base-X, Full Duplex (Dúplex completo) Symmetric Pause (Pausa simétrica) Asymmetric Pause (pausa asimétrica)

Botón Negotiate (Negociar)

El botón **Negotiate** (Negociar) permite iniciar el proceso de negociación automática. El proceso de negociación automática transcurre hasta que la negociación automática haya concluido correctamente (finalizado) o se haya desactivado de forma manual.

Cuando la velocidad seleccionada es **Automatic** (Automática), la negociación automática emplea el siguiente esquema de prioridad para garantizar que se selecciona la función de máximo denominador común (interfaces eléctricas).

- 1 1000Base-T, dúplex completo
- 2 1000Base-T, medio dúplex
- 3 100Base-TX, dúplex completo
- 4 100Base-TX, medio dúplex
- 5 10Base-T, dúplex completo
- 6 10Base-T, medio dúplex

Advanced Auto-Neg. RX (RX de neg. auto. avanzada)

Nota: La negociación automática avanzada no está disponible con las interfaces ópticas 100 Mb/s y 10 Gig-E.

Press **(RX de neg. auto. avanzada) TEST** (PRUEBA), **Port1/2** (Puerto 1/2) y **Advanced Auto-Neg RX** (RX de neg. auto. avanzada).

Status		Link Partner Capabilities	
Auto-Negotiation		10Base-T, Half Duplex	1000Base-X, Half Duplex
Remote Fault		10Base-T, Full Duplex	1000Base-X, Full Duplex
Speed		100Raco.TV, Half Dupley	Currenskia Davas
spood		roobase-rxy riai bupiex	Syninechic Pause
Duplex		100Base-TX, Euli Duplex	Asymmetric Pause
			noymmodic i dabo
Flow Control	J	1000Base-T, Half Duplex	
Local Clock			
Locarcioux		1000Base-T, Full Duplex	
Link 🕥	Apply to Port Configuration		
TX RX I	nterface Network Auto-N	eg. TX Auto-Neg. RX	

Estado

- Link (enlace): un LED de enlace verde indica que hay un enlace en el puerto de entrada de la interfaz Ethernet correspondiente. Un LED rojo indica que no hay ningún enlace en el puerto de entrada de la interfaz Ethernet correspondiente.
- Auto-Negotiation (Negociación automática): indica el estado de la negociación automática. Los valores posibles son:

Negotiating (negociando): indica que el proceso de negociación automática está en curso y no ha finalizado aún.

Completed (Completada): indica que el proceso de negociación automática ha finalizado con éxito.

Parallel Detect Fail (fallo de detección paralela): indica que el proceso de negociación automática ha sufrido un error en el proceso de detección paralela mientras se negociaba en 10/100Base-T.

Advanced Auto-Neg. RX (RX de neg. auto. avanzada)

- Remote Fault (defecto remoto): indica un error de fallo remoto. Los valores posibles son Error-Offline (Error fuera de línea) (sólo 1000Base-X), Error-Link Fault (Fallo de error de enlace) (sólo 1000Base-X) y Error-Auto-Negotiation (Error de negociación automática).
- Speed (Velocidad): indica la velocidad de negociación. Los posibles valores son 10, 100 y 1000.
- Duplex (dúplex): indica el modo dúplex de negociación. Los posibles valores son Half (Medio) y Full (Completo).
- Flow Control (control de flujo): indica el control de flujo de negociación. Los valores posibles son None (Ninguno), Enable TX (Permitir TX), Enable RX (Permitir RX) y Enable RX y TX (Permitir RX y TX).
- Local Clock (reloj local): indica la fuente de reloj de negociación. El reloj local sólo se negocia en 1000Base-T (eléctrico). Los posibles valores son Local y Remote (Remoto).
- Nota: (--) indica un estado de enlace roto.

Apply to Port Configuration (Aplicar a la configuración del puerto)

Aplica los parámetros detectados de negociación automática a la configuración del puerto.

Funciones del equipo enlazado

Indica las funciones detectadas del equipo enlazado.

Nota: Sólo se mostrarán las funciones basadas en el puerto físico de Aplicación Ethernet y canal de fibra seleccionado para la prueba.

12 Fichas de WIS

Nota: las fichas de WIS sólo están disponibles en el modo del transceptor 10 GigE WAN. No disponible en la prueba Smart Loopback (Bucle invertido Smart). No disponible con FTB-8510B.

	Disp		
Ficha	Ethernet	Canal de fibra ^a	Página
WIS TX	Х		281
WIS RX	Х		285
WIS OH RX	Х		288

a. No disponible con FTB-8510G.

WIS TX

Pulse TEST (PRUEBA), WIS y WIS TX.

Alarm Generation Type		Path Signal Label (C2)		
SEF	On/Off 🕥	1A : 10 Gbps Ethernet (IEEE 8	02.3)	•
Error Injection Manual Type Amount I Automated	Send	JO Trace EXFO 10GigE ^{Nu} L ^{Nu} L ^{Nu} L ^{Nu} L	J1 Trace	*
Type Rate B1 VII.0E-06 Continuous WIS TX WIS RX WIS OH RX	On/Off			

Alarm Generation (generación de alarmas)

- **Nota:** Alarm generation (Generación de alarmas) sólo está disponible con la prueba BERT.
 - ➤ Type (tipo): están disponibles las siguientes alarmas. La configuración por defecto es SEF.
 - SEF (entramado con errores graves): genera más de cuatro patrones consecutivos de entramado con errores.
 - LOF (pérdida de trama): genera un patrón de entramado no válido.
 - AIS-L (señal de indicación de alarma línea): genera un patrón "111" para los bits 6, 7 y 8 del byte K2.
 - RDI-L (indicación de defecto remoto línea): genera un patrón "110" para los bits 6, 7 y 8 del byte K2.
 - **LOP-P** (pérdida de indicador): genera un indicador no válido.
 - AIS-P (señal de indicación de alarma ruta): genera un patrón de sólo unos en los bytes H1 y H2.
 - ► LCD-P (pérdida de delineación de grupo de código ruta): genera un enlace roto PCS.
 - ► UNEQ-P (no equipado ruta): genera muestras de etiquetas de señal STS no equipadas (C2 se fija como "00 H")
 - RDI-P (indicación de defecto remoto ruta): genera un patrón "100" para los bits 5, 6 y 7 del byte G1.
 - ERDI-PSD (indicación de defecto remoto ampliado defecto de servidor de ruta): genera un patrón "101" para los bits 5, 6 y 7 del byte G1.

- ERDI-PCD (indicación de defecto remoto ampliado defecto de conectividad de ruta): genera un patrón "110" para los bits 5, 6 y 7 del byte G1.
- ➤ ERDI-PPD (indicación de defecto remoto ampliado defecto de carga útil de ruta): genera un patrón "010" para los bits 5, 6 y 7 del byte G1.
- Botón On/Off (activar/desactivar): el botón On/Off (activar/desactivar) se usa para activar/desactivar la alarma seleccionada. Este elemento está desactivado por defecto (Off).
- **Nota:** para la alarma **SEF**, el botón On/Off (Activado/desactivado) se desactiva automáticamente una vez que se ha enviado la alarma **SEF**.

Error Injection (inyección de errores)

- **Nota:** Error injection (Inyección de errores) sólo está disponible con la prueba BERT.
 - Type (tipo): los siguientes errores están disponibles en los modos de inyección Manual y Automated (Automático): B1, B2, B3, REI-L y REI-P.
 - Amount (cantidad): seleccione la cantidad de error manual que se va a generar.

Las opciones van del 1 al 50. La configuración por defecto es 1.

- Botón Send (enviar): Pulse Send (Enviar) para generar manualmente los errores según el tipo de error y la cantidad de errores seleccionados.
- Rate (valor): Pulse el campo Rate (Valor) para seleccionar el valor del error automático. Las opciones son: 1.0E-2, 1.0E-3, 1.0E-4, 1.0E-5, 1.0E-6, 1.0E-7, 1.0E-8, 1.0E-9 o definible por el usuario de 1.0E-09 a 6.4E-06. La configuración por defecto es 1.0E-06.

- Continuous (continuo): genera el error seleccionado para cada trama generada cuando está activada la casilla de verificación Continuous (continuo) y el botón On/Off (activar/desactivar) está activado (On). La casilla de verificación Continuous (continuo) está desactivada por defecto.
- Botón On/Off (activar/desactivar): el botón On/Off (activar/desactivar) se usa para activar/desactivar el error automático seleccionado en el valor especificado o de forma continua. Este elemento está desactivado por defecto (Off).

Path Signal Label (C2) [Etiqueta de señal de ruta (C2)]

El byte C2 está asignado para indicar el contenido de la STS SPE, incluido el estado de las cargas útiles asignadas. La configuración por defecto es **1A** : **10 Gbps Ethernet (IEEE 802.3)**.

J0 Trace (traza J0)

Message (mensaje): introduzca el valor de la traza J0 con formato de 16 bytes. El mensaje por defecto es **EXFO 10GigE**.

J1 Trace (traza J1)

Message (mensaje): introduzca el valor de la traza J1 con formato de 16 bytes. El mensaje por defecto es **EXFO 10GigE**.

- **Nota:** La selección de 16 bytes permite escribir hasta 15 bytes (se añadirá un byte CRC-7 delante para hacer un total de 16 bytes).
- **Nota:** Los valores de J0 y J1 deben ser caracteres ASCII de 7 bits apropiados, incluidos los Caracteres UIT T.50 en la página 68.

WIS RX

Press TEST (PRUEBA), WIS y WIS RX.

Error Analysis (análisis de errores)

- B1 (BIP-8, paridad de intercalado de bits 8 bits): el error B1 (BIP-8) indica un error de paridad de sección al realizar una comprobación rutinaria de paridad par sobre todos los bits de sección de la trama anterior de una señal compuesta (localizada en la primera STS-1 de una señal STS-n).
- B2 (BIP-1536, paridad de intercalado de bits 1536 bits): el error B2 indica un error de paridad de línea al realizar una comprobación rutinaria de paridad par sobre todos los bits de línea de la capacidad de trama LOH y STS-1 de la trama anterior de una señal compuesta (localizada en todas las STS-1 de una señal STS-n).
- B3 (BIP-8, paridad de intercalado de bits 8 bits): el error B3 (BIP-8) indica un error de paridad de ruta al realizar una comprobación rutinaria de paridad par sobre todos los bits de ruta del SPE previo, sin incluir LOH y SOH.

- REI-L (indicador de error remoto línea): se declara el error REI-L cuando los bits de 5 a 8 del byte M0 contienen un patrón con el siguiente alcance binario: de "0001" a "1000" (de 1 a 8) (localizado en la primera STS-1 de una señal STS-n).
- REI-P (indicador de error remoto ruta). El error REI-P se declara cuando los bits de 1 a 4 del byte G1 contienen un patrón con el siguiente alcance binario: de "0001" a "1000" (de 1 a 8) (situado en todas las STS-1 de una señal STS-n).

Alarm Analysis (análisis de alarma)

- SEF (entramado con errores graves): una anomalía SEF indica que se han recibido al menos cuatro patrones de entramado consecutivos con errores.
- LOF (pérdida de trama): una alarma de pérdida de trama indica que se ha mantenido una anomalía de entramado con errores graves (SEF) en la señal SONET entrante durante al menos 3 milisegundos.
- AIS-L (señal de indicación de alarma línea): la alarma AIS-L se declara cuando los bits 6, 7 y 8 del byte K2 contienen el patrón "111" en cinco tramas consecutivas.
- RDI-L (indicación de defecto remoto línea): la alarma RDI-L se declara cuando los bits 6, 7 y 8 del byte K2 contienen el patrón "110" en cinco tramas consecutivas.
- AIS-P (señal de indicación de alarma ruta): la alarma AIS-P se declara cuando los bytes H1 y H2 de una ruta STS contienen un patrón de todo unos en tres o más tramas consecutivas.
- RDI-P (indicación de defecto remoto ruta): la alarma RDI-P se declara cuando los bits 5, 6 y 7 del byte G1 contienen el patrón "100" o "111" en diez tramas consecutivas.

- LCD-P (pérdida de delineación de grupo de código ruta): indica que la sincronización de la señal se ha perdido y que los grupos de código válidos ya no se delinean del flujo de carga útil recibido que se transmite a PCS.
- ► LOP-P (pérdida de indicador ruta): Para cargas útiles no concatenadas, la alarma LOP-P indica que no se ha detectado un indicador válido en N tramas consecutivas (donde 8 ≤ N ≤ 10), o en N NDF consecutivos (patrón "1001").
- ERDI-PSD (indicación de defecto remoto ampliado defecto de servidor de ruta): la alarma ERDI-PSD se declara cuando los bits 5, 6 y 7 del byte G1 comprenden el patrón "101" en de cinco a diez tramas consecutivas.
- ERDI-PCD (indicación de defecto remoto ampliado defecto de conectividad de ruta): la alarma ERDI-PCD se declara cuando los bits 5, 6 y 7 del byte G1 comprenden el patrón "110" en de cinco a diez tramas consecutivas.
- ERDI-PPD (indicación de defecto remoto ampliado defecto de carga útil de ruta): la alarma ERDI-PPD se declara cuando los bits 5, 6 y 7 del byte G1 comprenden el patrón "010" en de cinco a diez tramas consecutivas.
- PLM-P (incompatibilidad de etiqueta de carga útil ruta): PLM-P se declara al recibir cinco tramas consecutivas con etiquetas de señal STS incompatibles.
- ► UNEQ-P (no equipado ruta): UNEQ-P se declara cuando los bytes C2 contienen "00 H" en cinco tramas consecutivas.
- Link (WIS) [Enlace (WIS)]: Link (WIS) [Enlace (WIS)] se declara cuando está presente al menos uno de los siguientes errores: AIS-P, LOF, PLM-P, SEF, LOP o AIS-L.
- Enable PLM-P/UNEQ-P (Permitir PLM-P/UNEQ-P) (incompatibilidad de etiqueta de carga útil - ruta/no equipado - ruta)): permite activar la incompatibilidad de etiqueta de señal para el mensaje esperado definido, así como el control UNEQ-P.

J0 Trace (traza J0)

Muestra el valor J0 con formato de 16 bytes.

J1 Trace (traza J1)

Muestra el valor J1 con formato de 16 bytes.

Nota: El valor <crc7> representa CRC-7 para un formato de 16 bytes.

WIS OH RX

Permite verificar la información de encabezado de transporte recibida.

Press TEST (PRUEBA), WIS y WIS OH RX.

Einary	Path Signal Label (C2)	
Section Overhead	Line Overhead	Path Overhead
A1 A2 J0	H1 H2 H3	J1 G1
B1 E1 F1	B2 K1 K2	Z3 B3
D1 D2 D3	D4 D5 D6	F2 Z4
	D7 D8 D9	C2
	D10 D11 D12	N1
	51 M1 E2	
WIS TX WIS RX WIS OH RX	<u>-</u>	

Binary (Binario)

Permite mostrar todos los valores de encabezado en sistema binario (cuando está activado) o hexadecimal (cuando está desactivado). Esta configuración está desactivada por defecto.

Section Overhead (encabezado de sección)

Nota: permite controlar sólo el primer intervalo de tiempo.

- ➤ A1 y A2: entramado. El valor debe ser hexadecimal F6 para A1 y 28 para A2.
- ▶ J0: traza: STS-1 n.º 1 de una señal eléctrica o OC-N.
- ► **B1**: BIP-8.
- ► **E1**¹: circuito de servicio.
- \succ **F1**¹: usuario.
- > $D1^1$, $D2^1$ y $D3^1$: canal de comunicación de datos (DCC).

Line Overhead (encabezado de línea)

Nota: permite controlar sólo el primer intervalo de tiempo.

- ► H1 y H2: indicador
- ► H3: acción de indicador
- ► **B2**: BIP-1536
- ► **K1** y **K2**: conmutación de protección automática (APS)
- > De D4 a D12: canal de comunicación de datos (DCC)
- S1¹: estado de sincronización (STS-1 n.º 1 de una señal eléctrica u OC-N)
- ► M1: REI-L
- \succ **E2**¹: circuito de servicio

^{1.} No compatible con la norma 10GigE.

Path Overhead (encabezado de ruta)

- \blacktriangleright **J1**¹: traza.
- ► **B3**¹: BIP-8
- > C2: etiqueta de señal
- ► G1: estado
- ► F2: canal de usuario
- ► H4¹: indicador de trama múltiple
- > Z3 y Z4: expansión
- > N1: conexión en tándem

Path Signal Label (C2) [Etiqueta de señal de ruta (C2)]

El byte C2 está asignado para indicar el contenido de STS SPE, incluido el estado de las cargas útiles asignadas.

^{1.} No compatible con la norma 10GigE.

13 Fichas de patrón

Nota: las fichas de patrón sólo están disponibles con la prueba BERT.

	Dispo		
Ficha	Ethernet	Canal de fibra ^a	Página
Pattern TX (TX de patrón)	Х	Х	292
Pattern RX (RX de patrón)	Х	Х	296
Performance Monitoring (Supervisión del rendimiento) (PM) ^b	Х	Х	421

a. No disponible con FTB-8510G.

b. Disponible con la capa de trama 1 y la capa de trama 2 de Ethernet/FC y en el modo de transceptor de LAN.

Pattern TX (TX de patrón)

Press (Patrón) (TX de patrón)TEST (PRUEBA) y Pattern (Patrón).

Configuration Test Pattern PRBS 2^31-1	Alarm Generation Type Pattern Loss	On/Off
Coupled TX/RX	Error Injection Manual	
Pattern #	Type Amount Bit Error 1 Automated	Send
Value Binary	Type Rate Bit Error I.0E-04 Continuous	On/Off
Pattern TX Pattern RX PM		

Configuration (configuración)

➤ Test Pattern (patrón de prueba): seleccione el patrón de prueba de la lista. La configuración por defecto es PRBS 2 ^ 31-1. Las opciones son:

	Come	ntario
Pattern (Patrón)	Ethernet	Canal de fibra ^a
PRBS 2 ^ 9-1, PRBS 2 ^ 11-1, PRBS 2 ^ 15-1, PRBS 2 ^ 20-1, PRBS 2 ^ 23-1, PRBS 2 ^ 31-1, User Pattern (patrón de usuario)	Para obtener más informa (patrón de usuario), consu la página 293.	ación sobre U ser Pattern ulte <i>Patrón de usuario</i> en
CRPAT, CSPAT, CJTPAT	Disponible con la prueba óptica BERT 1000 Mbps con Framed Layer 1 (capa de trama 1).	Compatible con Framed Layer 1 (capa de trama 1) cuando no se selecciona Latency Tag (etiqueta de latencia), consulte la página 192.
Short CRTPAT (CRTPAT corto), Long CRTPAT (CRTPAT largo)		No es compatible.

a. No disponible con FTB-8510G.

- Invert (invertir): El patrón de prueba generado/recibido se invertirá si está activada la casilla de verificación Invert (Invertir), con lo que todos los ceros se cambiarán a unos y todos los unos pasarán a ser ceros. Por ejemplo, el patrón 1100 se enviará/recibirá como 0011. La casilla de verificación Invert (Invertir) está desactivada por defecto.
- Coupled (acoplado): Coupled (Acoplado) permite acoplar las señales de TX y RX con la misma configuración de patrón. Esta configuración está activada por defecto.

> Patrón de usuario

El patrón de usuario está disponible cuando se selecciona **User Pattern** (patrón de usuario) como patrón de prueba.

Pattern # (n.º de patrón): se pueden programar hasta 10 patrones. Seleccione el número de patrón que se desea configurar. La configuración por defecto es **1**.

Value (valor): introduzca el valor del patrón (4 bytes). La configuración por defecto es **00 00 00 00**.

Binary (binario): permite mostrar el valor de patrón en sistema binario (cuando la casilla de verificación **Binary** [binario] está activada) o hexadecimal (cuando la casilla de verificación **Binary** [binario] está desactivada). La casilla de verificación **Binary** (binario) está desactivada por defecto.

Nota: el patrón de usuario para las fichas TX y RX comparte la misma lista de patrones.

Alarm Generation (generación de alarmas)

Type (tipo): el único tipo disponible de alarma de patrón es **Pattern Loss** (pérdida de patrón).

Botón **On/Off** (activar/desactivar): Press el botón On/Off para activar/desactivar la generación de alarmas de patrón. Este elemento está desactivado por defecto (Off).

Error Injection (inyección de errores)

Permite la selección y configuración de un error de patrón manual o automático que se va a generar.

Type (tipo): el único tipo disponible de error de patrón es **Bit Error** (error de bit).

Amount (cantidad): seleccione la cantidad de error que se va a generar. Las opciones van de 1 a 50. La configuración por defecto es 1.

Botón **Send** (enviar): Press **Send** (Enviar) para generar de forma manual el error de patrón de acuerdo con el tipo de error de patrón y la cantidad.

Rate (valor): Press el campo Rate (Velocidad) para seleccionar la velocidad del error de patrón seleccionado. Las opciones son: 1.0E-02, 1.0E-03, 1.0E-04, 1.0E-05, 1.0E-06, 1.0E-07, 1.0E-08, 1.0E-09 o definible por el usuario de 1.0E-09 a 1.0E-02. La configuración por defecto es 1.0E-04.

Continuous (continuo): genera el error de bit de cada bit generado cuando la casilla de verificación **Continuous** (Continuo) está seleccionada mientras el botón de **On/Off** (Activado/desactivado) está en On (Activado). La casilla de verificación **Continuous** (continuo) está desactivada por defecto.

Botón **On/Off** (activar/desactivar): el botón On/Off se usa para activar/desactivar, respectivamente, el error de patrón automático seleccionado a la velocidad especificada o **Continuous** para cada bit generado cuando la casilla de verificación está activada. Este elemento está desactivado por defecto (Off).

Nota: la inyección de errores manual y la automática pueden ejecutarse a la vez.

Pattern RX (RX de patrón)

Press (Patrón) (TX de patrón)TEST (PRUEBA) y Pattern (Patrón).

Configuration Test Pattern PRBS 2^31-1	Alarm Analysis H C ම ම Pattern Loss	Seconds	H C No Traffic	Seconds
Coupled RX/TX User Pattern Pattern #	Error Analysis H C Bit Error	Seconds	Count	Rate
Value	 Mismatch '0' Mismatch '1' 		-	
Pattern TX Pattern RX PM		,		,

Configuration (configuración)

Nota: Consulte Configuration (configuración) en la página 292 para obtener más información sobre Test Pattern (patrón de prueba), Invert (invertir) y User Pattern (patrón de usuario).

Alarm Analysis (análisis de alarma)

Pattern Loss (Pérdida de patrón)

Para Ethernet, se declara una **Pattern Loss** (Pérdida de patrón) cuando la secuencia de prueba y la secuencia de referencia se pueden identificar de forma ambigua como desfasadas.

Para el canal de fibra, se declara una **Pattern Loss** (pérdida de patrón) cuando se detecta que al menos cuatro palabras consecutivas con un error de bit están provocando una pérdida de sincronización del patrón. No es compatible con FTB-8510G.

Se mostrará **No Traffic** (Sin tráfico) cuando no se haya recibido tráfico de patrón en el último segundo.

Error Analysis (análisis de errores)

Bit Error (error de bit): un error de bit indica que hay errores lógicos en el flujo de bits (es decir, ceros que deberían ser unos y viceversa).

Mismatch '0' (Discordancia "1"): un error de discordancia de "0" indica que se ha encontrado un error de bit en un "0" binario (por ejemplo, unos que deberían ser ceros) sólo en el patrón de prueba.

Mismatch '1' (Discordancia "1"): un error de discordancia de "1" indica que se ha encontrado un error de bit en un "1" binario (por ejemplo, ceros que deberían ser unos) sólo en el patrón de prueba.

14 Fichas IPTV

 Nota: las fichas IPTV sólo están disponibles con el tipo de aplicación Frame Analyzer (Analizador de tramas) en el módulo FTB-8510B. La prueba IPTV sólo se puede realizar en Port 1 (Puerto 1). Para poder ejecutar la función IPTV, ésta debe estar activada. Consulte Available Options (opciones disponibles) en la página 444. IGMP no está disponible cuando Through Mode (Modo directo) está seleccionado.

Ficha	Página
Discovery (Descubrimiento)	302
Overview (Resumen)	307
MDI/TR 101 290	327
IGMP	335
Stream Information (Información del flujo)	342

Realización de pruebas de IPTV con FTB-8510B

El módulo FTB-8510B ofrece la función de controlar 10 (por defecto) flujos en paralelo cuando la opción **SK-IPTV-MON** está activada. La función de control de IPTV se puede aumentar a 100 flujos si la opción **SK-IPTV-MAXSTREAM** también está activada.

La opción de software IPTV de FTB-8510B ofrece más de 45 medidas y estadísticas diferentes que incluyen Media Delivery Index [Índice de envío de medios o (MDI)] y medidas TR 101 290. TR 101 290 incluye las medidas PCR jitter (Fluctuación PCR) y Priority 1 (Prioridad 1). Además, están disponibles otras estadísticas clave como la medida de paquetes IP, la velocidad de flujo, las mediciones de presencia y la utilización del ancho de banda. Estas estadísticas son necesarias para caracterizar correctamente un flujo IPTV. Las medidas MDI y TR 101 290 de prioridad 1 sólo están disponibles para flujos de transporte de programa único (SPTS) MPEG-2 TS. Además, se ofrecen umbrales de alarma configurables en las medidas seleccionadas para las aplicaciones de prueba personalizadas.

Las importantes funciones de utilidad incluyen el descubrimiento automático de todos los flujos de medios válidos y las etiquetas de flujo definibles por el usuario para facilitar la identificación. La función de descubrimiento automático explorará automáticamente el punto de comprobación de la red y mostrará todos los flujos IPTV que contengan tráfico MPEG-2. La selección de los flujos que se deben controlar se realiza mediante la adición automática de flujos desde el grupo de descubrimiento automático o mediante selección manual.

El protocolo de administración de grupos de Internet (IGMP) es un protocolo de comunicación utilizado para gestionar la pertenencia de grupos multidifusión de protocolo de Internet. Dependiendo de la ubicación en la red y las mediciones previstas, puede que los flujos IPTV no estén disponibles directamente. Para un puerto de un elemento de red, las solicitudes de unión de IGMP deben utilizarse para acceder al flujo. Se puede enviar un máximo de cien solicitudes IGMP (de unión/abandono) simultáneamente. Por ejemplo, al conectarse a un puerto de conmutación, puede que se necesite una solicitud de unión IGMP para acceder a cada flujo multidifusión. Al conectarse a un puerto SPAN o TAP, las funciones de descubrimiento automático y adición automática permiten añadir flujos a medida que se descubren.

El módulo FTB-8510B equipado con la opción IPTV se puede usar en distintos puntos de la red para adquirir datos y ayudar a detectar un error que afecte a la calidad del servicio de IPTV, como se describe en la siguiente figura.

Cuando se controle el flujo seleccionado (a través de su dirección IP) en la red IPTV, todas las funciones compatibles por medio de la aplicación **Frame Analyzer** (Analizador de tramas) están también disponibles de forma simultánea. Con ello se consiguen recursos adicionales que permiten la solución de problemas en relación con la red y que podrían ayudar a entender los problemas IPTV detectados.

Discovery (Descubrimiento)

La página **Discovery** (Descubrimiento) permite activar la función de descubrimiento automático y explorar automáticamente el punto de comprobación de la red, así como mostrar una lista en tiempo real de todos los flujos IPTV válidos que contengan tráfico MPEG-2 TS. En la lista de flujos descubiertos, el usuario puede añadir flujos para extraer estadísticas de ellos.

Auto-Discovery Stream Name Dest IP Address . DARKER 239.1.1.1 Clear On/Off 😑 WIBT 239.1.1.2 ✓ Hide Monitored Streams Lista de flujos WCBI 239.1.1.3 * Stream Monitoring WDAM 239.1.1.4 descubiertos Auto-Add WTVA 239.1.1.5 C Off VTCW 239.1.1.6 C On WLOX 239.1.1.7 WAPT 239.1.1.8 On with IGMP Auto-Join -WHLT 239.1.1.9 Manual Add wxx 239.1.1.10 WXMS 239.1.1.11 Ŧ Selection Options WLOV 239.1.1.12 WMPN 239.1.1.13 Select Range WRB1 239.1.1.14 ≖ WUFX 239.1.1.15 Monitored 25 Discovered 100 Active 20 Discovery Overview MDI/TR 101 290 IGMP Stream Info

Para acceder a la ficha **Discovery** (Descubrimiento), press **TEST** (PRUEBA), **IPTV** y **Discovery** (Descubrimiento).

Cada flujo descubierto se representa mediante su IP Address (Dirección IP) y su nombre de flujo. Los nombres de los flujos sólo se muestran si hay algún mapa de alias disponible. Consulte *Alias Map (Mapa de alias)* en la página 325 para obtener más detalles. Los flujos se pueden ordenar por **IP address** (Dirección IP) o **Stream Name** (Nombre de flujo). El estado de cada flujo, ya sea activo o inactivo, se presenta visualmente de la siguiente manera:

- Activo: flujos en los que se están recibiendo datos MPEG-2 TS en este momento. Los flujos activos se muestran con caracteres en negro.
- Inactivo: flujos que ya no están recibiendo datos MPEG-2 TS. Los flujos inactivos se muestran en la lista con caracteres en gris.

Los flujos controlados son aquéllos que se han añadido para el control IPTV en la página de resumen. Los flujos controlados se resaltan con un fondo azul claro.

Los flujos seleccionados aparecen resaltados con un fondo azul oscuro.

Auto-Discovery (descubrimiento automático)

- Botón On/Off (activar/desactivar): explora el punto de comprobación de la red para identificar automáticamente los flujos IPTV y/o los flujos VoD que cumplen el formato de flujo de transporte MPEG-2. Los nuevos flujos detectados se añaden a la lista de descubrimiento. Este parámetro es Off (desactivado) por defecto. El cambio de la función Auto-Discovery (Descubrimiento automático)Off (Desactivado) y On (Activado) no hará que se borren los flujos previamente descubiertos. El proceso de descubrimiento es independiente del estado start/stop (Iniciado/detenido) del caso de prueba o de la función Reset (Restablecer).
- Botón Clear List (Borrar lista): restablece la lista de flujos descubiertos. Si la función de descubrimiento automático está en On (Activado), una vez seleccionado pressing Clear List (Borrar lista), se actualizará la lista de descubrimiento. La operación de borrado no afecta a los flujos que están controlados.
- Hide monitored Streams (Ocultar flujos controlados): aparta los flujos controlados de la lista de flujos descubiertos. Esta opción está seleccionada por defecto.

Stream Monitoring (control de flujos)

La función **Add** (Añadir) permite agregar flujos a la lista de control de flujos en la página de resumen. La función **IGMP Auto-Join** (unión IGMP automática) permite configurar el sistema para que envíe una solicitud de unión a un grupo de multidifusión una vez que se ha añadido un flujo durante la ejecución o al inicio de una prueba.

- Auto-Add (Añadir) añade automáticamente todos los flujos activos seleccionados en la lista de descubrimientos a la lista de control de flujos. Esto incluye todos los flujos que ya están en la lista de descubrimiento y los flujos entrantes. Excluye todos los flujos que ya están en la lista de control. El proceso Auto-Add (Añadir automáticamente) se inicia cuando la prueba comienza, y finaliza cuando la prueba termina. El proceso de adición de flujos se suspende al alcanzar el número máximo de flujos controlados.
 - Off (Desactivado): seleccione la opción Off (desactivado) para desactivar el flujo de Auto-Add (añadir automáticamente).
 - On (Activado): seleccione la opción On (activado) para activar Auto-Add (añadir automáticamente) para poder añadir todos los flujos activos.
 - On with IGMP Auto-Join (Activado con unión IGMP automática): seleccione la opción On with IGMP Auto-Join (Activado con unión IGMP automática) para activar la función Auto-Add (Añadir automáticamente) y enviar automáticamente una solicitud de unión una vez añadido el flujo. Esta opción no debe seleccionarse cuando se esté conectado a un puerto SPAN o TAP, ya que no se puede iniciar ninguna transmisión a la red a través de esos tipos de puertos.

- El botón Manual Add (Añadir manualmente) añade flujos individuales a la lista de control de flujos. Los botones Add (Añadir) y Add with IGMP Auto-Join (Añadir con unión IGMP automática) se desactivan al alcanzar el número máximo de flujos controlados. Los botones Add (Añadir) y Add with IGMP Auto-Join (Añadir con unión IGPM automática) sólo están disponibles cuando la función Auto-Add (Añadir automáticamente) está en Off (Desactivada).
 - Botón Add (Añadir): Pressing el botón Add (Añadir), se añaden los flujos seleccionados a la lista de control de flujos.
 - Botón Add with IGMP Auto-Join (añadir con unión IGMP automática): Pressing el botón Add with IGMP Auto-Join (Añadir con unión IGMP automática), se añaden los flujos seleccionados y se envía una solicitud de unión.

Opciones de selección

- **Nota:** Selection Options (Opciones de selección) no está disponible cuando la función Auto-Add (Añadir automáticamente) está seleccionada. Sólo se pueden seleccionar los flujos no controlados.
 - Select Range (Seleccionar intervalo) selecciona todos los flujos ubicados entre dos flujos seleccionados, incluidos los límites. Para seleccionar un intervalo, seleccione un primer flujo de la lista, seleccione un segundo flujo de la lista y pulse press Select Range (Seleccionar intervalo) para completar la selección.
 - Select All (seleccionar todos) permite seleccionar todos los flujos no controlados de la lista.
 - Deselect All (cancelar toda la selección) permite cancelar la selección de todos los flujos no controlados de la lista.

Estadísticas

Las siguientes estadísticas se restablecen al hacer clic en el botón **Clear List** (borrar lista).

- ► **Discovered** (descubiertos) indica el número de flujos en los que se han detectado datos MPEG-2 TS.
- Activo (Activos) indica el número de flujos en los que se están recibiendo datos MPTEG-2 TS en este momento.
- Monitored (controlados) indica el número de flujos que generan estadísticas.

Overview (Resumen)

La ficha **Overview** (Resumen) proporciona un resumen de las estadísticas clave que se pueden usar como la primera información de alarma para evaluar la calidad de la experiencia (QoE) que cada flujo controlado ofrece al usuario final. Esta ficha organiza automáticamente, mediante criterios de ordenación, el nombre de flujo, su dirección IP, MDI (factor de retardo, proporción de pérdida de medios), TR 101 290, valor IP y utilización del ancho de banda.

Toda la información incluida en la página Overview (Resumen) se actualiza en tiempo real. Debido a que los umbrales son valores cruzados, los flujos con alarma se ordenan automáticamente en la parte superior de la página para una visualización más fácil y se resaltan en rojo junto a la medida correspondiente que provocó la alarma.

Para acceder a la ficha **Overview** (Resumen), pulse **TEST** (PRUEBA), **IPTV** y **Overview** (Resumen).

	Join Status	Stream Name	Dest IP Address	Port	DF (ms)	MLR (pps)	TR 101 290	IP Rate (Mbps)	BW (%)	-
Stream	0	BARKER	239.1.1.1							
Stream	0	WLBT	239.1.1.2							
monitoring list	0	WCBI	239.1.1.3							
	0	WDAM	239.1.1.4							*
(Lista de —	0	WTVA	239.1.1.5							
control de	0	VTCW	239.1.1.6							
<i>a</i> : ,	0	WLOX	239.1.1.7							
tiujos)	0	WAPT	239.1.1.8							
		WHEI	239.1.1.9							
		WXXV	239.1.1.10							
		WAMS	239.1.1.11							-
		WLOV	239.1.1.12							
	- X	WPIPN	239.1.1.13							
	- X	WHEX	239.1.1.15							X
	- ŏ	WDBD	239.1.1.16							Ť
	ŏ	WKDH	239.1.1.17							
	ŏ	EASD	239.1.1.18							
	Õ	EASA	239.1.1.19							T
	0	ESPN	239.1.1.20							
	0		Monitored 21		Inactive	21	Add Delete	IGMP	Alia	is Map
	Discover	Overview MDI	TR 101 290	SMP (Stream Info					

La tabla de control permite visualizar el estado de las alarmas y las medidas de hasta 20 flujos de manera simultánea. El número de flujos que se pueden controlar simultáneamente depende de las opciones de software instaladas. Para organizar la presentación de estadísticas clave del flujo, la página Overview (Resumen) es compatible con varios niveles de criterios de ordenación. El criterio de ordenación principal es el estado de alarmas del flujo que ordena los flujos automáticamente situando como primero el grupo de alarmas más importante seguido de grupos menos importantes (rojo-amarillo-verde-blanco). El segundo criterio de ordenación es el estado de actividad del flujo que puede ser activo (la información de flujo está en negro) o inactivo (la información de flujo está en gris). Los flujos activos se sitúan primero, por delante de los flujos inactivos, dentro de cada grupo de estados de alarmas del flujo (el grupo rojo de estado de alarmas del flujo nunca muestra los flujos inactivos, éstos se colocan automáticamente en el grupo amarillo). Finalmente, se usa un tercer criterio para ordenar fluios de forma ascendente o descendente según el nombre de flujo o dirección IP de destino dentro de cada grupo de estados de alarmas del flujo. De los dos últimos criterios, el que está seleccionado por defecto es la dirección IP de destino resaltada por un pequeño triángulo situado en el encabezado de la columna. La selección entre los criterios Stream Name (Nombre de flujo) o Dest IP Address (Dirección IP de destino) depende del usuario.

Como alternativa, se puede anular el primer criterio de estado de alarmas del flujo, seleccionando el encabezado de columna **Join Status** (Estado de unión) como el criterio de ordenación principal. Al hacerlo, se puede obtener la ordenación según el estado de unión creando grupos Failed-Joined-Joining-Idle (Fallo-Unido-Unión en proceso-Inactivo) o Idle-Joining-Joined-Failed (Inactivo-Unión en proceso-Unido-Fallo). A continuación, se aplica el criterio de estado de alarmas del flujo dentro de cada grupo con la dirección IP de destino presentando flujos en orden ascendente. A continuación, se proporcionan detalles sobre el estado de alarmas del flujo y el estado de actividad de flujo, así como la descripción del estado de unión.

Descripción de las columnas

 Join Status (Estado de unión): sólo indica el estado de unión de cada flujo de multidifusión. Los iconos de estado de unión aparecen sombreados cuando se detiene la prueba.

lcono	estado	Description (Descripción)
•	Unión en proceso	El estado de unión en proceso aparece tras enviar una solicitud de unión hasta que se recibe el flujo deseado o finaliza el tiempo de espera de unión.
0	Unido	El estado unido aparece cuando se recibe el flujo deseado antes de que finalice el tiempo de espera de unión.
8	Failed (Fallo)	El estado de fallo aparece cuando no se detecta el flujo deseado dentro del tiempo de espera de unión. Consulte el valor de Join Timeout (Tiempo de espera de unión) en la página341. En caso de fallo, se emite una solicitud de abandono de este flujo.
•	Inactivo	El estado inactivo aparece de forma inicial para todos los flujos de multidifusión que no son miembros de un grupo y no tienen el estado de fracaso.

- Stream Name (Nombre de flujo): indica el nombre configurado y asociado a una dirección IP en el mapa de alias. Consulte Alias Map (Mapa de alias) en la página 325 para obtener más detalles.
- Dest IP Address (Dirección IP de destino): indica la dirección IP asociada al flujo controlado.
- Port (puerto): indica el número de puerto UDP asociado al flujo controlado.

- ➤ DF (ms): el factor de retardo (DF) proporciona una medida de la variación de retardo máximo del paquete en el periodo de 1 segundo. En otras palabras, la medida representa en milisegundos qué capacidad de búfer se necesitará en el siguiente elemento de bajada de red para compensar la fluctuación de paquetes de medios. Tenga en cuenta que por definición (como se detalla en RFC 4445) se comunica un valor de DF que representa un mínimo de un paquete en línea (en ms) cuando no existe ninguna fluctuación en la red. Este valor representa el tamaño mínimo del búfer (en ms) necesario para procesar correctamente un paquete de medios y cambia en función de la velocidad de medios en el flujo. Por ejemplo, si no hay fluctuación en la red, un flujo habitual en televisión estándar con velocidad de medios de 3,75 Mbps presentaría un factor de retardo de 2,81 ms mientras que en un flujo en televisión de alta definición de 10 Mbps, el factor de retardo sería de 1,05 ms.
- MLR (pps): indica el número de paquetes perdidos en el último segundo (paquetes por segundo) según RFC 4445; los paquetes fuera de servicio y los paquetes duplicados se consideran paquetes perdidos.
TR 101 290: Por defecto, esta columna presenta el valor PCR Jitter (Fluctuación PCR). Si se produce cualquiera de las alarmas compatibles TR 101 290, dicha alarma sustituye temporalmente la fluctuación PCR. Las alarmas compatibles TR 101 290 son PCR Jitter (Fluctuación PCR), TS Sync Loss (Pérdida de sincronización de TS), Sync Byte Error (Error de byte de sincronización), PAT Error2 (Error2 de PAT), CC Error (Error de contador de continuidad), PMT Error2 (Error2 de PMT), PID Error Video (Vídeo con error de PID) y PID Error Audio (Audio con error de PID).

PCR Jitter (ms) (Fluctuación PCR en ms): indica la diferencia absoluta máxima entre una referencia conocida y el valor PCR descodificado de los paquetes de transporte de flujo MPEG-2 en el último segundo.

- IP Rate (Mbps) (Velocidad IP en Mbps): indica el número de bits de IP recibidos en el último segundo (Mbps).
- **BW (%)** (ancho de banda): indica la utilización del ancho de banda de Ethernet por el flujo.

Estado del flujo

El estado de cada flujo, ya sea activo o inactivo, se presenta visualmente de la siguiente manera:

- Activo: flujos en los que se están recibiendo datos MPEG-2 TS en este momento. Los flujos activos se muestran con caracteres en negro.
- Inactivo: flujos que ya no están recibiendo datos MPEG-2 TS. Los flujos inactivos se muestran en la lista con caracteres en gris.

Nombre de flujo de nombre de flujo	Estado de alarmas del flujo	Orden de prioridad
Rojo	Flujos en alarma/error	1
Amarillo	Flujos con estado de alarma/error históricos	2
Verde	Flujos sin alarmas/errores	3
Blanco	Flujos que nunca han estado activos	4

El estado de alarma de cada flujo se presenta de la siguiente manera:

Estadísticas

- El icono 😵 indica el número de flujos con un estado de unión fracasado.
- > La *casilla roja* indica el número de flujos en alarma.
- > La *casilla amarilla* indica el número de flujos con historial de fallos.
- > La casilla verde indica el número de flujos sin historial de fallos.
- Monitored (controlados) indica el número de flujos que generan estadísticas.
- > Inactive (inactivos) indica el número de flujos inactivos o pendientes.

Botón Add (Añadir)

El botón **Add** (Añadir) añade flujos a la lista de control de flujos. El botón **Add** (Añadir) se desactiva cuando se alcanza el número máximo de flujos controlados.

	Stream Name	Dest IP Address	▲ 	From Alias Man
	BARKER	239.1.1.1		
	WLBT	239.1.1.2		Select Range
sta de mapa	WCBI	239.1.1.3		Select All
de alias	WDAM	239.1.1.4	1	
	WTVA	239.1.1.5		Deselect All
	VTCW	239.1.1.6		C Magual Entry
	WLOX	239.1.1.7		Destination IP Address
	WAPT	239.1.1.8		0.0.0.0
	WHLT	239.1.1.9	-	
	WXXXV	239.1.1.10		C Manuel Range Entry
	WXMS	239.1.1.11		Dest IP Address From
	WLOV	239.1.1.12	¥	Dest IR Address To
	WMPN	239.1.1.13		0.0.0.0
	WRBJ	239.1.1.14		ICMD
	WUFX	239.1.1.15	T	Auto-Join
	WDBD	239.1.1.16		

Los flujos se pueden ordenar por **IP address** (Dirección IP) o **Stream Name** (Nombre de flujo).

Descripción de las columnas

Stream Name (Nombre de flujo): indica el nombre configurado y asociado a una dirección IP en el mapa de alias. Consulte *Alias Map (Mapa de alias)* en la página 325 para obtener más detalles.

Dest IP Address (Dirección IP de destino): indica la dirección IP asociada al flujo presente en el mapa de alias.

Al seleccionar **From Alias Map** (Desde mapa de alias), se pueden añadir flujos utilizando los flujos predefinidos disponibles en **Alias Map** (Mapa de alias).

- Select Range (Seleccionar intervalo) selecciona todos los flujos ubicados entre dos flujos seleccionados, incluidos los límites. Para seleccionar un intervalo, seleccione un primer flujo de la lista, seleccione un segundo flujo de la lista y pulse press Select Range (Seleccionar intervalo) para completar la selección.
- Select All (seleccionar todos) permite seleccionar todos los flujos de la lista.
- Deselect All (cancelar toda la selección) permite cancelar la selección de todos los flujos de la lista.

Al seleccionar **Manual Entry** (entrada manual), se puede añadir un flujo determinado.

 Destination IP Address (Dirección IP de destino): introduzca la dirección IP del flujo que se va a añadir.

Al seleccionar **Manual Range Entry** (entrada de escala manual), se puede añadir una escala de flujos.

- Dest IP Address From (Dirección IP de destino desde): introduzca la primera dirección IP del intervalo.
- Dest IP Address To (Dirección IP de destino a): introduzca la última dirección IP de la escala.

El intervalo se aplica sólo a la última parte de la dirección IP. El ejemplo siguiente permite añadir todas las direcciones IP de 224.10.10.25 a 224.10.30, ambas incluidas.

Dirección IP de destino desde	224.10.10. 25
Dirección IP de destino a	224.10.10. 30

En este ejemplo, los flujos que se añadirán serán: 224.10.10.25, 224.10.10.26, 224.10.10.27, 224.10.10.28, 224.10.10.29 y 224.10.10.30.

Al seleccionar **IGMP Auto-Join** (unión IGMP automática), se activa la capacidad de unión automática para todos los flujos recién añadidos.

Press **OK** (Aceptar) para aceptar los flujos seleccionados que se van a añadir a la lista de control.

Press Cancel (Cancelar) para ignorar todos los cambios.

Botón Delete (Eliminar)

El botón **Delete** (Eliminar) elimina los flujos desde la lista de control de flujos. Los flujos se pueden ordenar por **IP address** (Dirección IP) o **Stream Name** (Nombre de flujo).

Delete Stream			×
Stream Name	Dest IP Address	▲	From Monitored List
BARKER	239.1.1.1		
WLBT	239.1.1.2		Select Range
WCBI	239.1.1.3		Select All
WDAM	239.1.1.4	*	
WTVA	239.1.1.5		Deselect All
VTCW	239.1.1.6		C. Manual Estav
WLOX	239.1.1.7		Destination IP Address
WAPT	239.1.1.8		0.0.0.0
WHLT	239.1.1.9		
WXXV	239.1.1.10		C Manuel Range Entry
WXMS	239.1.1.11		Dest IP Address From
WLOV	239.1.1.12	Ŧ	Dest ID Address Te
WMPN	239.1.1.13		0.0.0.0
WRBJ	239.1.1.14		,
WUFX	239.1.1.15		
WDBD	239.1.1.16		
0			OK Cancel

Descripción de las columnas

Stream Name (Nombre de flujo): indica el nombre configurado y asociado a una dirección IP en el mapa de alias. Consulte *Alias Map (Mapa de alias)* en la página 325 para obtener más detalles.

Dest IP Address (Dirección IP de destino): indica la dirección IP asociada al flujo controlado.

Al seleccionar **From Monitored List** (desde la lista controlada), se pueden eliminar los flujos desde la lista controlada.

- Select Range (Seleccionar intervalo) selecciona todos los flujos ubicados entre dos flujos seleccionados, incluidos los límites. Para seleccionar un intervalo, seleccione un primer flujo de la lista, seleccione un segundo flujo de la lista y pulse press Select Range (Seleccionar intervalo) para completar la selección.
- Select All (seleccionar todos) permite seleccionar todos los flujos de la lista.
- Deselect All (cancelar toda la selección) permite cancelar la selección de todos los flujos de la lista.

Al seleccionar **Manual Entry** (entrada manual), se puede eliminar un flujo determinado.

 Destination IP Address (Dirección IP de destino): introduzca la dirección IP del flujo que se va a eliminar.

Al seleccionar **Manual Range Entry** (entrada de escala manual), se puede eliminar una escala de flujos.

- Dest IP Address From (Dirección IP de destino desde): introduzca la primera dirección IP del intervalo.
- Dest IP Address To (dirección IP destino a): introduzca la última dirección IP de la escala.

El intervalo se aplica sólo a la última parte de la dirección IP. El ejemplo siguiente permite eliminar todas las direcciones IP de 224.10.10.25 a 224.10.30, ambas incluidas.

Dirección IP de destino desde	224.10.10. 25
Dirección IP de destino a	224.10.10. 30

En este ejemplo, los flujos que se eliminarán serán: 224.10.10.25, 224.10.10.26, 224.10.10.27, 224.10.10.28, 224.10.10.29 y 224.10.10.30.

Press **OK** (Aceptar) para aceptar los flujos seleccionados que se van a eliminar de la lista de control.

Press Cancel (Cancelar) para ignorar todos los cambios.

Nota: si pulsa el botón Delete (Eliminar) mientras la función Auto-Add (Añadir automáticamente) (consulte la página 304) está activada, los flujos que se habían eliminado se volverán a añadir. Para evitar que esto suceda, desactive la función Auto-Add (Añadir automáticamente) y utilice la opción Manual Add (Añadir manualmente) (consulte la página 305) para añadir nuevos flujos.

Botón IGMP

El botón **IGMP** facilita la gestión de las funciones de IGMP asociadas a los flujos de multidifusión presentados en la lista de control de flujos de Overview (Resumen). Permite utilizar controles específicos (en relación con el flujo o para un intervalo) que están adaptados al estado de ejecución del caso de prueba: detenido o iniciado. Al detener el caso de prueba, aparecen controles de gestión como Enable Auto-Join (Activar unión automática) v **Disable Auto-Join**(Desactivar unión automática) con los que se activa y desactiva respectivamente la capacidad de unirse a un grupo de multidifusión al iniciar un caso de prueba. Cuando se inicia el caso de prueba, estos controles cambian respectivamente a Join (Unión) y Leave (Abandono) para unirse o abandonar inmediatamente un grupo de multidifusión tras la selección. Tenga en cuenta que, durante la ejecución de un caso de prueba, si selecciona el botón **Join** (Unión), también se activará IGMP Auto-Join (Unión IGMP automática). Lo mismo ocurre si se selecciona el botón Leave (Abandono): por ejemplo, tras la solicitud de abandono (si se ha enviado siguiendo las normas RFC 2236), se desactivará IGMP Auto-Join (Unión IGMP automática).

Nota: al detener el caso de prueba se enviará automáticamente una solicitud de abandono para liberar todos los flujos de los estados de unión en proceso y de unido.

IGMP					×
Stream Name	Dest IP Address	Auto Join	Join Status	_	Management
BARKER	239.1.1.1		0		Enable Disable
WLBT	239.1.1.2		0		
WCBI	239.1.1.3		0	±	Selection Options
WDAM	239.1.1.4		0		Select Range
WTVA	239.1.1.5		0		
VTCW	239.1.1.6		0		Deselect All
WLOX	239.1.1.7		0		Select All
WAPT	239.1.1.8		0		
WHLT	239.1.1.9		0		
WXXV	239.1.1.10		0	H	
WXM5	239.1.1.11		0	Ŧ	
WLOV	239.1.1.12		0		
WMPN	239.1.1.13		0		
WRBJ	239.1.1.14		0	I	
WUFX	239.1.1.15		0		
Multicast Group 21 Au	uto-Join 0 Joined 0	Failed 0	Idle 21	1	Close

Los flujos se pueden ordenar por **Stream Name** (Nombre de flujo), **Dest IP address** (Dirección IP de destino), **Auto Join** (Unión automática) o **Join Status** (Estado de unión). Si se ordenan por **Auto Join** (Unión automática), los flujos se ordenarán de la manera siguiente: activado-desactivado o desactivado-activado. Si se ordenan por **Join Status** (Estado de unión), los flujos se ordenarán de la manera siguiente: **Failed** (fracaso)-**Joined** (unido)-**Joining** (unión en proceso)-**Idle** (inactivo) o **Idle** (inactivo)-**Joining** (unión en proceso)-**Joined** (unido)-**Failed** (fracaso) (consulte **Join-Status** (estado de unión) en la página 309 para obtener más detalles).

Descripción de las columnas

Stream Name (Nombre de flujo): indica el nombre configurado y asociado a una dirección IP en el mapa de alias. Consulte *Alias Map (Mapa de alias)* en la página 325 para obtener más detalles.

Dest IP Address (Dirección IP de destino): indica la dirección IP asociada al flujo.

Auto-Join (Unión automática): indica si la función de unión automática está activada 🔮 o desactivada (en blanco, sin icono).

Join Status (Estado de unión): sólo indica el estado de unión de un flujo de multidifusión. Consulte **Join-Status** (Estado de unión) en la página 309 para obtener más información.

Gestión

Botón Enable Auto-Join/Join (Permitir unión automática/unión): este botón cambia de Enable Auto-Join (activar unión automática) a Join (unión) al iniciar la prueba.

Enable Auto-Join (Permitir unión automática), que aparece al detener la prueba, activa la función de unión IGMP automática. La función **IGMP Auto-Join** (Unión IGMP automática) configura el sistema enviar una solicitud de unión a grupos de multidifusión al iniciar la prueba.

Join (unión), disponible al iniciar la prueba, envía una solicitud de unión a los flujos de multidifusión seleccionados y activa la función de unión IGMP automática para dichos flujos. Botón Disable Auto-Join/Leave (desactivar unión automática/abandono): este botón cambia de Disable Auto-Join (desactivar unión automática) a Leave (abandono) al iniciar la prueba.

Disable Auto-Join (desactivar unión automática), disponible al detener la prueba, desactiva la función de unión IGMP automática.

Leave (abandono), disponible al iniciar la prueba, envía una solicitud de abandono de los flujos de multidifusión seleccionados y desactiva la función de unión IGMP automática para dichos flujos.

Opciones de selección

- Select Range (Seleccionar intervalo) selecciona todos los flujos ubicados entre dos flujos seleccionados, incluidos los límites. Para seleccionar un intervalo, seleccione un primer flujo de la lista, seleccione un segundo flujo de la lista y pulse press Select Range (Seleccionar intervalo) para completar la selección.
- Select All (seleccionar todos) permite seleccionar todos los flujos de la lista.
- Deselect All (cancelar toda la selección) permite cancelar la selección de todos los flujos de la lista.

Estadísticas

 Multicast Group (Grupo de multidifusión): indica la cantidad de flujos de multidifusión disponible. ➤ Join Status (Estado de unión): Join-Status (Estado de unión) se representa mediante los iconos siguientes. Los iconos se vuelven sombreados cuando la prueba se detiene.

Icono	estado	Description (Descripción)
0	Unión automática	Indica el número actual de flujos controlados configurado para la unión automática.
0	Unido	Indica el número actual de flujos controlados en estado unido.
8	Failed (Fallo)	Indica el número actual de flujos controlados en estado de fallo.
•	Inactivo	Indica el número de flujos de multidifusión controlados que no tienen activada la solicitud de unión IGMP.

Botón Close (cerrar): cierra la ventana IGMP.

Alias Map (Mapa de alias)

Permite crear una tabla estableciendo la relación entre una dirección IP de destino y un nombre de flujo.

En la ficha **Overview** (Resumen), pulse el botón **Alias Map** (Mapa de alias).

IPTV Alias Map			×
Stream Name	Dest IP Address		File
BARKER	239.1.1.1		New
WLBT	239.1.1.2		Import
WCBI	239.1.1.3	*	
WDAM	239.1.1.4		Export
WTVA	239.1.1.5		Alias
VTEW	239.1.1.6		Add
WLOX	239.1.1.7		
WAPT	239.1.1.8		Delete
WHLT	239.1.1.9	•	Edit Selected
WXXXV	239.1.1.10		Stream Name
WXMS	239.1.1.11	L I	
WLOV	239.1.1.12		Dest IPAddress
WMPN	239.1.1.13		
WRBJ	239.1.1.14	T	
WUFX	239.1.1.15		
0	Total 155		Close

► File (archivo)

- > New (nuevo) permite borrar la lista de mapa de alias IPTV actual.
- Import (Importar) permite importar un archivo en formato csv que contenga la lista de nombres de flujos y las direcciones IP asociadas. Tenga en cuenta que al importar un mapa de alias, se borrará el mapa usado en ese momento.

El **mapa de alias** debe ser un archivo **csv** con un formato predefinido: nombre de flujo, dirección IP de destino. Las entradas de flujos deben estar en líneas separadas. Por ejemplo: EXFO, 244.1.1.1. El formato predefinido **csv** usa el delimitador de coma "," en inglés y otro de punto y coma ";" en otros idiomas. Asegúrese de utilizar los caracteres delimitadores sólo para separar el nombre de flujo y la dirección IP.

- ► Export (Exportar) permite guardar/exportar la lista de mapa de alias IPTV actual. El formato del archivo exportado es csv.
- ➤ Alias
 - Add (Añadir) permite introducir una nueva entrada de mapa de alias en la lista de mapa de alias IPTV. Utilice los campos Stream Name (Nombre de flujo) y Dest IP Address (Dirección IP de destino) en Edit Selected (Editar seleccionados) para introducir la información necesaria para completar la adición.
 - **> Delete** (eliminar) permite eliminar los alias seleccionados.
- ► Edit Selected (Editar seleccionados)
 - Stream Name (Nombre de flujo): introduzca o modifique el nombre del flujo de alias seleccionado. Se permite un máximo de 20 caracteres.
 - Dest IP Address (Dirección IP de destino): permite introducir o modificar la dirección IP de destino del flujo de alias seleccionado.

➤ Estadísticas

- Total indica el número de flujos en la tabla de IPTV Alias Map (mapa de alias IPTV)
- ➤ Botón Close (cerrar): permite cerrar la ventana IPTV Alias Map (mapa de alias IPTV).
- **Nota:** debido a que el mapa de alias se gestiona de forma local mediante la aplicación, asegúrese de utilizar el mismo mapa de alias cuando utilice Visual Guardian Lite. Consulte File (archivo) en la página 325 para obtener más información sobre la exportación y la importación de un mapa de alias.

MDI/TR 101 290

La página MDI/TR 101 290 contiene las estadísticas detalladas asociadas a la primera información de alerta proporcionada en la página de resumen para las medidas del índice de envío de medios e informe técnico (TR) 101 290 de DVB (fluctuación PCR y prioridad 1). Esta página se puede usar para entender mejor el comportamiento del flujo en el tiempo. Además, proporciona la configuración global asociada a cada umbral admitido asociado a las medidas predefinidas.

Para acceder a la ficha MDI/TR 101 290, press TEST (PRUEBA), IPTV y MDI/TR 101 290.

Stream	- 239.1.1.1			<u> </u>			
H C		Seconds		Average	Minimum	Maximum	Delay Factor (ms)
	Delay Factor (ms)	0	7.03	7.03	7.02	7.03	10
	Media Loss Rate (pps)	0	0	0	0	0	Media Loss Rate (pps)
	Virtual Buffer Size (bytes)		1318	1317	1315	1318	0
TD 101 2	90						TR 101 290 Threshold
нс		Seconds		Average	Minimum	Maximum	PCR Jitter (ms)
99	PCR Jitter (ms)	0	0.0	0.0	0.0	0.0	10
Priority	1						PAT Error2 (s)
нс		Seconds	Count				0.5
0	TS Sync Loss	0					PMT Error2 (s)
0	Sync Byte Error	0	0				0.5
	PAT Error2	0					PID Error (s)
	CC Error	0	0				1.0
	PMT Error2	0					
	PID Error Video	0					
	PID Error Audio	0					

Las estadísticas están disponibles sólo para los flujos SPTS MPEG-2 TS.

Flujo

La ventana emergente Select Stream (Seleccionar flujo) permite la selección de un flujo para ver sus estadísticas/umbrales.

Select Stream		×
Stream Name	Dest IP Address 🔺	-
BARKER	239.1.1.1	
WLBT	239.1.1.2	±
WCBI	239.1.1.3	
WDAM	239.1.1.4	
WTVA	239.1.1.5	
VTCW	239.1.1.6	-
WLOX	239.1.1.7	
WAPT	239.1.1.8	¥
WHLT	239.1.1.9	
WXXV	239.1.1.10	<u> </u>
Search Stream Name	Destination IP Address OK Can	cel

Seleccione un flujo de la lista pressing sobre él o realice una búsqueda en la lista de flujos introduciendo su **Stream Name** (Nombre de flujo) o **Destination IP Address** (Dirección IP de destino). Al introducir un valor de **Stream Name** (Nombre de flujo) o de **Destination IP Address** (Dirección IP de destino) se produce una búsqueda inmediata pressing **OK** (Aceptar). Después de la búsqueda, el flujo aparece resaltado si se encuentra; si no es así, se mantiene la selección previa.

MDI (índice de envío de medios)

El uso del índice de envío de medios como una medida de prueba proporciona herramientas para medir y diagnosticar impedimentos inducidos por la red para medios de flujo IPTV. El factor de retardo (DF), junto con la proporción de pérdida de medios (MLR), proporciona una medida de calidad (calidad de servicio) de un flujo de medios entregados, que se puede correlacionar con la calidad de la experiencia final (QoE) de los usuarios finales.

- > Delay Factor (ms) (Factor de retardo en ms): el factor de retardo (DF) proporciona una medida de la variación de retardo máximo del paquete en el periodo de 1 segundo. En otras palabras, la medida representa en milisegundos qué capacidad de búfer se necesitará en el siguiente elemento de bajada de red para compensar la fluctuación de paquetes de medios. Tenga en cuenta que por definición (como se detalla en RFC 4445) se comunica un valor de DF que representa un mínimo de un paquete en línea (en ms) cuando no existe ninguna fluctuación en la red. Este valor representa el tamaño mínimo del búfer (en ms) necesario para procesar correctamente un paquete de medios y cambia en función de la velocidad de medios en el flujo. Por ejemplo, si no hay fluctuación en la red, un flujo habitual en televisión estándar con velocidad de medios de 3,75 Mbps presentaría un factor de retardo de 2.81 ms mientras que en un fluio en televisión de alta definición de 10 Mbps, el factor de retardo sería de 1,05 ms. También se muestran los valores Average, Minimum (Medio, Mínimo) y Maximum (Máximo).
- Media Loss Rate (pps) (Proporción de pérdida de medios en pps): indica el número de paquetes perdidos en el último segundo (paquetes por segundo) según RFC 4445; los paquetes fuera de servicio y los paquetes duplicados se consideran paquetes perdidos. También se muestran los valores de Average, Minimum (Medio, Mínimo) y Maximum (Máximo).

- Virtual Buffer Size (Bytes) [tamaño del búfer virtual (bytes)]: proporciona una medición del tamaño del búfer que necesitaría un elemento de bajada de red para gestionar la variación de retardo en el último segundo. También se muestran los valores de Average, Minimum (Medio, Mínimo) y Maximum (Máximo).
- **Nota:** El factor de retardo (y el tamaño de búfer virtual asociado) pueden cambiar en función del tipo de flujo: Velocidad de bits constante (CBR) o velocidad de bits variable (VBR). Para CBR, los flujos deben tener los valores de tiempo entre llegadas relativamente estables para cada flujo, mientras que los valores de VBR diferirán considerablemente dependiendo de la variabilidad de velocidades de medios en el flujo. En el caso de flujos VBR, puede que el DF no sea un indicador directo de la experiencia del usuario final. Sin embargo, el factor de retardo máximo puede ser útil si éste se muestrea durante la puesta en marcha del servicio IPTV para crear una base para el funcionamiento de la red. Una vez determinado el valor más alto, éste se puede usar como un indicador de problemas de red si es un valor cruzado. El umbral de DF se debe ajustar según el tipo de flujos utilizados en la red controlada. Se deben usar valores del umbral de DF más altos que el que se controla en condiciones ideales para evitar que se produzca una alarma innecesaria.

Umbral MDI

MDI Threshold (umbral MDI) se aplica a todos los flujos.

- Delay Factor (ms) (Factor de retardo en ms): define el valor en el que se declara la alarma si el valor es cruzado. Las opciones van de 1 a 1000 ms. La configuración por defecto es 10 ms. La casilla de verificación Delay Factor (ms) (Factor de retardo en ms) está seleccionada de manera predeterminada. Al desactivar la casilla de verificación Delay Factor (ms) (Factor de retardo en ms), se desactivará la alarma para esta medida.
- Media Loss Rate (pps) (Proporción de pérdida de medios en pps): define el valor en el que se declara la alarma si el valor es cruzado. Las opciones van de 0 a 100 pps. El valor por defecto es 0 pps. La casilla de verificación Medial Loss Rate (pps) (Proporción de pérdida de medios en pps) está seleccionada de manera predeterminada. Al desactivar la casilla de verificación Media Loss Rate (pps) (Proporción de pérdida de medios en pps) se desactivará la alarma para esta medida.
- **Nota:** Se deben usar valores del umbral de DF más altos que el que se controla en condiciones ideales para evitar que se produzca una alarma innecesaria.

TR 101 290

TR 101 290 determina la integridad del flujo de transporte MPEG-2 a través de la red. Los impedimentos medibles en el flujo de transporte MPEG-2 pueden suceder en el origen o durante el tránsito por la red.

PCR Jitter (ms) (fluctuación de la referencia del reloj del programa): indica la diferencia absoluta entre una referencia conocida y el valor PCR descodificado de los paquetes de transporte de flujo MPEG-2 en el último segundo. También se muestran los valores de Average, Minimum (Medio, Mínimo) y Maximum (Máximo).

Prioridad 1

Las medidas de prioridad 1 son las medidas de emisión de vídeo digital (DVB) definidas para controlar los parámetros básicos accesibles en el encabezado del paquete de TS. Dichos parámetros son necesarios para validar las capacidades de descodificación del flujo de transporte. Se pueden controlar los parámetros siguientes:

TS Sync Loss (Pérdida de sincronización de TS): indica que al menos 2 bytes de sincronización consecutivos recibidos en el último segundo están dañados en el flujo MPEG-2 TS.

Sync Byte Error (Error de byte de sincronización): indica el número de errores de bytes de sincronización mientras se mantiene la sincronización para un MPEG-2 TS compuesto de 188 paquetes de bytes.

PAT Error2 (Error2 de PAT): indica que cualquiera de las siguientes condiciones ha aparecido durante un intervalo de 1 segundo para un flujo:

- ► Secciones con table_id distinta a 0x00 encontradas en PID 0x0000.
- ► Scrambling_control_field no es 00 para PID 0x0000.
- No han aparecido secciones con table_id 0x00 durante el periodo definido por el usuario (consulteTR 101 290 Threshold (Umbral TR 101 290) en la página 334) en PID 0x0000

CC Error (Error de contador de continuidad): indica el número de errores de continuidad experimentados para todos los PID controlados cuando se reciben los paquetes.

PMT Error2 [Error2 de PMT]: indica que cualquiera de las siguientes condiciones ha aparecido durante un intervalo de 1 segundo para un flujo:

- Scrambling_control_field no es 00 para todos los paquetes que contengan información de secciones con table_id 0x02 en cada program_map_PID al que se refieren en la PAT.
- Secciones con table_id 0x02 no aparecen para el periodo definido por el usuario (consulteTR 101 290 Threshold (Umbral TR 101 290) en la página 334) en cada program_map_PID al que se refiere en el PMT.

PID Error Video (Vídeo con error de PID): Indica que no se recibe el PID en un flujo de vídeo para un periodo definido por el usuario. Los tipos de flujos de vídeo compatibles detectados son **MPEG-2**, **MPEG-4 Part 2** (MPEG-4 Parte 2), **H.264/MPEG-4 Part 10** (H.264/MPEG-4 Parte 10) y **VC-1**

PID Error Audio (Audio con error de PID): Indica que no se recibe el PID en un flujo de audio para un periodo definido por el usuario. Los tipos de flujos de audio compatibles detectados son **MPEG-1**, **MPEG-2**, **MPEG-2** AAC, AC3 y MPEG-4 AAC.

TR 101 290 Threshold (Umbral TR 101 290)

Los parámetros de **TR 101 290 Threshold** (umbral TR 101 290) se aplican a todos los flujos.

- PCR Jitter (ms) (Fluctuación PCR en ms): define el valor en el que se declara la alarma si el valor es cruzado. Las opciones van de 1 a 1000 ms. La configuración por defecto es 10 ms. La casilla de verificación PCR Jitter (ms) (Factor de retardo en ms) está seleccionada de manera predeterminada. Al desactivar la casilla de verificación PCR Jitter (ms) (Fluctuación PCR en ms), se desactivará la alarma para esta medida.
- PAT Error2 (s) (Error2 de PAT en s): define el valor en el que se declara la alarma si el valor es cruzado. Las opciones van de 0,1 a 5,0s. La configuración por defecto es 0,5s. La casilla de verificación PAT Error2 (s) está seleccionada de manera predeterminada. Al desactivar la casilla de verificación PAT Error2 (s) (Error2 de PAT en s), se desactivará la alarma para esta medida.
- PMT Error2 (s) (Error2 de PMT en s): define el valor en el que se declara la alarma si el valor es cruzado. Las opciones van de 0,1 a 5,0s. La configuración por defecto es 0,5s. La casilla de verificación PMT Error2 (s) está seleccionada de manera predeterminada. Al desactivar la casilla de verificación PMT Error2 (s) (Error2 de PAT en s), se desactivará la alarma para esta medida.
- PID Error(s) [error de PID (s)]: define el valor en el que se declara la alarma si el valor es cruzado. Las opciones van de 0,1 a 5,0 segundos. La configuración por defecto es 1,0 s. La casilla de verificación PID Errors (s) (Errores de PID en s) está seleccionada de manera predeterminada. Al desactivar la casilla de verificación PID Errors (s) (Errores de PID en s) se desactivará la alarma para esta medida.

IGMP

Las funciones de IGMP asociadas con todos los fluios son compatibles actualmente con la versión 2 de la norma IGMP (RFC 2236). Mediante la página IGMP es posible controlar y configurar las funciones de IGMP asociadas a un flujo específico definido por una dirección IP de multidifusión. Además, permite utilizar controles específicos que están adaptados al estado de ejecución del caso de prueba: detenido o iniciado. Al detener el caso de prueba, aparecen controles de gestión como Enable Auto-Join (Activar unión automática) y Disable Auto-Join (Desactivar unión automática) con los que se activa y desactiva respectivamente la capacidad de unirse a un grupo de multidifusión al iniciar un caso de prueba. Cuando se inicia el caso de prueba, estos controles cambian respectivamente a Join (Unión) y Leave (Abandono) para unirse o abandonar inmediatamente un grupo de multidifusión tras la selección. Tenga en cuenta que, durante la ejecución de un caso de prueba, si selecciona el botón de unión, también se activará IGMP Auto-Join (Unión IGMP automática). Lo mismo ocurre si se selecciona el botón Leave (Abandono); por ejemplo, tras la solicitud de abandono (si se ha enviado siguiendo las normas RFC 2236), se desactivará IGMP Auto-Join (Unión IGMP automática). Esta página también presenta un resumen estadístico de IGMP de todos los grupos de multidifusión que se están controlando mediante FTB-8510B y proporciona una selección que permite visualizar las estadísticas aplicables a un solo flujo. Además, esta página se utiliza para configurar el valor de Join Timeout (Tiempo de espera de unión) para determinar el éxito o el fallo de una solicitud de unión.

Nota: al detener el caso de prueba se enviará automáticamente una solicitud de abandono para liberar todos los flujos de los estados de unión en proceso y de unido.

Multicast Group Stream - 239.1.1.1 • Management Results Auto Join Join Status Count Successful Failed Join Request 2 Constatus Enable Auto-Join Disable Auto-Join Leave Request 2 Specific Query 0 Summary (All Multicast Groups) Multicast -----— Join Status — Results -----Count Count Count Successful Failed Count Group 25 Join Request 50 😢 Failed 🛛 5 Leave Request 50 Joining 0 General Query 0 🔘 Idle 0 Configuration 2 💌 Join Timeout (s) 5 IGMP Version Discovery Overview MDI/TR 101 290 IGMP Stream Info

Para acceder a la ficha IGMP, press TEST (PRUEBA), IPTV e IGMP.

Grupo de multidifusión

Flujo

La ventana emergente Select Stream (Seleccionar flujo) permite la selección de un flujo para ver sus estadísticas/umbrales.

Select Stream		×		
Stream Name	Dest IP Address 🔺	-		
BARKER	239.1.1.1			
WLBT	239.1.1.2	±		
WCBI	239.1.1.3			
WDAM	239.1.1.4			
WTVA	239.1.1.5			
VTtW	239.1.1.6			
WLOX	239.1.1.7			
WAPT	239.1.1.8			
WHLT	239.1.1.9			
WXXV	239.1.1.10			
Search Stream Name	Destination IP Address			
		ncei		

Seleccione un flujo de la lista pressing sobre él o realice una búsqueda en la lista de flujos introduciendo su **Stream Name** (Nombre de flujo) o **Destination IP Address** (Dirección IP de destino). Al introducir un valor de **Stream Name** (Nombre de flujo) o de **Destination IP Address** (Dirección IP de destino) se produce una búsqueda inmediata pressing **OK** (Aceptar). Después de la búsqueda, el flujo aparece resaltado si se encuentra; si no es así, se mantiene la selección previa.

Nota: El campo Stream (flujo) muestra el nombre del flujo seguido de "Unicast -IGMP Not Supported" (Unidifusión - IGMP no admitido) cuando el flujo seleccionado es una dirección IP de unidifusión.

Gestión

- Auto-Join (Unión automática): indica que la función de unión automática está activada o desactivada (sólo para flujos de multidifusión).
- Join Status (Estado de unión): sólo indica el estado de unión de un flujo de multidifusión. El estado de unión se vuelve gris cuando se detiene la prueba.

lcono	estado	Description (Descripción)
?	Unión en proceso	El estado de unión en proceso aparece tras enviar una solicitud de unión hasta que se recibe el flujo deseado o finaliza el tiempo de espera de unión.
0	Unido	El estado unido aparece cuando se recibe el flujo deseado antes de que finalice el tiempo de espera de unión.
8	Failed (Fallo)	El estado de fallo aparece cuando no se detecta el flujo deseado dentro del tiempo de espera de unión.
0	Inactivo	El estado inactivo aparece de forma inicial para todos los flujos de multidifusión que no son miembros de un grupo y no tienen el estado de fracaso.

 Botón Enable Auto-Join/Join (Permitir unión automática/unión): este botón cambia de Enable Auto-Join (activar unión automática) a Join (unión) al iniciar la prueba.

Enable Auto-Join (Permitir unión automática), que aparece al detener la prueba, activa la función de unión IGMP automática. La función **IGMP Auto-Join** (Unión IGMP automática) configura el sistema enviar una solicitud de unión a grupos de multidifusión al iniciar la prueba. **Join** (unión), disponible al iniciar la prueba, envía una solicitud de unión a los flujos de multidifusión seleccionados y activa la función de unión IGMP automática para dichos flujos.

 Botón Disable Auto-Join/Leave (Desactivar unión automática/abandono): este botón cambia de Disable Auto-Join (desactivar unión automática) a Leave (abandono) al iniciar la prueba.

Disable Auto-Join (desactivar unión automática), disponible al detener la prueba, desactiva la función de unión IGMP automática.

Leave (abandono), disponible al iniciar la prueba, envía una solicitud de abandono de los flujos de multidifusión seleccionados y desactiva la función de unión IGMP automática para dichos flujos.

Results (Resultados)

Los siguientes resultados se aplican al flujo de multidifusión seleccionado.

► Join Request (Solicitud de unión)

Count (recuento): indica el número de solicitudes de unión enviadas.

Successful (Correcto): indica el número de flujos recibidos antes de que transcurra el tiempo de espera de unión.

Failed (Fallo): indica el número de flujos sin detectar dentro del tiempo de espera de unión.

- Leave Request (Solicitud de abandono): indica el número de solicitudes de abandono del grupo para el flujo de multidifusión seleccionado.
- Specific Query (Consulta específica): indica el número de consultas específicas del grupo recibidas.

Summary (All Multicast Groups) [Resumen (todos los grupos de multidifusión)]

Las siguientes opciones proporcionan estadísticas sobre todos los flujos de multidifusión controlados.

➤ Multidifusión

Group (Grupo): indica la cantidad total de flujos de multidifusión.

► Estado de unión

lcono	estado	Description (Descripción)
0	Unido	Indica el número actual de flujos controlados en estado unido.
8	Failed (Fallo)	Indica el número actual de flujos controlados en estado de fallo.
•	Unión en proceso	Indica el número actual de flujos controlados en estado de unión en proceso.
•	Inactivo	Indica el número de flujos de multidifusión controlados para los que no se ha enviado ninguna solicitud de unión IGMP.

Results (Resultados)

► Join Request (Solicitud de unión)

Count (recuento): indica el número de solicitudes de unión enviadas para los flujos de multidifusión controlados.

Successful (Correcto): indica el número de solicitudes de unión correctas para los flujos de multidifusión controlados.

Failed (Fallo): indica el número de solicitudes de unión fallidas para los flujos de multidifusión controlados.

- Leave Request (Solicitud de abandono): indica el número de solicitudes de abandono para todos los flujos de multidifusión controlados.
- General Query (Consulta general): indica el número de consultas generales recibidas.

Configuration (configuración)

- ➤ IGMP Version (Versión de IGMP): indica la versión de IGMP compatible, que es la versión 2 de IGMP. Tenga en cuenta que la versión 2 es interoperativa con la versión 3 según la RFC 3376.
- Join Timeout (s) (Tiempos de espera de unión): el tiempo de espera de unión es el periodo máximo para recibir el flujo solicitado antes de que se declare un fallo. las opciones van de 1 a 1000 segundos. Por defecto, Join Timeout (Tiempo de espera de unión) está configurado en 5 segundos.

Stream Information (Información del flujo)

La ficha **Stream Info** (información de flujo) complementa la información proporcionada en la ficha MDI/TR 101 290 presentando la estructura del flujo, es decir, la encapsulación usada, el tipo de flujo de transporte, etc. Además, ofrece ayuda con respecto a la presencia de flujo para entender mejor la naturaleza de ciertas medidas obtenidas a partir de la página MDI/TR 101 290.

Para acceder a la ficha **Stream Info** (Información de flujo), press **TEST** (PRUEBA), **IPTV** e **Stream Info** (Información de flujo).

Stream 239.1.1.1 Identification Stream Name Encapsulation IPv4/UDP/MPEG-2 TS Transport Stream Type SPT5 Video Stream Type H.264/MPEG-4 Part 10	Duration 2008-04-11 13:41:39 Start Time 2000-038:23 Elapsed Time 0d 00:38:23 Presence Time 0d 00:38:13
Source Destin. IP Address 0.0.0.0 UDP Port I234 IP Address Ethernet IP Rate (Mbps) 1.527 Packet Size (Bytes) Packet Size (Bytes) Packet Count 326211 1	Average Minimum Maximum 1.551 0.032 1.58 1344 1344 1344
Media Average Minimum Maximum Rate (Mbps) 1.500 1.500 1.500 Discovery Overview MDI/TR 101 290 IGMP Stream Info	m Packet Count 2283477 Packet Loss Count 0

Flujo

La ventana emergente Select Stream (Seleccionar flujo) permite seleccionar un flujo para ver la información de su estructura.

elect Stream		2			
Stream Name	Dest IP Address 🔺	-			
BARKER	239.1.1.1				
WLBT	239.1.1.2	±			
WCBI	239.1.1.3				
WDAM	239.1.1.4				
WTVA	239.1.1.5	<u> </u>			
VTCW	239.1.1.6	•			
WLOX	239.1.1.7				
WAPT	239.1.1.8	Ŧ			
WHLT	239.1.1.9				
WXXV	239.1.1.10	Ľ			
Search Stream Name	Destination IP Address				
OK Cancel					

Seleccione un flujo de la lista pressing sobre él o realice una búsqueda en la lista de flujos introduciendo su **Stream Name** (Nombre de flujo) o **Destination IP Address** (Dirección IP de destino). Al introducir un valor de **Stream Name** (Nombre de flujo) o de **Destination IP Address** (Dirección IP de destino) se produce una búsqueda inmediata pressing **OK** (Aceptar). Después de la búsqueda, el flujo aparece resaltado si se encuentra; si no es así, se mantiene la selección previa.

Identificación

- **Stream Name** (Nombre de flujo): indica el nombre del flujo.
- Encapsulation (Encapsulación): indica cómo se transporta el flujo: IPv4/UDP/MPEG-2 TS, IPv4/UDP/RTP/MPEG-2 TS o Pending (Pendiente).
- ► **Transport Stream Type** (Tipo de flujo de transporte): indica el tipo de flujo de transporte MPEG-2: **SPTS**, **MPTS** o **Pending** (pendiente).
- Video Stream Type (Tipo de flujo de vídeo): indica el tipo de flujo de vídeo detectado: MPEG-2, MPEG-4 Part 2 (MPEG-4 Parte 2),
 H.264/MPEG-4 Part 10 (H.264/MPEG-4 Parte 10), VC-1 o Pending (pendiente).

Duración

- Start Time (hora de inicio): Indica el momento en el que ha comenzado el control de flujo. La hora de inicio del control de flujo corresponde, bien a la hora a la que el flujo se ha añadido durante la ejecución de la prueba, bien a la hora a la que se ha iniciado la prueba con el flujo añadido previamente a la lista de control.
- ► Elapsed Time (Tiempo transcurrido): indica el número de segundos transcurridos desde el inicio de la prueba de flujo seleccionada.
- Presence Time (Tiempo de presencia): indica el número de segundos que estuvo activo el flujo durante el periodo de control.

%: indica el porcentaje de actividad de flujo con respecto al periodo de control de flujo.

Source (Origen)

- ➤ IP Address (Dirección IP): indica la dirección IP del dispositivo que genera el flujo.
- UDP Port (Puerto UDP): indica el número del puerto UDP que se empleará para la generación de flujo.

Destination (Destino)

- ▶ IP Address (Dirección IP): indica la dirección IP del flujo controlado.
- UDP Port (Puerto UDP): indica el número de puerto UDP del flujo controlado.

Ethernet

 Bandwidth Utilization (%) (Utilización del ancho de banda en %): indica el uso del ancho de banda del flujo con respecto a la velocidad de enlace.

IP

- Rate (Mbps) (Velocidad en Mbps): indica el número de megabits recibidos en el último segundo (Mbps) para la dirección ID del flujo seleccionado. También se muestran los valores de velocidad de Average, Minimum (Medio, Mínimo) y Maximum (Máximo).
- Packet Size (Bytes) (Tamaño del paquete en bytes): indica el tamaño del paquete IP Average (medio), Minimum (mínimo) y Maximum (máximo) recibido durante el periodo de control del flujo.
- Packet Count (Recuento de paquetes): indica el número de paquetes IP recibidos durante el periodo de control del flujo excluidos los paquetes con error FCS.

Medios

- Rate (Mbps) (Velocidad en Mbps): indica el número de bits de medios recibidos en el último segundo (Mbps) para el flujo seleccionado. También se muestran los valores de velocidad de Average, Minimum (Medio, Mínimo) y Maximum (Máximo).
- Packet Count (Recuento de paquetes): indica el número de paquetes de medios recibidos durante el periodo de control del flujo.
- Packet Loss Count (Recuento de pérdida de paquetes): indica el número de paquetes de medios perdidos durante el periodo de control del flujo.
15 Fichas de RFC 2544

Nota: las fichas de RFC 2544 sólo están disponibles con la prueba RFC 2544.

		Dispo	onible con	
	Ficha	Ethernet	Canal de fibra ^a	Página
Configuración	Configuración global	Х		348
y resultados	Throughput (Configuración del caudal de tráfico)	Х		353
	Back-to-Back (Configuración de transmisión recíproca)	Х		358
	Frame Loss (Configuración de pérdida de tramas)	Х		363
	Latency (Latencia)	Х		368
	Graph (Gráfico)	Х		375

- a. No disponible con FTB-8510G.
- **Nota:** las mediciones de RFC 2544 se basan en todas las tramas válidas FCS de Ethernet recibidas sin tener en cuenta sus direcciones MAC ni IP.

Configuración global

Press TEST (PRUEBA), RFC 2544 y Global.

Configuration	Test Procedure
Frame Size Distribution	Test State
Distribution Quantity	Throughput
RFC 2544 7 7	
Frame Size (Bytes)	Sack-to-Back
64 128 256 512 1024 1280 1518	₩ Frame Loss
Flow Direction	I Latency
Bidirectional Coupled Status	Latency Measurement Mode
	One-Way LOPPS-R
Global Throughput Back-to-Back Frame Loss Latency	Graph

Configuration (configuración)

- ► Frame Size Distribution (distribución de tamaño de trama)
 - Distribution (Distribución): seleccione la distribución de tamaño de trama de la lista. Las opciones son RFC 2544 y User Defined (Definida por el usuario). La configuración por defecto es RFC 2544.
 - Quantity (Cantidad): la opción Quantity (cantidad) sólo está disponible cuando se haya seleccionado como distribución User Defined (Definida por el usuario). Seleccione la cantidad de tamaño de trama que se va a usar en la prueba. Las opciones van de 1 a 7. La configuración por defecto es 7.

► Frame Size (Bytes) (Tamaño de trama en bytes):

Para la distribución **RFC 2544**, proporciona valores de distribución de tamaño de trama predefinidos:

VLAN	Distribución de tamaño de trama
Sin VLAN	64 , 128 , 256 , 512 , 1024 , 1280 y 1518 .
Con 1 etiqueta de VLAN (C-VLAN)	68, 128, 256, 512, 1024, 1280 y 1518.
Con 2 etiquetas de VLAN (S-VLAN)	72, 128, 256, 512, 1024, 1280 y 1518.
Con 3 etiquetas de VLAN (E-VLAN)	76, 128, 256, 512, 1024, 1280 y 1518.

Para **User Defined Distribution** (distribución definida por el usuario), introduzca hasta siete valores de tamaño de trama.

VIAN	Frame Size (tamaño de trama)				
	Mínimo	Máximo ^a			
Sin etiqueta de VLAN	64 para IPv4; 70 para IPv6	16000			
1 etiqueta de VLAN (C-VLAN)	68 para IPv4; 74 para IPv6	16000			
2 etiquetas de VLAN (S-VLAN)	72 para IPv4; 78 para IPv6	16000			
3 etiquetas de VLAN (E-VLAN)	76 para IPv4; 82 para IPv6	16000			

a. El tamaño de trama máximo está limitado a 10000 para la interfaz de 10 Mbps.

- Flow Direction (Dirección de flujo): permite seleccionar la dirección del tráfico de prueba. Las opciones son:
 - **TX-to-RX** (TX a RX) para topología de puerto único.
 - P1-to-P2 (P1 a P2), P2-to-P1 (P2 a P1) y Bidirectional (Bidireccional) para topología de puertos duales. Disponible sólo con FTB-8510B.
 - Local to Remote (Local a remoto), Remote to Local (Remoto a local) y Bidirectional (Bidireccional) para Dual Test Sets (Conjuntos de pruebas duales).

Coupled Status (Estado acoplado): acopla el algoritmo de dirección de puerto para la dirección de flujo **Bidirectional** (Bidireccional).

Test Procedure (procedimiento de prueba)

- ▶ (Permitir) Test (Prueba): permite ejecutar las pruebas secundarias de RFC 2544. Las opciones son Throughput (Caudal de tráfico), Back-to-Back (Transmisión recíproca), Frame Loss (Pérdida de tramas) y Latency (Latencia). Todas las pruebas están seleccionadas por defecto a no ser que se establezca lo contrario en la configuración de prueba. Para FTB-8120NGE y FTB-8130NGE en el modo de medida de latencia de ida y vuelta, la prueba secundaria de latencia no está disponible cuando la dirección de flujo está establecida en Local to Remote (Local a remoto) o Remote to Local (Remoto a local).
- State (estado): indica el estado de las pruebas en curso Throughput (Caudal de tráfico), Back-to-Back (Transmisión recíproca), Frame Loss (Pérdida de tramas) y Latency (Latencia). Los estados posibles son:

" -- ": indica que aún no se ha ejecutado la prueba.

In Progress (En curso): indica que las pruebas **Throughput** (Caudal de tráfico), **Back-to-Back** (Transmisión recíproca), **Frame Loss** (Pérdida de tramas) o **Latency** (Latencia) están en curso.

Completed (Completada): indica que se ha completado la prueba.

Aborted (Cancelada): indica que se ha interrumpido la prueba (detenida).

Latency Measurement (Medición de latencia)

Nota: Disponible con los módulos FTB-8120NGE y FTB-8130NGE en el modo de conjunto de pruebas duales únicamente.

Latency Measurement Mode (Modo de medición de latencia): Permite seleccionar **Round-Trip** (Ida y vuelta) (por defecto) o **One-Way** (Unidireccional) como el modo de medición de latencia.

Para realizar una medida de latencia unidireccional, el módulo debe sincronizarse con una señal 1PPS externa (consulte *Clock (Reloj)* en la página 32). Una latencia unidireccional sólo es posible cuando los relojes de señal 1PPS locales y remotos son válidos. Las alarmas siguientes están disponibles con el modo de medición de latencia unidireccional.

LOPPS-L y **LOPPS-R** (Loss Of Pulse Per Second - Local/Remote [Pérdida de pulso por segundo - Remoto)] se declara cuando no se recibe ningún pulso o cuando no se recibe antes de 1 segundo \pm 6,6 μ s después del pulso anterior. LOPPS-R sólo se supervisa una vez que se ha establecido la conexión DTS.

Throughput (Configuración del caudal de tráfico)

El objetivo de esta prueba es identificar el caudal de tráfico del dispositivo en comprobación para el que no se produce pérdida de tramas. Tras iniciarse a una velocidad máxima de los medios, la velocidad converge hacia el caudal de tráfico más elevado sin pérdida de tramas en una prueba con una duración predefinida (**Test Time (Periodo de prueba)**). La búsqueda se hace con un método básico de desdoblamiento/doblamiento hasta que se alcanza un valor final. La prueba realiza el número de intentos definido [**Number of trials to average** (Promedio de n.º de intentos)]. Los parámetros **Accuracy** (Precisión) y **Nb of acceptable errors** (Nº de errores aceptable) especifican la precisión que debe tener el resultado. Al final se validarán los resultados el número de veces especificado [**Nb of validations** (Número de validaciones)]. La prueba se lleva a cabo para cada tamaño de trama definido.

Press **(Caudal de tráfico)TEST** (PRUEBA), **RFC 2544** y **Throughput** (Caudal de tráfico).

		1000 0000			490	
00:01 MP	4:55					
Accuracy		Frame Count				
1.0 %	• 🔹		TX-to-RX		_	
Nb. of Acceptable Errors		TX	-			
0		RX				
Nb. of Trials to Average		Throughput Re	sults			
1		Frame Size	TX-to-RX		_	Current Trial
Nh. of Validations		64				
1		128				, Lloit
- Mauinum Daha		256			_	bos
TX-to-RX		512			_	laver
100.0	% •	1024			_	Laver 1 2 3
		1290			_	Displayed Desufts
		1200			_	Companyed Results
Miniau an Talah Tina		1518				
minimum rest rime						
-						
obal Throughput Ba	ack-to-Back	Frame Loss	Latency	Graph		

Nota: Throughput (caudal de tráfico) debe estar activado en Test Procedure (procedimiento de prueba) en la página 351.

Configuration (configuración)

- Test Time (MM:SS) (Periodo de prueba (MM:SS)): introduzca el valor del periodo de prueba. Los valores posibles van de 1 segundo a 30 minutos. La configuración por defecto es 1 segundo (00:01).
- Accuracy (Precisión): introduzca el valor de precisión. La precisión no se basa en la Maximum Rate (Velocidad máxima) configurada, sino en la velocidad de línea de Ethernet.

Interfaz	Precisión						
	% Gbps MBps						
10 Mbps	de 0,1 a 10	de 0,00001 a 0,001	de 0,00125 a 0,125				
100 Mbps	de 0,1 a 10	de 0,0001 a 0,01	de 0,0125 a 1,25				
1000 Mbps	de 0,1 a 10	de 0,001 a 0,1	de 0,125 a 12,5				
10 Gbps	de 0,1 a 10	de 0,01 a 1	de 1,25 a 125				

> La configuración por defecto es 1%. Los valores posibles son:

Seleccione la unidad de medida de precisión. Las opciones son %, **MBps** y **Mbps**. La configuración por defecto es %.

- Nb. of Acceptable Errors (nº de errores aceptables): seleccione el número de errores aceptable para la prueba. Las opciones van de 0 a 10 errores. La configuración por defecto es 0 errores.
- Nb. of Trials to Average (promedio de nº de intentos): seleccione el número de veces que se generará la prueba de caudal de tráfico. Las opciones van de 1 a 50 intentos. La configuración por defecto es 1 intento.
- Nb. of Validations (nº de validaciones): seleccione el número de veces que se debe validar el resultado. Las opciones van de 1 a 50 veces. La configuración por defecto es 1 vez.

> Maximum Rate (Velocidad máxima):

TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): seleccione la velocidad máxima para la prueba. La configuración por defecto es 100% para 10/100/1000 Mbps y 10 Gig-E LAN, y 92.8571428571429% para 10 Gig-E WAN. P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B. Las opciones son:

Interfaz	Unidad	Valor				
Internaz	omaaa	de	а			
10 Mbps	%	0.005	100.0			
	Mb/s	0.0005	10.0			
100 Mbps	%	0.005	100.0			
	Mb/s	0.005	100.0			
1000 Mbps	%	0.005	100.0			
	Mb/s	0.05	1000.0			
10 Gig-E LAN	%	0.005	100.0			
	Gbps	0.0005	10.0			
10 Gig-E WAN	%	0.005	92.8571428571429			
	Gbps	0.0005	9.2857142857142865			

Seleccione la velocidad de la unidad. Las opciones son % y **Mbps/Gbps**. La unidad por defecto es %.

Minimum Test Time (Tiempo mínimo de prueba): indica el tiempo mínimo que necesita la prueba para realizarse en condiciones óptimas. El tiempo mínimo de prueba se calcula y se actualiza una vez que ha comenzado la prueba.

Results (Resultados)

► Estado de la prueba

--: indica que aún no se ha ejecutado la prueba.
In Progress (En curso): indica que la prueba está ejecutándose.
Completed (Completada): indica que se ha completado la prueba.
Aborted (Cancelada): indica que se ha interrumpido la prueba (detenida).

 Status Message (Mensaje de estado): proporciona el estado de la prueba. A continuación, se muestra la lista de mensajes de estado.

Sending learning frames (Enviando tramas de aprendizaje) Sending test frames (Enviando tramas de prueba) Test completed (Prueba completada) Aborted by user (Cancelada por el usuario) Aborted - Loss of remote connection (Cancelada - pérdida de conexión remota) Link down (enlace roto) Dirección MAC no resuelta

► Frames Count (Recuento de tramas)

TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): proporciona el número de tramas para la dirección indicada.P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.

- ➤ TX Frame Count (Recuento de tramas de TX): indica el número de tramas transmitidas.
- RX Frame Count (Recuento de tramas de RX): indica el número de tramas recibidas.

- > Throughput Results (Resultados del caudal de tráfico)
 - Frame Size (Tamaño de trama): indica los tamaños de tramas utilizados para la prueba. Se pueden mostrar hasta siete tamaños de trama distintos.
- **Nota:** El "--" indica que el resultado no está disponible porque aún no se ha ejecutado la prueba o el valor medido no es válido.
 - TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): proporciona el número de tramas para la dirección correspondiente. P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.
 - > Current Trial (Intento actual): indica el número de intento actual.
 - Units (Unidades): seleccione la unidad de resultados del caudal de tráfico. Las opciones son bps, Bps, Kbps, KBps, Mbps, MBps, Gbps, GBps, fps y %. La unidad por defecto es bps.
 - Layer (capa): seleccione las capas empleadas para calcular el caudal de tráfico. Las opciones son Layer 1,2,3 (Capa 1, 2, 3), Layer 2,3 (Capa 2, 3) y Layer 3 (Capa 3). La configuración por defecto es Layer 1,2,3 (Capa 1, 2, 3).

Layer 1,2,3 (Capa 1, 2, 3) incluye los valores de inactivo, preámbulo, delimitador de inicio de trama, dirección MAC, dirección IP y datos.

Layer 2,3 (Capa 2, 3) incluye la capa MAC, capa IP y datos.

Layer 3 (Capa 3) incluye la capa IP y datos.

Displayed Results (Resultados mostrados): seleccione el modo de visualización de resultados: Current (Actual), Minimum (Mínimo), Maximum (Máximo) o Average (Medio). La configuración por defecto es Current (Actual).

Back-to-Back (Configuración de transmisión recíproca)

El objetivo de esta prueba es determinar el número máximo de tramas que se puede enviar con un caudal de tráfico máximo sin pérdida de tramas. Se envía una ráfaga de tramas [Max. time worth of frames (Máx. valor de tiempo de tramas)] con tiempos de separación entre tramas mínimos al dispositivo en comprobación, y se cuenta el número de tramas enviado. Si el recuento de tramas transmitidas es igual al número de tramas enviadas, la longitud de la ráfaga se aumenta y se vuelve a ejecutar la prueba. Si el número de tramas enviadas es menor que el recuento de tramas transmitidas, la longitud de la ráfaga se reduce y se vuelve a ejecutar la prueba. El valor de transmisión recíproca consiste en el número de tramas de la ráfaga más larga que el equipo en comprobación (DUT) puede gestionar sin perder ninguna trama. La prueba realiza el número de intentos definido [Nb of trials to average (Promedio de n.º de intentos)]. Los parámetros Accuracy (Precisión) y Nb of acceptable errors (Nº de errores aceptable) especifican la precisión que debe tener el resultado. La prueba se lleva a cabo para cada tamaño de trama definido.

Press **(Transmisión recíproca)TEST** (PRUEBA), **RFC 2544** y **Back-to-Back** (Transmisión recíproca).

Nota: Back-to-Back (transmisión recíproca) tiene que estar activada en Configuración global en la página 348.

Configuration (configuración)

- Max. time worth of frame (MM:SS) [máx. valor de tiempo de tramas (MM:SS)]: las opciones van de 1 a 5 segundos. La configuración por defecto es 1 segundo (00:01).
- Accuracy (Frames) (Precisión en tramas): introduzca el valor de medición de precisión en tramas. Las opciones van de 1 a 50 tramas. La configuración por defecto es 1.
- Nb of Acceptable Errors (Nº de errores aceptable): seleccione el número de errores aceptable para la prueba. Las opciones van de 0 a 10 errores. La configuración por defecto es 0 errores.
- Nb of Trials to Average (promedio de nº de intentos): seleccione el número de veces que se generará la prueba de caudal de tráfico. Las opciones van de 1 a 100 intentos. La configuración por defecto es 1 intento.
- Nb of Burst (Nº de ráfagas): seleccione el número de ráfagas que se va a generar. Las opciones van de 1 a 10 ráfagas. La configuración por defecto es 1 ráfaga.
- Minimum Test Time (Seconds) (Tiempo mínimo de prueba en segundos): indica el tiempo mínimo que necesita la prueba para realizarse en condiciones óptimas. El tiempo mínimo de prueba se calcula y se actualiza una vez que ha comenzado la prueba.

Results (Resultados)

► Estado de la prueba

--: indica que aún no se ha ejecutado la prueba. In Progress (En curso): indica que la prueba está ejecutándose. Completed (Completada): indica que se ha completado la prueba. Aborted (Cancelada): indica que se ha interrumpido la prueba (detenida).

 Status Message (Mensaje de estado): proporciona el estado de la prueba. A continuación, se muestra la lista de mensajes de estado.

Sending learning frames (Enviando tramas de aprendizaje) Sending test frames (Enviando tramas de prueba) Test completed (Prueba completada) Aborted by user (Cancelada por el usuario) Aborted - Loss of remote connection (Cancelada - pérdida de conexión remota) Link down (enlace roto) Dirección MAC no resuelta

► Frames Count (Recuento de tramas)

TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): proporciona el número de tramas para la dirección indicada.P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.

- TX Frame Count (Recuento de tramas de TX): indica el número de tramas transmitidas.
- RX Frame Count (Recuento de tramas de RX): indica el número de tramas recibidas.

Back-to-Back (Configuración de transmisión recíproca)

- > Back-to-Back Results (Resultados de la transmisión recíproca)
 - Frame Size (Tamaño de trama): indica los tamaños de tramas utilizados para la prueba. Se pueden mostrar hasta siete tamaños de trama distintos.
- **Nota:** El "--" indica que el resultado no está disponible porque aún no se ha ejecutado la prueba o el valor medido no es válido.
 - TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): proporciona el número de tramas para la dirección correspondiente.P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.
 - > Current Trial (Intento actual): indica el número de intento actual.
 - Unit (unidad): seleccione la unidad de resultados del caudal de tráfico. Las opciones son bps, Bps, Kbps, KBps, Mbps, MBps, Gbps, GBps, fps, %, Bytes/Burst (Bytes/ráfaga) y Frames/Burst (Tramas/ráfaga). La unidad por defecto es Frames/Burst (Tramas/ráfaga).
 - Layer (capa): seleccione las capas empleadas para la prueba de transmisión recíproca. Las opciones son Layer 1,2,3 (Capa 1, 2, 3), Layer 2,3 (Capa 2, 3) y Layer 3 (Capa 3). La configuración por defecto es Layer 1,2,3 (Capa 1, 2, 3).

Layer 1,2,3 (Capa 1, 2, 3) incluye los valores de inactivo, preámbulo, delimitador de inicio de trama, dirección MAC, dirección IP y datos.

Layer 2,3 (Capa 2, 3) incluye la capa MAC, capa IP y datos.

Layer 3 (Capa 3) incluye la capa IP y datos.

 Displayed Results (Resultados mostrados): seleccione el modo de visualización de resultados: Current (Actual), Minimum (Mínimo), Maximum (Máximo) o Average (Medio). La configuración por defecto es Current (Actual).

Frame Loss (Configuración de pérdida de tramas)

El objetivo de esta prueba es determinar el porcentaje de tramas que se pierden por falta de recursos. Al comenzar con una velocidad máxima de medios, la prueba se lleva a cabo para un tamaño de trama específico y durante el periodo especificado [**Test Time** (Periodo de la prueba)]. La prueba se repite reduciendo el caudal de tráfico con la granularidad especificada (**Test granularity** (Granularidad de la prueba)] y, a continuación, se realiza nuevamente la prueba hasta que se producen dos intentos consecutivos en los que no se pierden tramas. La prueba realiza el número de intentos definido [**Nb of trials to average** (Promedio de n.º de intentos)]. Al final se validarán los resultados el número de veces especificado [**Final result validation** (Validación de resultados final)]. La prueba se lleva a cabo para cada tamaño de trama definido.

Press **(Pérdida de trama)TEST** (PRUEBA), **RFC 2544** y **Frame Loss** (Pérdida de trama).

nfiguration		Results					
est Time		Test State		Status Messa	age		
0:01	MM:SS	-					
est Granularity		Frame Count					
)	%		TX-to-RX		_		
b. of Trials to Averag	e	TX					
	-	RX			_		
aximum Rate		Frame Loss R	esults				
TX-to-RX		Frame Size	TX-to-RX		Current Trial		
100.0	%	- 64					
inimum Test Time —		128			Current Step (%)		
	_	256					
		512			Unit		
		1024			% Loss	_	
		1280			Displayed Step (%)		
		1518			- I	<u>~</u>	
		1			Displayed Results		
					Current	•	

Nota: Frame Loss (pérdida de trama) debe estar activada en Configuración global en la página 348.

Configuration (configuración)

- Test Time (MM:SS) (Periodo de prueba (MM:SS)): seleccione el valor del periodo de prueba. Los valores posibles van de 1 segundo a 30 minutos. La configuración por defecto es 1 segundo (00:01).
- ➤ Test Granularity (%) (Granularidad de la prueba en %): seleccione la granularidad de la prueba. La granularidad de la prueba es el intervalo de porcentaje entre cada valor de caudal de tráfico empleado para la prueba. Por ejemplo, un 10% de granularidad quiere decir que la prueba se lleva a cabo para el 100%, 90%, 80%... del valor del caudal de tráfico. Las opciones van de 1 a 10% (RFC). La configuración por defecto es 10%.
- Nb of trials to average (Promedio de nº de intentos): seleccione el número de veces que se generará la prueba. Las opciones van de 1 a 50 intentos. La configuración por defecto es 1 intento.

➤ Velocidad máxima

TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): seleccione la velocidad máxima para la prueba. La configuración por defecto es 100 % para 10/100/1000Mbps y 10Gig-E LAN, y 92.8571428571429% para 10Gig-E WAN. P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.

Unidad	Interfaz	Valor		
omada		de	а	
%	10Base-T 100Base-T 1000Base-T/X 10Gig-E LAN 10Gig-E WAN	1 1 1 1	100 100 100 100 92.8571428571429	
Mb/s	10Base-T 100Base-T 1000Base-T/X	0.1 1 10	10 100 1000	
Gbps	10Gig-E LAN 10Gig-E WAN	0.1 0.1	10.0 9.2857142857142865	

Seleccione la velocidad de la unidad. Las opciones son % y **Mbps/Gbps**. La configuración por defecto es %.

Minimum Test Time (Seconds) (Tiempo mínimo de prueba en segundos): indica el tiempo mínimo que necesita la prueba para realizarse en condiciones óptimas. El tiempo mínimo de prueba se calcula y se actualiza una vez que ha comenzado la prueba. Frame Loss (Configuración de pérdida de tramas)

Results (Resultados)

► Estado de la prueba

--: indica que aún no se ha ejecutado la prueba.
In Progress (En curso): indica que la prueba está ejecutándose.
Completed (Completada): indica que se ha completado la prueba.
Aborted (Cancelada): indica que se ha interrumpido la prueba (detenida).

 Status Message (Mensaje de estado): proporciona el estado de la prueba. A continuación, se muestra la lista de mensajes de estado.

Sending learning frames (Enviando tramas de aprendizaje) Sending test frames (Enviando tramas de prueba) Test completed (Prueba completada) Aborted by user (Cancelada por el usuario) Aborted - Loss of remote connection (Cancelada - pérdida de conexión remota) Link down (enlace roto) Dirección MAC no resuelta

► Frames Count (Recuento de tramas)

TX-to-RX (TX a RX)Local to Remote (Local a remoto)/Remote to Local (Remoto a local): proporciona el número de tramas para la dirección indicada. P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.

- ➤ TX Frame Count (Recuento de tramas de TX): indica el número de tramas transmitidas.
- RX Frame Count (Recuento de tramas de RX): indica el número de tramas recibidas.

- > Frame Loss Results (Resultados de la pérdida de tramas)
 - Frame Size (Tamaño de trama): indica los tamaños de tramas utilizados para la prueba. Se pueden mostrar hasta siete tamaños de trama distintos.
- **Nota:** El "--" indica que el resultado no está disponible porque aún no se ha ejecutado la prueba o el valor medido no es válido.
 - TX-to-RX (TX a RX)Local to Remote (Local a remoto)/Remote to Local (Remoto a local): proporciona el número de tramas para la dirección correspondiente.P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.
 - > Current Trial (Intento actual): indica el número de intento actual.
 - Current Step (Paso actual): indica el porcentaje actual de velocidad de la prueba.
 - ➤ Units (Unidades): indica la unidad del resultado de caudal de tráfico que es % Loss (% de pérdida).
 - Displayed Step (Paso mostrado): indica el resultado de la velocidad TX-to-RX (TX a RX)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local). Esta configuración sólo está disponible cuando la prueba se está ejecutando o se ha completado. P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.
 - Displayed Results (Resultados mostrados): seleccione el modo de visualización de resultados: Current (Actual), Minimum (Mínimo), Maximum (Máximo) o Average (Medio). La configuración por defecto es Current (Actual).

Latency (Latencia)

El objetivo de esta prueba es encontrar el tiempo requerido para enviar la trama a través del dispositivo que se está comprobando y volver al Serie FTB-8500 y FTB-8120NGE/8130NGE. Se comienza enviando un flujo de tramas durante el periodo predefinido [**Test Time** (Periodo de prueba)] y caudal de tráfico (**% Util.**) con un tamaño de trama concreto [**Frame Size** (Tamaño de trama)]. En una trama se incluye una etiqueta de identificación dependiente. Se registra el momento en el que se transmite la trama [**timestamp A** (Registro de tiempo A)]. Cuando las tramas etiquetadas vuelven, se registra el tiempo de nuevo [**timestamp B** (Registro de tiempo B)] y el resultado de latencia es: **timestamp B** - **timestamp A** (Registro de tiempo B - Registro de tiempo A). La prueba se repite el número de veces definido (**Nb. of Trials to average (Promedio de intentos**)) y se calcula el resultado promedio. La prueba se lleva a cabo para cada tamaño de trama definido.

Press (Latencia)TEST (PRUEBA), RFC 2544 y Latency (Latencia).

Configuration	Results			
Test Time	Test State		Status Mes	sage
00:01 MM:SS	-			
Nb. of Trials to Average	Frame Coun	t		
1		TX-to-RX		
Maximum Data	TX			
Frame Size TX-to-RX	RX			
64	Latency Res	ults		
128	Frame Size	Rate (%)	TX-to-RX	Current Trial
	64			
256	128			J
512	256			
1024	512			
1280	1024			Store and For
1518	1024		<u> </u>	Store and Por
· · · · · · · · · · · · · · · · · · ·	1280		<u> </u>	Displayed Results
Set All To	1518			Current
Unit %				
Copy From Throughput Test				
Margin (%) Minimum Test Time —				
0.0				
Global Throughout Back-to-Back	Frame Loss	Latency	Graph	

Nota: Latency (Latencia) debe estar activada en Configuración global en la página 348.

Configuration (configuración)

- Test Time (MM:SS) (Periodo de prueba (MM:SS)): seleccione el valor del periodo de prueba. Las opciones van de 1 segundo a 2 minutos (RFC). La configuración por defecto es 1 segundo (00:01).
- Nb. of Trials to Average (promedio de nº de intentos): seleccione el promedio de número de intentos. Las opciones van de 1 a 50 intentos. La configuración por defecto es 1 intento.
- Minimum Test Time (Seconds) (Tiempo mínimo de prueba en segundos): indica el tiempo mínimo que necesita la prueba para realizarse en condiciones óptimas. El tiempo mínimo de prueba se calcula y se actualiza una vez que ha comenzado la prueba.

Latency (Latencia)

- Maximum Rate (Velocidad máxima): el valor máximo se puede introducir manualmente escribiendo el valor para cada tamaño de trama en la columna TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local), mediante Set All to (Configurar todo como) o activando Copy From Throughput Test (Copiar de la prueba de caudal de tráfico). P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.
 - TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): introduzca el valor para cada tamaño de trama. Las opciones se indican en la siguiente tabla. La configuración por defecto es 100%. P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.

Unidad	Interfaz .	Valor			
		de	а		
%	10 Mbps	0.005	100		
	100 Mbps	0.005	100		
	1000 Mbps	0.005	100		
	10 Gig-E LAN	0.005	100.0		
	10 Gig-E WAN	0.005	92.8571428571429		
Mb/s	10 Mbps	0.0005	10		
	100 Mbps	0.005	100		
	1000 Mbps	0.05	1000		
Gbps	10Gig-E LAN	0.0005	10.0		
	10Gig-E WAN	0.0005	9.2857142857142865		

- Set All To (configurar todo como): introduzca un valor en Set All To (Configurar todo como) y press OK (Aceptar) para aplicar el valor a todos los tamaños de trama. Las opciones están enumeradas en la siguiente tabla.
- Unit (unidad): Seleccione la velocidad de la unidad. Las opciones son % y Mbps/Gbps. La configuración por defecto es %.
- Copy From Throughput Test (Copiar de la prueba de caudal de tráfico): active Copy From Throughput Test (Copiar de la prueba de caudal de tráfico) para obtener valores de los resultados de la prueba de caudal de tráfico. Esta casilla de verificación está seleccionada por defecto.

Margin (%) (Margen en %) permite restar un valor relativo a los valores máximos de la prueba de caudal de tráfico. El delta es igual al valor de la interfaz multiplicada por el margen y dividida entre 100. Por lo tanto, el valor máximo equivale al valor máximo de la prueba de caudal de tráfico menos el valor delta. Las opciones van de **0%** a **10%**. El valor por defecto del margen es **0%**.

Nota: Los campos All To (Configurar todo como), Unit (Unidad) y TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote/Remote to Local (Local a remoto/Remoto a local) no están disponibles si se ha seleccionado Copy From Throughput Test (Copiar de la prueba de caudal de tráfico). P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.

Results (Resultados)

► Estado de la prueba

--: indica que aún no se ha ejecutado la prueba. In Progress (En curso): indica que la prueba está ejecutándose. Completed (Completada): indica que se ha completado la prueba. Aborted (Cancelada): indica que se ha interrumpido la prueba (detenida).

 Status Message (Mensaje de estado): proporciona el estado de la prueba. A continuación, se muestra la lista de mensajes de estado.

Sending learning frames (Enviando tramas de aprendizaje) Sending test frames (Enviando tramas de prueba) Test completed (Prueba completada) Aborting by user (Cancelada por el usuario) Aborted - Loss of remote connection (Cancelada - pérdida de conexión remota) Cancelada - pérdida de 1PPS local¹ Cancelada - pérdida de 1PPS remoto¹ Cancelada - pérdida de 1PPS local y remoto¹ Link down (enlace roto) Test not measurable (Prueba no medible) Dirección MAC no resuelta

^{1.} Disponible con FTB-8120NGE y FTB-8130NGE en Dual Test Set (Conjunto de pruebas duales) en el modo de medición de latencia unidireccional.

► Frames Count (Recuento de tramas)

TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): proporciona el número de tramas para la dirección indicada.P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.

- ➤ TX Frame Count (Recuento de tramas de TX): indica el número de tramas transmitidas.
- RX Frame Count (Recuento de tramas de RX): indica el número de tramas recibidas.
- ► Resultados de la latencia
- **Nota:** El "--" indica que el resultado no está disponible porque aún no se ha ejecutado la prueba o el valor medido no es válido. Para FTB-8120NGE y FTB-8130NGE en un módulo de medición de latencia unidireccional del conjunto de pruebas duales, se muestra **Not Measurable** (No medible) cuando la latencia máxima es mayor de 500 ms.
 - Frame Size (Tamaño de trama): indica los tamaños de tramas utilizados para la prueba. Se pueden mostrar hasta siete tamaños de trama distintos.
 - TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): muestra la latencia para la dirección correspondiente.P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.
- **Nota:** Los valores de medición de la latencia por debajo de 15 μs se mostrarán como "<15 μs" para el conjunto de pruebas duales. Para todos los demás casos de prueba, los valores por debajo de 0,5 μs se mostrarán como "<500 ns".
 - > Current Trial (Intento actual): indica el número de intento actual.

- Unit (unidad): seleccione la unidad de resultados del caudal de tráfico. Las opciones son s, ms, μs y ns. La configuración por defecto es μs.
- Modo: seleccione el modo del tiempo de propagación. La configuración por defecto es Store and Forward (Guardar y enviar). Las opciones son:

Store and Forward (Guardar y enviar) (latencia de trama) permite calcular el tiempo de propagación de una trama.

Cut Through (Cortar y enviar) (latencia de bit) permite calcular el tiempo de propagación de un bit.

 Displayed Results (Resultados mostrados): seleccione el modo de visualización de resultados: Current (Actual), Minimum (Mínimo), Maximum (Máximo) o Average (Medio). La configuración por defecto es Current (Actual).

Graph (Gráfico)

Proporciona el gráfico que muestra las mediciones de caudal de tráfico, transmisión recíproca, pérdida de trama y latencia.

Press (Gráfico)TEST (PRUEBA), RFC 2544 Graph (Gráfico).

El eje X muestra los tamaños de trama para **Throughput** (Caudal de tráfico), **Back-to-Back** (Transmisión recíproca), **Latency** (Latencia) o la **TX Rate** (Velocidad de TX) para **Frame Loss** (Pérdida de tramas). El eje Y muestra los resultados de pruebas secundarias.

Data Configuration (Configuración de datos)

- Graph Displayed (gráfico mostrado): seleccione la prueba que desea mostrar. Las opciones son Throughput (Caudal de tráfico),
 Back-to-Back (Transmisión recíproca), Frame Loss (Pérdida de tramas) y Latency (Latencia).
- Direction (dirección): permite seleccionar la dirección del tráfico de prueba. Las opciones son:
 TX-to-RX (TX a RX) para topología de puerto único (FTB-8510B)
 P1-to-P2 (P1 a P2), P2-to-P1 (P2 a P1) y Bidirectional (Bidireccional) para topología de puertos duales (FTB-8510B)
 Local to Remote (Local a remoto), Remote to Local (Remoto a local) y Bidirectional (Bidireccional) para conjunto de pruebas duales.

Prueba secundaria	Unidad	Unidad por defecto		
Throughput (caudal de tráfico)	bps, Bps, Kbps, KBps, Mbps, MBps, Gbps, GBps, fps y %	bps		
Back-to-Back (Transmisión recíproca)	bps, Bps, Kbps, KBps, Mbps, MBps, Gbps, GBps, fps, %, Bytes/Burst (bytes/ráfaga) y Frames/Burst (tramas/ráfaga)	Frames/Burst (Tramas/ráfaga)		
Pérdida de tramas	% Loss (% de pérdida)	% Loss (% de pérdida)		
Latencia	s, ms, µs y ns	μs		

> Unit (unidad): seleccione la unidad del resultado. Las opciones son:

➤ Capa/paso mostrado/modo

Layer (Throughput and Back-to-Back) [(Capa) (caudal de tráfico y transmisión recíproca)]: seleccione la capa que se va a usar para calcular los resultados. Las opciones son Layer 1,2,3 (Capa 1, 2, 3), Layer 2,3 (Capa 2, 3) y Layer 3 (Capa 3). La configuración por defecto es Layer 1,2,3 (Capa 1, 2, 3).

- Layer 1,2,3 (Capa 1, 2, 3) incluye los valores de inactivo, preámbulo, delimitador de inicio de trama, dirección MAC, dirección IP y datos.
- **Layer 2,3** (Capa 2, 3) incluye la capa MAC, capa IP y datos.
- ► Layer 3 (Capa 3) incluye la capa IP y datos.

Displayed Step (Paso mostrado) (sólo pérdida de tramas): seleccione el porcentaje de velocidad empleado para la prueba. Las opciones son **100%** (o % máximo de velocidad) a **0%** con un incremento definido por **Test Granularity** (Granularidad de la prueba) de la ficha de pérdida de tramas de RFC 2544. La configuración por defecto es **100%** (o % máximo de velocidad). Esta opción sólo está disponible una vez que se ha iniciado la prueba de pérdida de tramas.

Mode (Modo) (sólo prueba de latencia): seleccione el modo del tiempo de propagación. La configuración por defecto es **Store and Forward** (Guardar y enviar). Las opciones son:

- Cut Through (Cortar y enviar) (latencia de bit): Cut Through (Cortar y enviar) permite calcular el tiempo de propagación de un bit.
- Store and Forward (Guardar y enviar) (latencia de trama): Store and Forward (Guardar y enviar) permite calcular el tiempo de propagación de una trama.

- Displayed Results (Resultados mostrados): seleccione el modo de visualización de resultados: Current (Actual), Minimum (Mínimo), Maximum (Máximo) o Average (Medio). La configuración por defecto es Current (Actual).
- ► Legend (Leyenda): indica la leyenda usada para el gráfico según la dirección seleccionada.

16 Fichas de EtherSAM

Nota: Las fichas de EtherSAM sólo están disponibles con la prueba **EtherSAM (Y.1564)**. Las fichas de EtherSAM no están disponibles con el módulo establecido como conjunto de pruebas duales remotas.

	Dispo		
Ficha	Ethernet	Canal de fibra ^a	Página
Overview (Configuration) [Resumen (Configuración)]	Х		380
Services (Configuration) [Servicios (Configuración)]	Х		385
Ramp (Configuration) [Rampa (Configuración)]	Х		390
Overview (Resumen de la prueba de configuración - Resultados)	Х		393
Service Configuration Test (Prueba de configuración de servicio - Resultados)	Х		400
Service Performance Test (Prueba de rendimiento de servicio - Resultados)	Х		403

a. No disponible con FTB-8510G.

Overview (Configuration) [Resumen (Configuración)]

La ficha **Overview** (Resumen) permite activar hasta 10 servicios y muestra un resumen de la configuración de estos.

Press **(Resumen)TEST** (PRUEBA), **EtherSAM Configuration** (Configuración de EtherSAM) y **Overview** (Resumen).

Service	Service Name		Frame Size	CIR (Mbps)	Max Jitter (ms)	Max Round-Trip Latency (ms)	Frame Loss (%)		
1 1 1010	Service 1		74	100.0	2.0	15.0	0.1		
2 2	Service 2		74	100.0	2.0	15.0	0.1		
3 0101	Service 3		74	100.0	2.0	15.0	0.1		
4 6101	Service 4		74	100.0	2.0	15.0	0.1		
5 5	Service 5		74	100.0	2.0	15.0	0.1	-	
6 6101	Service 6		74	100.0	2.0	15.0	0.1	k Latency (ms)	Frame Loss (%)
7 0101	Service 7		74	100.0	2.0	15.0	0.1	15.0	0.1
8	Service 8		74	100.0	2.0	15.0	0.1	15.0	0.1
9 0101	Service 9		74	100.0	2.0	15.0	0.1	15.0	0.1
10 10	Service 10		74	100.0	2.0	15.0	0.1	15.0	0.1
Global Enable	ofice wation Test	Sub-Tests Durat Service Configur	ion ation Test	Total TX Ra Committed	te (%)			15.0	0.1
Service Configuration Test Z5 Service Performance Test Service Performance Test		per Service 0.0					15.0	0.1	
							15.0	0.1	
000:00:10:00		_	100.0				15.0	0.1	
								15.0	0.1
Overview	Services Ramp							15.0	0.1
		0.01		1	R->L	1000.0	2.0	15.0	0.1
		10 10	Service 10		74 L->R	1000.0	2.0	15.0	0.1
		0101	5011100 10		R->L	1000.0	2.0	15.0	0.1
		Global Enable Latency Measurement Sub-Tests Duration Total T					X Rate (%)		
	Service Conf		guration Test Latency Measurement Mode		asurement Mode	Service Configuration Test		Local	Remote
Service Perfo		rmance Test		▼ 25 Sec. per		Service Commit	ted 0.0	0.0	
				 LOPPS-L LOPPS-R 		00d:00:10:00	Availab	le 100.0	0.0
		Overview See	vices Ramo						
			index Citamp						

Services (Servicios)

La tabla de resumen permite activar hasta 10 servicios y muestra la configuración de algunos de ellos. Consulte *Services (Configuration) [Servicios (Configuración)]* en la página 385 para obtener más información.

- ➤ La casilla de verificación Service (Servicio) permite activar el servicio correspondiente. No obstante, el servicio se generará sólo cuando al menos una de las pruebas [Service Configuration Test (Prueba de configuración de servicio) o Service Performance Test (Prueba de rendimiento de servicio)] esté activada y en proceso (iniciada). Para Dual Test Set (Conjunto de pruebas duales), los servicios sólo pueden activarse una vez que se establezca la conexión con la unidad remota.
- **Nota:** Se pueden activar hasta 10 servicios uno detrás de otro, siempre que no se alcance la velocidad de TX total (ancho de banda) [**Committed** (Conectado)]. Por ejemplo, si el primer servicio está utilizando el total del ancho de banda disponible, no se podrá activar otro servicio. Si el primer servicio activado utiliza la mitad del ancho de banda, se podrá activar al menos otro servicio utilizando la otra mitad del ancho de banda. Por tanto, para activar el segundo servicio, primero se debe configurar el valor CIR dentro del ancho de banda sin usar [**Available** (Disponible)] y, a continuación, activarlo. Sin embargo, no se limita la velocidad total de TX cuando la **Service Performance Test** (Prueba de rendimiento de servicio) está desactivada (la casilla de verificación no está seleccionada).
 - Dir.: Direction (Dirección): La dirección proporciona datos bidireccionales para el caso de prueba de un conjunto de pruebas duales.
 - L -> R muestra resultados de la dirección de local a remoto.
 - **R** -> L muestra resultados de la dirección de remoto a local.
 - ► Global Enable (Permitir global)
 - > Service Configuration Test (Prueba de configuración de servicio)

Overview (Configuration) [Resumen (Configuración)]

El objetivo de esta prueba es verificar que la configuración de red es la correcta para cada servicio antes de iniciar una prueba duradera [Service Configuration Test (Prueba de configuración de servicio)]. Para comprobar la configuración de red, se generará una rampa para cada servicio configurado.

En la primera parte de la prueba, cuando está seleccionada la casilla de verificación CIR, el caudal de tráfico irá aumentando conforme avance a los siguientes pasos (consulte *Step List (Lista de pasos)* en la página 391) hasta que alcance el nivel CIR. En la primera parte, se medirán la fluctuación, latencia y pérdida de tramas máximas y se compararán con los umbrales SLA para declarar un veredicto de éxito/fallo.

En la segunda parte de la prueba, cuando la casilla de verificación EIR esté activada, el caudal de tráfico irá aumentando hasta el nivel EIR y se comparará con el umbral máximo de caudal de tráfico esperado para declarar un veredicto de éxito/fallo.

En la tercera parte de la prueba, cuando la casilla de verificación de **Ramp Traffic Policing Rate** (Velocidad de políticas de tráfico de rampa) esté activada, el caudal de tráfico irá aumentando un poco más que el EIR, si está activado, o que el CIR, y se comparará con el umbral máximo de caudal de tráfico esperado para declarar un veredicto de éxito/fallo.

> Service Performance Test (Prueba de rendimiento de servicio)

El objetivo de esta prueba es verificar que se cumplen los parámetros de SLA a lo largo del tiempo; para ello, se ejecutan varios servicios a la vez. Se medirá la fluctuación, latencia y pérdida de la trama máximas y el caudal de tráfico medio, y se compararán con los umbrales configurados para declarar un veredicto de éxito/fallo. La **Service Performance Test** (Prueba de rendimiento de servicio) no se realiza para servicios que no tengan seleccionada la casilla de verificación CIR.
Latency Measurement (Medición de latencia)

Nota: Disponible con los módulos FTB-8120NGE y FTB-8130NGE en el modo Dual Test Set (Conjunto de pruebas duales) únicamente.

Latency Measurement Mode (Modo de medición de latencia): Permite seleccionar **Round-Trip** (Ida y vuelta) (por defecto) o **One-Way** (Unidireccional) como el modo de medición de latencia.

El registro de tiempo de latencia unidireccional se sincroniza con un reloj 1PPS externo. Una latencia unidireccional sólo es posible cuando los relojes de señal 1PPS locales y remotos son válidos. Las alarmas siguientes están disponibles con el modo de medición de latencia unidireccional.

LOPPS-L y **LOPPS-R** (Loss Of Pulse Per Second - Local/Remote [Pérdida de pulso por segundo - Remoto)] se declara cuando no se recibe ningún pulso o cuando no se recibe antes de 1 segundo \pm 6,6 μ s después del pulso anterior. LOPPS-R sólo se supervisa una vez que se ha establecido la conexión DTS.

Duración de pruebas secundarias

- Service Configuration Test (Prueba de configuración de servicio) muestra la duración de la Service Configuration Test (Prueba de configuración de servicio) en segundos basándose en el parámetro Step Time (Tiempo de paso) de la ficha Ramp (Rampa) (consulte la página 390).
- Service Performance Test (Prueba de rendimiento de servicio) permite configurar la duración de la Service Performance Test (Prueba de rendimiento de servicio) en día, hora, minutos y segundos. La configuración por defecto es de 10 minutos.

Total TX Rate (Velocidad total de TX) (%)

- **Nota:** Sólo disponible cuando está seleccionada la casilla de verificación **Service Performance Test** (Prueba de rendimiento de servicio).
 - Committed (Conectado) muestra la velocidad de TX total activada (ancho de banda) que generarán los servicios seleccionados.
 - Available (Disponible) muestra la velocidad de TX (ancho de banda) total disponible para la generación de tráfico.

Services (Configuration) [Servicios (Configuración)]

Press **(Servicios) TEST** (PRUEBA), **EtherSAM Configuration** (Configuración de EtherSAM) y **Services** (Servicios).

No. 1 Service Nam	e Service 1 Copy Service						
Profile 1000	Profile Frame Size Fixed, 74						
Framing Ethernet II/IPv4/UDP	Frame Format						
Direction Local to remote V							
Frame Parameters							
IP Dst: 10.10.0.0	Ping						
MAC Dst: FE:FE:FE:FE:FE	UDP Src: 49184, Dst: 7						
VLAN	IP TOS 00						
- SLA Parameters							
-SLA Parameters Information Rate	Performance Criteria						
SLA Parameters Information Rate I CIR (Mbps) 1000.0	Performance Criteria Max Jitter (ms) 2.0						
SLA Parameters Information Rate CIR (Mbps) 1000.0 EIR (Mbps) 1000.0	Performance Criteria V Max Jitter (ms) 2.0 V Max Latency (ms) 15.0						
SLA Parameters Information Rate IF IF EIR (Mbps) Rate Unit Mbps	Performance Criteria IV Max Jitter (ms) 2.0 IV Max Latency (ms) 15.0 IV Max Frame Loss (%) 0.1						
SLA Parameters Information Rate IF IF EIR (Mbps) 1000.0 Rate Unit Mbps Test Parameters	Performance Criteria Image: Max Jitter (ms) Image: Max Latency (ms) Image: Max Frame Loss (%) 0.1						
SLA Parameters Information Rate Information Rate Information Rate INFORMATION INFORMATIO	Performance Criteria V Max Jitter (ms) 2.0 V Max Latency (ms) 15.0 V Max Frame Loss (%) 0.1						

Servicio

- No. (N.º de servicio) permite seleccionar un número de servicio de la lista.
- Service Name (Nombre del servicio) muestra y permite modificar el nombre del servicio.Press el campo del nombre del servicio para cambiar el nombre del servicio. Se permiten hasta 16 caracteres. Los nombres del servicio por defecto van de Service 1 (Servicio 1) a Service 10 (Servicio 10).
- El botón Copy Service (Copiar servicio) permite copiar la configuración de uno o varios servicios. Consulte Copy Service Network Configuration (Copia de configuración de red de servicio) en la página 577 para obtener más información.

Services (Configuration) [Servicios (Configuración)]

- ➤ Profile (Perfil) indica y permite cambiar un perfil de emulación seleccionado: servicio de Voice (Voz) (), Video (Vídeo) () o Data (Datos) (). La configuración por defecto es Data (Datos). Consulte Service Profile Configuration (Configuración de perfil del servicio) en la página 578 para obtener más información.
- Framing (Entramado) indica y permite cambiar el entramado seleccionado. El entramado se muestra de la siguiente manera: Data Link/Network/Transport (Enlace de datos/Red/Transporte). Consulte Framing Configuration (Configuración del entramado) en la página 580 para obtener más información.
- Frame Size (Tamaño de trama) indica y permite cambiar el tamaño de las tramas seleccionadas. Consulte Frame Size Configuration (Configuración del tamaño de trama) en la página 582 para obtener más información.
- Frame Format (Formato de trama) indica y permite cambiar el formato de las tramas seleccionadas. El formato de la trama está disponible cuando Data Link (Enlace de datos) se ha establecido como 802.3 SNAP o cuando Data Link (Enlace de datos) se ha configurado como Ethernet II cuando Network (Red) está definido como None (Ninguno). Consulte Frame Format Configuration (Configuración del formato de trama) en la página 584 para obtener más información.

Dirección

Direction (Dirección), disponible con el conjunto de pruebas duales, permite seleccionar los parámetros de trama para el módulo local cuando **Local to remote** (Local a remoto) está seleccionado, y para el módulo remoto cuando **Remote to local** (Remoto a local) está seleccionado.

Parámetros de trama

- IP indica y permite cambiar la dirección IP de origen y destino de la trama seleccionada. Consulte IPv4 Configuration (Configuración de IPv4) en la página 570 y IPv6 Addresses Configuration (Configuración de direcciones IPv6) en la página 572 para obtener más información.
- MAC indica y permite cambiar la dirección MAC de destino de la trama seleccionada. Consulte MAC Configuration (Configuración de MAC) en la página 585 para obtener más información.
- VLAN indica y permite cambiar los niveles de VLAN seleccionados. Consulte VLAN Configuration (Configuración VLAN) en la página 566 para obtener más información.
- ➤ PBB-TE indica y permite cambiar la dirección de destino de la trama PBB-TE seleccionada. PBB-TE sólo se muestra cuando se activa PBB-TE. Consulte PBB-TE Interface configuration (Configuración de la interfaz PBB-TE) en la página 568 para obtener más información.
- MPLS indica y permite cambiar la etiqueta de trama seleccionada. MPLS sólo se muestra cuando se ha activado MPLS. Consulte MPLS Configuration (Configuración de MPLS) en la página 587 para obtener más información.
- UDP indica y permite cambiar los puertos UDP de origen y destino seleccionados. UDP está sólo disponible cuando Framing's Transport (Transporte de entramado) está configurado como UDP. Consulte UDP Configuration (Configuración de UDP) en la página 589 para obtener más información.
- TCP indica y permite cambiar los puertos TCP de origen y destino seleccionados. TCP está sólo disponible cuando Framing's Transport (Transporte de entramado) está configurado como TCP. Consulte TCP Configuration (Configuración de TCP) en la página 589 para obtener más información.

➤ IP TOS indica y permite cambiar la configuración se la trama IP TOS seleccionada. Consulte Advanced TOS/DS (TOS/DS avanzado) en la página 590 para obtener más información.

SLA Parameters (Parámetros de SLA)

Los parámetros de SLA (acuerdo de nivel de servicio) permiten definir el veredicto de éxito/fallo de los umbrales del servicio. Utilice las casillas de verificación para activar el veredicto de éxito/fallo de estos parámetros e introducir los valores de umbral.

Information Rate (Velocidad de información)

- CIR (Velocidad de información concertada) permite configurar la velocidad del servicio garantizado por el SLA. Esta casilla de verificación está seleccionada por defecto. CIR y los pasos anteriores no se realizan para servicios que no tengan seleccionada la casilla de verificación CIR.
- EIR (Velocidad excesiva de información) permite configurar el mejor esfuerzo de tráfico permitido para el servicio. El valor de EIR incluye el valor de CIR. La casilla de verificación EIR está desactivada por defecto.
- Rate Unit (Unidad de velocidad) permite la selección de Mbps (por defecto) o Gbps como unidad de velocidad para CIR, EIR yRamp Traffic Policing Rate (Velocidad de políticas de tráfico de rampa).

Nota: Los valores de CIR, EIR y Traffic Policing (Políticas de tráfico) deben cumplir con la siguiente norma:
 CIR ≤ EIR ≤ Ramp Traffic Policing Rate (Velocidad de políticas de tráfico de rampa) ≤ Line Rate (Velocidad de línea).

Performance Criteria (Criterios de rendimiento)

- Max Jitter (Fluctuación máxima) permite establecer el valor máximo de fluctuación permitido en milisegundos (de 0,015 a 8000 ms) para el servicio. La configuración por defecto es 2 ms.
- Max Round-Trip Latency (Latencia máxima de ida y vuelta) permite establecer el valor máximo de latencia de ida y vuelta permitido en milisegundos (de 0,015 a 8000 ms) para el servicio. La configuración por defecto es 15 ms. Para Dual Test Set (Conjunto de pruebas duales), la Max Round-Trip Latency (Latencia máxima de ida y vuelta) sólo puede configurarse cuando está seleccionada la dirección Local to remote (Local a remoto). Para FTB-8120NGE y FTB-8130NGE en Dual Test Set (Conjunto de pruebas duales), sólo está disponible cuando está seleccionado el modo de medida de latencia de ida y vuelta.
- Max Latency (Latencia máxima), disponible en los módulos FTB-8120NGE y FTB-8130NGE en el modo de medida de latencia unidireccional de Dual Test Set (Conjunto de pruebas duales), permite establecer el valor máximo de latencia unidireccional en milisegundos (de 0,015 a 500 ms) permitido para el servicio. La configuración por defecto es 15 ms.
- Max Frame Loss (Pérdida de tramas máxima) permite establecer el valor de porcentaje máximo (de 0 a 5%) de pérdida de tramas permitido para el servicio. La configuración por defecto es 0,1%.

Parámetros de la prueba

Ramp Traffic Policing Rate (Velocidad de políticas de tráfico de rampa) permite aumentar el límite de velocidad de la red enviando tráfico a una velocidad mayor que la necesaria según el SLA. La casilla de verificación **Ramp Traffic Policing Rate** (Velocidad de políticas de tráfico de rampa) está seleccionada por defecto.

Ramp (Configuration) [Rampa (Configuración)]

Press **(Rampa)TEST** (PRUEBA), **EtherSAM Configuration** (Configuración de EtherSAM) y **Ramp** (Rampa).

Nota: La plantilla de rampa se define globalmente para todos los servicios, aunque la presencia de los pasos CIR, EIR y Traffic Policing (Políticas de tráfico) se lleva a cabo en conformidad con cada Configuración de servicios. Por ejemplo, un flujo puede configurarse para que utilice CIR, otro para que utilice EIR y otro para que utilice CIR y EIR con Traffic Policing (Políticas de tráfico).

Rampa dinámica

El gráfico muestra el porcentaje de cada nivel CIR en tiempo.

Step List (Lista de pasos)

- Step (Paso) indica el número del paso. Se puede configurar un máximo de 10 pasos, hasta 7 previos a CIR, CIR, EIR y Traffic Policing (Políticas de tráfico). Los pasos se ordenan de forma automática por porcentaje de valores CIR.
- Value (% of CIR) [Valor (% de CIR)] indica el porcentaje de CIR, EIR y la velocidad RX (caudal de tráfico) de Traffic Policing (Políticas de tráfico). EIR pasa a formar parte de la lista de pasos en cuanto se activa al menos un servicio. No obstante, el paso EIR sólo formará parte de la prueba para los servicios que tengan seleccionada la casilla de verificación EIR.
- El botón Edit (Editar) permite editar un paso de rampa. Para modificar un paso de la rampa, press el botón Edit (Editar) e introduzca un nuevo porcentaje de CIR.
- El botón Add (Añadir) permite añadir un nuevo paso de la rampa. Para añadir un nuevo paso de la rampa, press el botón Add (Añadir) e introduzca un porcentaje de CIR.
- El botón Delete (Eliminar) permite eliminar los pasos de la rampa seleccionados. Para eliminar un paso de la rampa, seleccione un paso de rampa de la lista y press en el botón Delete (Eliminar). Los pasos CIR, EIR y Traffic Policing (Políticas de tráfico) no se pueden eliminar. Para eliminar EIR, CIR o Traffic Policing (Políticas de tráfico) de la lista, desactive la casilla de verificación correspondiente de la ficha Services (Servicios) para todos los servicios.
- El botón Default (Valor por defecto) permite volver a los pasos de la rampa por defecto.

Step Time (Tiempo de paso):

El tiempo de paso representa la duración de la prueba para cada paso de la rampa (de 5 a 60 segundos).

Ramp Duration (Duración de la rampa)

La duración de la rampa indica el tiempo total necesario para llevar a cabo los pasos de la rampa para cada servicio.

Overview (Resumen de la prueba de configuración - Resultados)

Press **(Resumen de prueba de configuración) TEST** (PRUEBA), **EtherSAM Results** (Resultados de EtherSAM) y **Overview** (Resumen).

- Global P	rogres	s and Alarms		1	Configur	ation Test O	verview									
Progress					Service	Direction	Frame Loss (%)	Max Jitter (ms)	Max Latency (ms)	Verdic	Max (Mbr	RX Rate	Verdict	T		
Test Sta	:us						2000 (10)	(may	(may		(1.0)	P-7		*		
Global Verdict	PA	\$5	¥ -		1	R->L L->R			-			-				
				Global Pr	ogress ar	id Alarms —		Configu	ation Test Ove	rview –						
Alarms				Progress				Service	Frame	Max J	itter 1	Max Round- Trip Latency	Verdict	Max RX Rate	Verdict	
нс	ink Dav	AID.		Test Statu	, IS			No.	Loss (%)	(ms)	- Lè	(ms)	Tordice	(Mbps)	Torales	
	05	with the second s		Clabert	_			1								
9 9 F	requer	ncy Alarm		Verdict	PASS		/	2								
9 9 L	OPPS-L	<u>L</u>						3						-		
9 9 L	OPPS-F	R		Alarms				5		-						
Perform	ance T	'est Overview		нс				6								
				Contraction Contraction	k Down			7	-					-		
Service	NO.	Direction	дvg. ка		o Ballenav J	Marm		8								
		R->L			rquorie, i			10								
1		L->R														
2		R->L		- Performa	ore Test	Overview										
		L->R						Frame Locs	1	M	av Doue	nd-Trin				
3		L->R		Service I	No. A	/g. RX Rate	(Mbps)	%)	Max Jitter (m	s) L	atency ((ms)	Verdict			
4		R->L		1										_		
		L->R		2												
5		R->L		3												
		L-2R	1	4												
Overvie	ew J	Service G	onfigurati	5												
				7												
	8		8													
				9												
				10												
				Overview	v J	Service Conl	figuration T	est S	ervice Performa	ince Tes	t J					

Global Progress and Alarms (Progreso y alarmas globales)

- Progress (Progreso) indica el mensaje de progreso de la prueba secundaria, incluidos el nombre de la prueba secundaria en ejecución y el número de paso.
- Test Status (Estado de la prueba) indica el mensaje de estado de la prueba.

Estado de la prueba	Description (Descripción)
Pendiente ()	No se ha comenzado ninguna prueba secundaria.
Running (En ejecución)	Se está ejecutando una prueba secundaria.
Data Transfer (Transferencia de datos)	Se está ejecutando una prueba secundaria pero no se está transmitiendo ningún tráfico de prueba.
Completed (Completado), <verdict> (Veredicto)</verdict>	La prueba secundaria se ha completado. <verdict> (Veredicto) representa el veredicto global de la prueba al completar la prueba secundaria.</verdict>

Fichas de EtherSAM

Overview (Resumen de la prueba de configuración - Resultados)

Estado de la prueba	Description (Descripción)				
Aborted (Cancelado), <reason> (Motivo)</reason>	Se ha cancelado la prueba secundaria de forma manual mediante la opción Stop (Detener) o mediante una alarma. <reason> (Motivo) representa el motivo por el que se ha cancelado la prueba. Los posibles motivos son:</reason>				
	➤ Alarma de enlace roto				
	► Alarma LOS				
	➤ Fallo en la conexión DTS				
	 Tiempo de espera durante la ejecución (DTS) 				
	➤ Configuración no válida (DTS)				
	 Direcciones no resueltas 				
	 Prueba no activada 				
	► Detenida				
	➤ Alarma LOPPS-L ^a				
► Alarma LOPPS-R ^a					
► Alarma LOPPS-L/LOPPS-R ^a					
	 CIR desactivado para todos los servicios 				

- a. Sólo disponible con FTB-8120NGE/FTB-8130NGE para Dual Test Set (Conjunto de pruebas duales) en el modo de medición de latencia unidireccional.
- ➤ Global Verdict (Veredicto global) indica el veredicto de la prueba actual PASS (ÉXITO) ✓ o FAIL ¥ (FALLO). Un veredicto FAIL (FALLO) se declara al detectar Link Down (Enlace roto) o LOS, o si cualquier parámetro de SLA falla durante la prueba.

Overview (Resumen de la prueba de configuración - Resultados)

► Alarms (Alarmas)

- Link Down (enlace roto): indica que la conexión Ethernet está interrumpida debido a un estado de fallo local o remoto.
- LOS (pérdida de señal): LOS indica que no hay señal óptica de entrada.
- Frequency Alarm (Alarma de frecuencia): la alarma de frecuencia indica que la señal recibida cumple las especificaciones de velocidad estándar (verde) o no (rojo). Para el puerto eléctrico, consulte *Electrical RX (RX eléctrica)* en la página 250. Para los puertos ópticos, consulte *Optical RX (RX óptica)* en la página 255. La alarma de frecuencia no se tendrá en cuenta en el veredicto global.
- ► LOPPS-L y LOPPS-R (Loss Of Pulse Per Second Local/Remote [Pérdida de pulso por segundo - Remoto)] se declara cuando no se recibe ningún pulso o cuando no se recibe antes de 1 segundo ± 6,6 µs después del pulso anterior. LOPPS-R sólo se supervisa una vez que se ha establecido la conexión DTS.

Service Configuration Test Overview (Resumen de prueba de configuración de servicio)

Muestra un resumen de los resultados de la prueba de configuración de servicio. Los siguientes campos se presentan en el mismo orden en que aparecen en la tabla:

- **Services No** (Nº de servicios) indica el número de servicio.
- Dir.: La dirección proporciona datos bidireccionales para el caso de prueba de un conjunto de pruebas duales.
 - L -> R muestra resultados de la dirección de local a remoto.
 - **R** -> L muestra resultados de la dirección de remoto a local.
- Frame Loss (%) [(Pérdida de tramas (%)] indica el porcentaje de tramas que se ha perdido. Tenga en cuenta que el valor comunicado es el porcentaje máximo de pérdida de tramas de todos los pasos de la rampa, incluido el paso Traffic Policing (Políticas de tráfico).
- Max Jitter (ms) (Fluctuación máxima en ms) indica la variación máxima de retardo medida.
- Max Round-Trip Latency (ms) (Latencia máxima de ida y vuelta en ms) indica la latencia de ida y vuelta máxima medida (retardo). Para FTB-8120NGE y FTB-8130NGE en Dual Test Set (Conjunto de pruebas duales), sólo está disponible cuando está seleccionado el modo de medida de latencia de ida y vuelta.
- Max Latency (ms) (Latencia máxima en ms) indica la latencia bidireccional máxima medida (retardo). Sólo disponible con FTB-8120NGE y FTB-8130NGE para Dual Test Set (Conjunto de pruebas duales) en el modo de medición de latencia unidireccional. Not Measurable (No medible) se muestra cuando la latencia máxima es mayor de 500 ms.

Fichas de EtherSAM

Overview (Resumen de la prueba de configuración - Resultados)

- ▶ Verdict (Veredicto) indica que las medidas de rendimiento (fluctuación, latencia y pérdida de tramas) cumplen (éxito ✓) o no (fallo X) con la configuración de SLA. El veredicto se basa en los resultados de todos los pasos de la rampa sin contar con el paso Traffic Policing (Políticas de tráfico).
- ➤ Max RX Rate (Mbps) [(Velocidad máx. de RX (Mbps)] indica la velocidad máxima de RX de utilización (caudal de tráfico).
- ➤ Verdict (Veredicto) también indica si el caudal de tráfico máximo cumple (éxito ✓) o no (fallo X) con el valor máximo permitido basado en la EIR o la CIR configuradas cuando EIR no está activado.

Nota: cada medida con un veredicto de fallo se mostrará con un fondo rojo.

Service Performance Test Overview (Resumen de prueba de rendimiento de servicio)

Muestra un resumen de los resultados de la prueba de rendimiento de servicio.

- **Service No** (Nº de servicio) indica el número de servicio.
- Dir.: La dirección proporciona datos bidireccionales para el caso de prueba de un conjunto de pruebas duales.
 - L -> R muestra resultados de la dirección de local a remoto.
 - **R** -> L muestra resultados de la dirección de remoto a local.
- Avg. RX Rate (Velocidad promedio de RX) (Mbps o Gbps) indica el caudal de tráfico medio utilizado medido en Mbps o Gpbs.
- Frame Loss (%) (Pérdida de tramas en %) indica el porcentaje de pérdida de tramas debido a que no se ha recibido ningún número de secuencia dentro de los siguientes 20 ms.
- Max Jitter (ms) (Fluctuación máxima en ms) indica la variación máxima de retardo medida.

- Max Round-Trip Latency (ms) (Latencia máxima de ida y vuelta en ms) indica la latencia de ida y vuelta máxima medida (retardo). Para FTB-8120NGE y FTB-8130NGE en Dual Test Set (Conjunto de pruebas duales), sólo está disponible cuando está seleccionado el modo de medida de latencia de ida y vuelta.
- Max Latency (ms) (Latencia máxima en ms) indica la latencia bidireccional máxima medida (retardo). Sólo disponible con FTB-8120NGE y FTB-8130NGE para Dual Test Set (Conjunto de pruebas duales) en el modo de medición de latencia unidireccional. Not Measurable (No medible) se muestra cuando la latencia máxima es mayor de 500 ms.
- Verdict (Veredicto) indica si el servicio cumple (aprobado) o no (fallo) con los parámetros de SLA configurados.

Para el conjunto de pruebas duales, **Local Verdict** (Veredicto local) y **Remote Verdict** (Veredicto remoto) están disponibles mientras se ejecuta la prueba. Una vez completada la prueba, sólo se muestra **Verdict** (Veredicto), que combina los resultados locales y remotos.

Nota: cada medida con un veredicto de fallo se mostrará con un fondo rojo.

Service Configuration Test (Prueba de configuración de servicio - Resultados)

Press **(Prueba de configuración) TEST** (PRUEBA), **EtherSAM Results** (Resultados de EtherSAM) y **Service Configuration Test** (Prueba de configuración de servicio).

Service No.	Serv Serv	ice Name rice 1			Servi	ce Verdict					
	Step C	p./w	Frame Loss Max	Jitter Max F	Round-	Average	•				
	1 2 3	Servic	e No. Se	ervice Name ervice 1				Se 	rvice Vero	dict	
	CIR Traffic Policing		Step	CIR (%)	Direction	Frame Loss (%)	Max Jitter (ms)	Max Latency (ms)	Verdict	Average RX Rate (Mbps)	
			1	50.0	R->L L->R					-	*
			2	75.0	R->L L->R					-	^
			3	90.0	R->L L->R	-	-	-		-	-
			CIR	100.0	R->L L->R	-	-	-		-	Ŧ
rerview	Service Configura	6	EIR		R->L L->R			-		-	T
								Max RX R Max RX R 	ate R->L ate L->R		
		Overview	Service Config	uration Test	Service	e Performance Te	est				

- **Service No** (Nº de servicio) permite seleccionar el número de servicio.
- Service Name (Nombre del servicio) indica el nombre del servicio seleccionado.
- Service Verdict (Veredicto del servicio) indica el veredicto de éxito o fallo del servicio seleccionado, incluidas las medidas y el caudal de tráfico máximo, una vez que todos los pasos de la rampa se han ejecutado en este servicio.
- > Step (Paso) indica el número o nombre del paso de la rampa.
- **CIR %** (% de CIR) indica el porcentaje de CIR utilizado para cada paso.

Service Configuration Test (Prueba de configuración de servicio - Resultados)

- Direction (Dirección): La dirección proporciona datos bidireccionales para el caso de prueba de un conjunto de pruebas duales.
 L -> R muestra resultados de la dirección de local a remoto.
 - **R** -> L muestra resultados de la dirección de remoto a local.
- Frame Loss (%) (Pérdida de tramas en %) indica el porcentaje de pérdida de tramas debido a que no se ha recibido ningún número de secuencia dentro de los siguientes 20 ms.
- Max Jitter (ms) (Fluctuación máxima en ms) indica la variación máxima de retardo medida.
- Max Round-Trip Latency (ms) (Latencia máxima de ida y vuelta en ms) indica la latencia de ida y vuelta máxima medida (retardo). Para FTB-8120NGE y FTB-8130NGE en Dual Test Set (Conjunto de pruebas duales), sólo está disponible cuando está seleccionado el modo de medida de latencia de ida y vuelta.
- Max Latency (ms) (Latencia máxima en ms) indica la latencia bidireccional máxima medida (retardo). Sólo disponible con FTB-8120NGE y FTB-8130NGE para Dual Test Set (Conjunto de pruebas duales) en el modo de medición de latencia unidireccional. Not Measurable (No medible) se muestra cuando la latencia máxima es mayor de 500 ms.
- ➤ Verdict (Veredicto) indica que las medidas de rendimiento (fluctuación, latencia y pérdida de la trama) cumplen (éxito ✓) o no (fallo ¥) con la configuración de SLA para cada paso de la rampa.
- Max RX Rate (Mbps) [(Velocidad promedio de RX (Mbps)] indica la velocidad media de utilización (caudal de tráfico).

Nota: cada medida con un veredicto de fallo se mostrará con un fondo rojo.

Max RX Rate (Velocidad máx. de RX) indica el caudal de tráfico máximo utilizado. El veredicto también indica si el caudal de tráfico máximo cumple (éxito) o no (fallo) o no (fallo) con el valor máximo permitido basado en la EIR o la CIR configuradas cuando EIR no está activado.

Max RX Rate R-> L (Velocidad máx. de RX R - L) y **Max RX Rate L-> R** (Velocidad máx. de RX L - R), un conjunto de pruebas duales, indica el caudal de tráfico máximo medido para toda la prueba de una unidad remota a una local y de una local a una remota.

Service Performance Test (Prueba de rendimiento de servicio - Resultados)

Press **(Prueba de rendimiento) TEST** (PRUEBA), **EtherSAM Results** (Resultados de EtherSAM) y **Service Performance Test** (Prueba de rendimiento de servicio).

Esta ficha permite ver simultáneamente dos resultados de servicios EtherSAM en bucle invertido, al igual que visualizar simultáneamente unidades locales y remotas para conjuntos de pruebas duales.

Service No. 1 Remote-to-Local Stream 1 Service Nar Stream 1 Service Nar Stream 1	RX Frame Count	X Rate Maximum 100.003	Minimum 99,996	Current 4 99.996	Averago 99.999	e	Unit %			
Out-Of-Sequence Seconds Count Se	Service No. Service No. Service No. Service No. Service No. Service Service Service No. Se	ce Name	RX Frame Count	RX Rate Maximum		Minimum 49.999	Current 49.999	Average 49.999	Unit	•
Rate Percentage Ra [0.00E00 0.0000 0.000 0.000 0.000 0.0000 0.000 0.0000	Image: Content of the content of t	H C Frame Seconds C Rate F 0.00E00 C	Count Percentage	Jitter Max. (ms) < 0.015 Round Trip Late Max. (ms) 0.028	ency	Min. (ms) < 0.015 Min. (ms) 0.028	Current (ms) < 0.015 Current (ms) 0.028	Average (ms) < 0.015 Average (ms) 0.028	Estimate (m	is)
Sequence Tracking H C H Out-Of-Sequence Seconds Count Se 0 0 0 0	Service No. 2 Service No. Service No. Se	ce Name am 2 H C	RX Frame Count	RX Rate Maximum 25		Minimum 24.999	Current	Average 24.999	Unit	
Rate Percentage Rate 0.00E00 0.000 0. Overview Service Configure	Out-Of-Sequence Seconds Count O O Rate Percentage D 0000	Seconds C Rate F	Loss Count Percentage	Aax. (ms)	ency –	Min. (ms) < 0.015 Min. (ms)	Current (ms)	Average (ms) < 0.015 Average (ms)	Estimate (m	is)
	Overview Service Con	figuration Test	Service F	Performance Test		0.020	10.020	10.020		

- **Service No** (Nº de servicio) permite seleccionar el número de servicio.
- Remote to Local (Remoto a local) y Local to Remove (Local a remoto) indican, para el conjunto de pruebas duales, los resultados del servicio de remoto a local y de local a remoto, respectivamente.
- Service Name (Nombre del servicio) indica el número del servicio seleccionado.
- ► **RX Frame Count** (Recuento de tramas de RX) indica el número de tramas recibidas que coinciden con el ID de servicio seleccionado.

Sequence Tracking (Seguimiento de secuencia)

- Se declara Out-Of-Sequence (Fuera de secuencia) (OOS) cuando el número de secuencia de un paquete válido es menor que el del paquete recibido con anterioridad. En el informe, se indican los segundos, el recuento, la velocidad y el porcentaje. Out-Of-Sequence (Fuera de secuencia) no se tendrá en cuenta en el veredicto global.
- ➤ Se declara Frame Loss (Pérdida de tramas) cuando no se recibe un número de secuencia que falta en los 20 ms siguientes. En el informe, se indican los segundos, el recuento, la velocidad y el porcentaje. También se muestra un veredicto de éxito ✓ o fallo X .

Velocidad de RX

Se mide la Velocidad de RX (caudal de tráfico) para cada flujo en todas las tramas válidas. En el informe, se indican los resultados de velocidad de RX máximo, mínimo, actual y medio. También se muestra el veredicto de éxito 🧹 o fallo 🎽 para la velocidad de RX media.

Las opciones para Unit son % y Mbps. La configuración por defecto es %.

Nota: Para el valor **Current** (Actual), se muestra **0** cuando no se ha medido ninguna velocidad de RX en el último segundo.

Fluctuación

Se mide la fluctuación para cada flujo en todas las tramas válidas En el informe, se indican los valores de fluctuación estimada y de retardo máximo, mínimo, actual y medio. También se muestra el veredicto de éxito 🧹 o fallo 🎽 para la fluctuación máxima.

Nota: Se descartarán las mediciones de variaciones de retardo inferiores a 15 μs, no se usarán para el proceso de muestreo y se mostrará "< 0,015" como el valor mínimo. Para el valor de Current (Actual), se mostrará
 Not measurable (No medible) si no se ha medido ningún retardo en el último segundo.

Round Trip Latency (Latencia de ida y vuelta)

Se mide la latencia de ida y vuelta (retardo) para cada flujo en todas las tramas válidas. En el informe, se indican los valores de retardo máximo, mínimo, actual y medio. También se muestra el veredicto de éxito 💉 o fallo 🎽 para la latencia máxima de ida y vuelta. Para el conjunto de pruebas duales, **Round Trip Latency** (Latencia de ida y vuelta) sólo se muestra en la página **Remote to Local** (Remoto a local). Para FTB-8120NGE y FTB-8130NGE en Dual Test Set (Conjunto de pruebas duales), sólo está disponible cuando está seleccionado el modo de medida de latencia de ida y vuelta.

One-Way Latency (Latencia unidireccional)

Se mide la latencia unidireccional (retardo) para cada flujo en todas las tramas válidas. En el informe, se indican los valores de retardo máximo, mínimo, actual y medio. También se muestra el veredicto de éxito o fallo para la latencia unidireccional máxima.

Nota: Se descartarán las mediciones de retardo inferiores a 15 μs, no se usarán para el proceso de muestreo y se mostrará "< 0,015". Para el valor de **Current** (Actual), se mostrará **Not measurable** (No medible) si no se ha medido ningún retardo en el último segundo o cuando la latencia máxima sea mayor de 500 ms.

17 Fichas de caudal de tráfico TCP

Nota: las fichas de caudal de tráfico TCP sólo están disponibles con la prueba de caudal de tráfico TCP. no disponible con FTB-8510G.

Ficha	Página
<i>TCP Throughput Configuration (Configuración de caudal de tráfico TCP)</i>	408
<i>TCP Throughput Analysis (Resultados de análisis de caudal de tráfico TCP)</i>	413

Nota: la opción de software **TCP Throughput** (Caudal de tráfico TCP) debe estar activada para estar disponible. Consulte Available Options (opciones disponibles) en la página 444.

TCP Throughput Configuration (Configuración de caudal de tráfico TCP)

El objetivo de esta prueba es determinar el caudal de tráfico TCP según los bytes transportados correctamente durante el periodo de prueba.

Se necesitan dos unidades para llevar a cabo una prueba **TCP Throughput** (Caudal de tráfico TCP). Una unidad actuará como origen (local) y la otra como destino (remota).

La unidad local comienza el envío de segmentos TCP empleando el valor de **Initial Window Size** (Tamaño de ventana inicial) definido. El tamaño de la ventana se ajusta siguiendo el algoritmo TCP. El tamaño de la ventana aumenta hasta que se alcanza el valor de **Maximum Window Size** (Tamaño máximo de ventana) o una congestión. No obstante, el tamaño de la ventana se reducirá cuando se produzca una congestión para, a continuación, volver a aumentar como se ha descrito con anterioridad una vez despejada la congestión.

Durante la prueba se obtendrán las estadísticas de caudal de tráfico TCP y tamaño de ventana.

Press **(Configuración)TEST** (PRUEBA), **TCP Throughput** (Caudal de tráfico TCP) y **TCP Throughput Configuration** (Configuración de caudal de tráfico TCP).

Optical [P1]/Ethemet Fram	ied Layer 2/TCP Throu	ighput				- 6	
TCP Mode	Local						
TCP Connection Configuration			TCP Throughput Configuration	i			
Remote IP Address	0.0.0.0				Unit		
Port	50201		Initial Window Size	1	Kbytes	-	
IP TOS/DS	00	E Binary	Minimum Window Size	1	Kbytes	•	
TCP Connection Status			Maximum Window Size	64.0	Mbytes	•	
TCP Session]						
TCP Throughput Configurat	TCP Throughput Configuration TCP Throughput Analysis						

Modo TCP

Dado que se necesitan dos unidades para llevar a cabo una prueba de caudal de tráfico TCP, una unidad debe ser la de origen (**Local**) y la otra debe ser la de destino [**Remote** (Remoto)]. Configure el modo TCP en ambas unidades. Las opciones son **Local** y **Remote** (Remoto). La configuración por defecto es **Local**.

Configuración de la conexión TCP

- Remote IP Address (Dirección IP remota) (disponible con el modo TCP Local): en la unidad local, introduzca la dirección IP de la unidad remota.
- Listening IP Address (Dirección IP de escucha) [disponible con el modo TCP Remote (Remoto)]: en la unidad remota, introduzca la dirección IP de la unidad local. La dirección IP 0.0.0.0 puede utilizarse para escuchar cualquier flujo TCP. La configuración por defecto es 0.0.0.0.
- Port (puerto): introduzca el número de puerto TCP. La configuración por defecto es 50201.

En la unidad local, se empleará el puerto TCP especificado para el algoritmo de inicialización TCP con la unidad remota. Los siguientes segmentos TCP enviados por la unidad local emplearán el número de puerto TCP respondido por la unidad remota.

➤ IP TOS/DS: introduzca el valor de IP TOS/DS. Las opciones van de 00 a FF. La configuración por defecto es 00.

Binary (binario): muestra el valor de IP TOS/DS con formato binario cuando se activa.

TCP Throughput Configuration (Configuración de caudal de tráfico TCP)

Estado de la conexión TCP

TCP Session (Sesión TCP): indica el estado de la sesión TCP:

--: indica que aún no se ha ejecutado la prueba.

In Progress (En curso): indica en la unidad local que el algoritmo de inicialización TCP está en curso.

Waiting (En espera): indica en la unidad remota que la prueba ha comenzado pero que no se ha completado el algoritmo de inicialización TCP.

Established (Establecida): Indica que la sesión TCP se ha establecido correctamente entre las unidades local y remota.

Closed (Cerrada): indica que no se ha recibido ningún algoritmo de inicialización TCP tras 12 segundos, que la unidad remota ha recibido y completado la solicitud de cierre de la sesión TCP, o bien que no se han recibido datos en la unidad remota durante un periodo de 30 segundos.

Closing (Cerrando): indica en la unidad local que se acaba de detener la prueba en la unidad remota. El estado Closing (Cerrando) se mantiene 3 segundos, para luego pasar al estado **Closed** (Cerrada).

Remote IP not found (IP remota no encontrada): indica que la unidad local no ha recibido una respuesta a la solicitud ARP enviada a la dirección IP de la unidad remota.

Configuración de caudal de tráfico TCP

- **Nota:** *TCP Throughput Configuration* (Configuración de caudal de tráfico TCP) sólo está disponible en la unidad local.
 - Initial Window Size (Tamaño de ventana inicial): introduzca el tamaño de la ventana que se utilizará cuando comience la prueba. Las opciones van de 1024 Bytes a 65536 KBytes. El valor introducido se redondeará al múltiplo más cercano de 1024Bytes. La configuración por defecto es 2048 bytes. El valor de Initial Window Size (Tamaño de ventana inicial) debe estar entre los valores de Minimum Window Size (Tamaño de ventana mínimo) y Maximum Window Size (Tamaño de ventana máximo).

Unit (unidad): seleccione la unidad del tamaño de ventana. Las opciones son Bytes, KBytes y MBytes. La configuración por defecto es KBytes.

Minimum Window Size (Tamaño de ventana mínimo): introduzca el tamaño de ventana mínimo para la aplicación que se va a probar. Las opciones van de 1024 Bytes a 65536 KBytes. El valor introducido se redondeará al múltiplo más cercano de 1024Bytes. La configuración por defecto es 1024 bytes.

Unit (unidad): seleccione la unidad del tamaño de ventana. Las opciones son Bytes, KBytes y MBytes. La configuración por defecto es MBytes.

Fichas de caudal de tráfico TCP

TCP Throughput Configuration (Configuración de caudal de tráfico TCP)

Maximum Window Size (Tamaño de ventana máximo): introduzca el tamaño de ventana máximo para la aplicación que se va a probar. Las opciones van de 1024 Bytes a 65536 KBytes. El valor introducido se redondeará al múltiplo más cercano de 1024Bytes. La configuración por defecto es 65536 KBytes.

Unit (unidad): seleccione la unidad del tamaño de ventana. Las opciones son Bytes, KBytes y MBytes. La configuración por defecto es MBytes.

Nota: Una trama de caudal de tráfico TCP tiene su valor de carga útil fijado en todo ceros y su tamaño de carga útil en 1024 Bytes.

TCP Throughput Analysis (Resultados de análisis de caudal de tráfico TCP)

Nota: Disponible sólo en la unidad local.

Press **(Resultados)TEST** (PRUEBA), **TCP Throughput** (Caudal de tráfico TCP) y **TCP Throughput Analysis** (Análisis de caudal de tráfico TCP).

Optical [P1]/Ethernet Framed Layer 2/TCP 1	Throughput		
TCP Throughput Statistics Throughput Last Minimum Maximum Average Unit Mtps V	Window Size	TCP Statistics Total Transmitted Frames Total re-Transmitted Frames Round Trip Time (ms) Last Minimum Maximum	
		Average	-
TCP Throughput Configuration TCP	Throughput Analysis		

Estadísticas de caudal de tráfico TCP

► Throughput (caudal de tráfico)

Last (último): indica la medición del último caudal de tráfico TCP.

Minimum (Mínimo): indica la medición del menor caudal de tráfico TCP.

Maximum (Máximo): indica la medición del mayor caudal de tráfico TCP.

Average (promedio): indica el promedio de la medición del caudal de tráfico TCP durante el periodo de la prueba.

Unit (unidad): seleccione la unidad de medida del caudal de tráfico TCP. Las opciones son % y **Mbps**. La configuración por defecto es **Mbps**.

Fichas de caudal de tráfico TCP

TCP Throughput Analysis (Resultados de análisis de caudal de tráfico TCP)

► Tamaño de la ventana

Last (último): indica el último tamaño de ventana TCP.

Minimum (Mínimo): indica el menor tamaño de ventana TCP.

Maximum (Máximo): indica el mayor tamaño de ventana TCP.

Unit (unidad): seleccione la unidad del tamaño de ventana. Las opciones son **Bytes**, **KBytes** y **MBytes**. La configuración por defecto es **KBytes**.

Estadísticas TCP

Las estadísticas TCP se obtienen de los paquetes que tienen Ethernet FCS, comprobación de encabezado IP, comprobación de encabezado TCP y zócalo correctos.

- Total Transmitted Frames (Tramas totales transmitidas): indica el total de tramas transmitidas por la unidad local, excluidas las tramas retransmitidas.
- ➤ Total re-Transmitted Frames (Tramas totales retransmitidas): indica el total de tramas retransmitidas por la unidad local.
- ► Tiempo de ida y vuelta en ms

Last (último): indica el último tiempo de ida y vuelta en ms, obtenido de la prueba de caudal de tráfico TCP.

Minimum (Mínimo): indica el tiempo mínimo de ida y vuelta en ms, obtenido de la prueba de caudal de tráfico TCP.

Maximum (Máximo): indica el tiempo máximo de ida y vuelta en ms, obtenido de la prueba de caudal de tráfico TCP.

Average (promedio): indica el tiempo medio de ida y vuelta en ms, obtenido de la prueba de caudal de tráfico TCP.

18 Ficha avanzada

Nota: La ficha avanzada disponible dependerá de la ruta de prueba que esté activada.

Ficha	Disp	Página	
	Ethernet	Canal de fibra ^a	ruginu
Service Disruption Time (Tiempo de interrupción del servicio) (SDT)	Х		415

a. No disponible con FTB-8510G.

Service Disruption Time (Tiempo de interrupción del servicio) (SDT)

Nota: Service Disruption Time sólo está disponible con la prueba BERT.

El tiempo de interrupción del servicio (SDT) se corresponde con el tiempo durante el cual se presenta una interrupción del servicio debido a la ausencia de tráfico o a la detección de errores.

Press (Tiempo de interrupción del servicio) TEST (PRUEBA) y SDT.

Configuration (configuración)

Seleccione los criterios que se van a usar en la medición de SDT.

- **Nota:** las mediciones de interrupción del servicio se borran al cambiar de criterios.
 - Measurement Mode (Modo de medición): seleccione el modo de medición de SDT. Las opciones son Defect Mode (Modo de error) y No Traffic Mode (Modo sin tráfico). La configuración por defecto es Defect Mode (Modo de error).

Defect Mode (Modo de error) se basa en la detección de errores, incluidos **LOS**, **Link down** (Enlace roto), **invalid FCS** (FCS no válida), **LSS** y **Bit errors** (Errores de bit) en la carga útil. La medición de SDT es el periodo que transcurre entre el primer error y el final del último error anterior al periodo de **No Defect Time** (Tiempo sin errores), o el final del periodo de prueba.

No Traffic Mode (Modo sin tráfico) se basa en la ausencia de tráfico. La medición de SDT es el periodo que transcurre entre el final de la última trama recibida y el comienzo de una nueva trama recibida, o bien el final del periodo de prueba. ➤ No Traffic Time (Tiempo sin tráfico): disponible sólo para No Traffic Mode (Modo sin tráfico). No Traffic Time (Tiempo sin tráfico) es un valor configurado que activa un error si no se recibe ninguna trama Ethernet durante el periodo de prueba definido. Las opciones son:

Valor	Intervalo de tiempo sin tráfico
10/100/1000Mbps	10 a 99990 μs para FTB-8510B 20 a 99990 μs para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535
10 Gbps	10 a 100000 μs para FTB-8510G 10 a 99990 μs para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535

Las opciones de Unit (Unidad) son μ s, ms y s. La configuración por defecto es **10000** μ s.

- No Defect Time (Tiempo sin errores): disponible sólo para Defect Mode (Modo de error). No Defect Time (Tiempo sin errores) representa el periodo sin errores antes de detener la medición de SDT. Las opciones van de 20 a 99990 μs para 10/100/1000 Mbps y de 10 a 99000 μs para 10 Gbps. La velocidad máxima se ajusta en relación con el periodo de prueba [el máximo valor de No Defect Time (Tiempo sin errores) se obtiene cuando el valor de Test Period (Periodo de prueba) se ajusta a su valor máximo]: 30000000 μs). La configuración por defecto es 20 μs para 10/100/1000 Mbps y 10 μs para 10 Gbps. Las selecciones de Unit (unidad) de medición son μs, ms y s.
- Test Period (periodo de prueba): representa el periodo de tiempo usado para calcular la medición SDT. Las opciones van de 20 μs a 5 minutes (5 minutos) para 10/100/1000 Mbps y de 10000 μs a 5 minutes (5 minutos) para 10 Gbps. Las opciones de Unit (unidad) son μs, ms, s y min. La configuración por defecto es 100 ms.

- Botón On/Off (activar/desactivar): Press el botón On/Off (Activado/desactivado) para activar o desactivar las mediciones de tiempo de interrupción. En cualquier caso, la medición sólo comenzará si la prueba ya ha empezado o cuando se inicie la prueba.
- **Nota:** si se detiene la prueba SDT, se detendrá la medición sin borrar los resultados. La prueba SDT se detiene automáticamente sin borrar los resultados cuando se detiene la prueba. Sin embargo, si inicia la prueba de nuevo mientras STD sigue activado (On), se restablecerán los resultados antes de volver a comenzar.

Estadísticas

- Total Disruption Count (recuento de interrupción total): indica el número de interrupciones que se han producido desde el inicio de la prueba SDT.
- Shortest (más corto): indica el tiempo de interrupción más corto que se ha medido.
- Longest (más largo): indica el tiempo de interrupción más largo que se ha medido.
- Last (último): indica la duración del último tiempo de interrupción que se ha medido.
- Average (promedio): indica la duración media de todos los tiempos de interrupción que se han medido.
- Total: indica la duración total de todos los tiempos de interrupción que se han medido.
- Unit (unidad): seleccione la unidad para las estadísticas. Las opciones son μs, ms, s y min. La configuración por defecto es ms.
- **Nota:** cuando el SDT medido es igual o mayor que el periodo de prueba, el SDT equivale al tiempo de **Test Period** (periodo de prueba).
➤ Service Disruption (interrupción del servicio): indica el tiempo (en segundos) durante el que hay una interrupción del servicio debida a la ausencia de tráfico o a la detección de defectos. Los LED H y C indican, respectivamente, los estados de medición del SDT actual (C) y del historial (H).

El LED C (actual) LED está rojo cuando hay SDT y dura hasta que no transcurre el siguiente **No Defect Time period** (Tiempo sin errores) para **Defect Mode** (Modo de error), y hasta la trama siguiente para **No Traffic Mode** (Modo sin tráfico). Para **No Traffic Mode** (Modo sin tráfico), el LED sólo se pondrá rojo cuando se haya alcanzado o superado el periodo de **No Traffic Mode** (Modo sin tráfico). El LED C está verde cuando no hay SDT. Después de un SDT en **Defect Mode** (Modo de error), el LED C sólo se pondrá verde una vez que transcurra el tiempo de **No Defect Time** (Tiempo sin errores).

El LED **H** (historial) indica si se produjo algún SDT en el pasado (LED rojo) o no (LED verde).

19 Ficha común

Ficha	Disp	onible con	Dágina
гспа	Ethernet	Canal de fibra ^a	Fayilla
Performance Monitoring (Supervisión del rendimiento) (PM)	Х	Х	421

a. No disponible con FTB-8510G.

Performance Monitoring (Supervisión del rendimiento) (PM)

La pestaña del control del rendimiento indica los sucesos y parámetros de errores de rendimiento para el circuito que se está comprobando.

Nota: el control de rendimiento (PM) sólo está disponible con la prueba BERT. No está disponible con el modo de transceptor 10Gig-E WAN.

PM está disponible en las secciones Traffic Analyzer (Analizador de tráfico) y Pattern (Patrón):

 En la sección de Traffic Analyzer, el PM está disponible para Capa de trama 2 y la interfaz de 1000Mbps con Capa de trama 1 (con disposición xPAT).

Pulse **TEST, Traffic Analyzer** (PRUEBA, Analizador de tráfico) y **PM** (**FC PM** para canal de fibra).

 En la sección Pattern (patrón), PM está disponible con Unframed, Ethernet Framed Layer 1 (no entramado, capa de trama 1) y Framed Layer 2 (capa de trama 2).

Standard	Statistic	s	-	
G.821	EFS	-	AS	
	EC		UAS	
	ES		ESR	
	SES		SESR	
Pattern TX Pattern RX PM				

Press TEST (Prueba), Pattern (Patrón) y PM.

Standard (norma)

Seleccione el estándar deseado en la lista. Las opciones son:

	Estándar	Framed Layer 2 (Capa de trama 2)	Framed Layer 1 (Capa de trama 2)	No entramado
Traffic Analyzer	G0,826 ISM	Х	Xa	
(Analizador de tráfico)	G.826 OOSM	Х	Х	
Pattern (Patrón)	G.821	Х	Х	Х

a. Disponible sólo con el patrón de prueba xPAT. Los patrones xPAT están disponibles con la prueba óptica BERT de 1000 Mbps con **Framed Layer 1** (Capa de trama 1).

Estadísticas

- ► EFS (segundos libres de errores): indica el número de segundos en los cuales no se han producido errores de bit.
- EC (recuento de errores) (sólo para G.821): indica el número de errores de bit.
- ► EB (Bloques con Error) (sólo paraG.826): indica el recuento de bloques (trama) en los que uno o más bits presentan error.
- **ES** (segundo con errores):

For G0,821: indica el número de segundos dentro de los cuales se han producido uno o más errores de bit, o durante los que se ha detectado pérdida de señal (LOS) o un enlace roto.

For G.826: indica el número de segundos dentro de los cuales se han producido uno o más Bloques con Errores (EB), o al menos se ha producido un error NE.

SES (segundo con errores graves)

For G0,821: indica el número de segundos dentro de los cuales la relación de errores de bit es $\geq 10^{-3}$, o durante los cuales se ha detectado una pérdida de señal (LOS), enlace roto o pérdida de patrón.

For G.826: indica el número de segundos dentro de los cuales el recuento de EB es \geq que el umbral SES (30%), o se ha producido al menos un error NE.

- BBE (Error de Bloque de Fondo) (sólo paraG.826): proporciona el recuento de bloques con errores que no se producen como parte de SES. Un bloque se corresponde con una trama completa de Ethernet/canal de fibra.
- ➤ AS (Segundo Disponible): indica el recuento de los segundos que se corresponden con los periodos de tiempo en los que no se han producido errores SES durante al menos 10 segundos consecutivos.

➤ UAS (segundo no disponible): indica el recuento de los segundos que se corresponden con los periodos de tiempo en los cuales se han producido errores SES durante al menos 10 segundos consecutivos. El periodo no disponible concluye con el comienzo del siguiente periodo disponible, representado por diez segundos consecutivos en los cuales no se ha detectado ningún error SES.

 ESR (proporción de segundos con errores): indica la proporción del número de ES en el tiempo disponible (AS) durante un intervalo de medición fijo.

 $ESR = ES \div AS$

 SESR (proporción de segundos con errores graves): indica la proporción del número de SES en el tiempo disponible (AS) durante un intervalo de medición fijo.

 $SESR = SES \div AS$

BBER (Proporción de Errores de Bloque de Fondo) (sólo paraG.826): indica la proporción de BBE en el tiempo disponible (AS) con respecto al total de tramas (fps - tramas por segundo) en el tiempo disponible durante un intervalo de medición fijo. El recuento total de tramas excluye todas las tramas durante los SES.

 $BBER = BBE \div ((AS - SES) * tps)$

20 Fichas de sistema

La ficha **System** (Sistema) permite acceder a las fichas que contienen funciones generales relacionadas con el funcionamiento del FTB-8510B.

	Ficha		Disponible con		
		Ethernet	Canal de fibra ^a	rayina	
Preferencias	Preferences (Preferencias de la aplicación)	Х	Х	428	
	Default/Ethernet Test Preferences (Preferencias de prueba Ethernet/por defecto)	Х		430	
	IPv6 Test Preferences (Preferencias de prueba IPv6)	Х		434	
	FC Test Preferences (Preferencias de prueba FC) ^a		Х	437	
Module Information (información del módulo)	Module Information (Información del módulo)	Х	Х	440	
Software Options (opciones de software)	Opciones de software	Х	Х	442	
Sincronización del reloj	Sincronización del reloj	Х	Х	448	
Control remoto	Remote Control (Control remoto)	Х	Х	454	

a. No disponible con FTB-8510G.

Preferences (Preferencias de la aplicación)

Press (Preferencias de la aplicación)System (Sistema) y Preferences (Preferencias) y /Default Perferences (Preferencias por defecto).

Preferences	
Time Options Time Format TisO TisO Test Time Display Mode Relative	Page Management Reset To Display Default Pages Layout

Time Options (opciones de tiempo)

➤ Time Format (formato de hora): establece el formato del tiempo absoluto del SUI (tiempo actual y temporizadores). La configuración por defecto es ISO. Las opciones son:

ISO muestra la hora y los temporizadores con formato aaaa-mm-dd hh:mm:ss.

USA (EE. UU.) muestra la hora y los temporizadores con formato mm/dd/aa hh:mm:ss AM/PM.

➤ Time Zone (zona horaria): permite la selección del origen de la zona horaria. La configuración por defecto es Local.

UTC/GMT muestra la base de tiempo en la zona horaria UTC.

Local muestra la hora de la unidad FTB-500 o del PC cuando se usa **Visual Guardian Lite**.

Test Time Display Mode (modo de visualización de periodo de prueba): permite seleccionar el modo de tiempo de prueba que se muestra en el panel Logger (diario). La configuración por defecto es Relative (relativo).

Relative (relativo) muestra el tiempo transcurrido desde el principio de la prueba para un evento de la prueba.

Absolute (absoluto) muestra la fecha y la hora de un evento de la prueba.

Page Management (Gestión de la página)

Si se activa Reset to Display Default Pages Layout (restablecer diseño de página por defecto de visualización), se restablece el diseño de página a su configuración por defecto cada vez que se modifica una prueba.

Default/Ethernet Test Preferences (Preferencias de prueba Ethernet/por defecto)

Press System (Sistema) y Preferences (Preferencias)/Default Test Preferences (Preferencias de prueba por defecto)/Eth. Test Preferences (Preferencias de prueba Eth.).

Para FTB-8510B:

Configuration	Interface Configuration Port 1 Value - Negotiation Value - Stream Tag in TX	Port 2 V Auto-Negotiation V Stream Tag in TX
Couple Start/Enable TX	IP Address 10.10.0.0 Automatic IP Address Subnet Mask 255.255.0.0	IP Address 10.10.0.0 Automatic IP Address Subnet Mask 255,255.0.0
Eth.Test Preferences	Default Gateway 0.0.0.0 Enable FC Test Preferences FC Test Preferences	Default Gateway 0.0.0.0 Enable

Para FTB-8510G:

Configuration		Interface Configuration	
🔽 Laser On		I	Stream Tag in TX
Couple Star	t/Enable TX	IP Address	Automatic IB Address
		Subnet Mask	Automatic IP Address
		255.255.0.0	
		Default Gateway	Fashia
		0.0.0.0	Enable

Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535:

Configuration	-Interface Configuration
🔽 Laser On	Auto-Negotiation 🔽 Stream Tag in TX
	IP Address
	Subnet Mask
	255.255.0.0
	0.0.0.0 Cable
Eth.Test Preferences	IPv6 Test Preferences FC Test Preferences

Permite establecer los parámetros por defecto de la prueba Ethernet que se aplicarán cada vez que se cree de forma manual una prueba mediante **Test Setup** (Configuración de prueba). Los cambios realizados en las preferencias de prueba por defecto sólo se aplicarán cuando se cree caso de prueba nuevo.

Nota: las preferencias de prueba por defecto se guardan por ranuras en FTB-500, lo que quiere decir que la configuración no seguirá al módulo cuando se cambie el módulo de una ranura a otra. Sin embargo, se mantendrá una configuración en una ranura específica al sustituir un módulo por otro del mismo modelo.

Configuration (configuración)

- Laser On (láser activado): seleccione Laser On (Láser activado) cada vez que se cree una prueba de forma manual utilizando el asistente. La casilla de verificación Laser On está activada por defecto.
- Couple Start/Enable TX (Acoplar al inicio/permitir TX): disponible sólo con FTB-8510B y FTB-8510G . selecciona de forma automática la transmisión de flujo cuando se inicia la prueba. Esta configuración se aplica sólo a la prueba del analizador de tramas. La transmisión de flujo para cuando se detiene la prueba. La casilla de verificación Couple Start/Enable TX (Acoplar al inicio/permitir TX) está desactivada por defecto. Consulte el botón Enable TX - On/Off (Permitir TX - activada/desactivada) en la página 201 para obtener más información.

Interface Configuration (Configuración de la interfaz)

- **Nota:** Los siguientes parámetros de configuración de IPv4 se aplican al flujo y a la interfaz y están disponibles para ambos puertos (FTB-8510B). La configuración de **Stream Tag in TX** (Etiqueta de flujo en TX) también se aplica a IPv6.
 - Auto-Negotiation (Permitir negociación automática): la casilla de verificación de Auto-Negotiation (Negociación automática) se debe activar si el conmutador conectado está también configurado para la negociación automática; si no lo estuviese, se debe desactivar. Cuando se seleccione, el Aplicación Ethernet y canal de fibra indicará al conmutador los parámetros que debe usar. La casilla de verificación Auto-Negotiation (Permitir negociación automática) está seleccionada por defecto. Disponible con las interfaces de 10/100/1000 Mbps.
 - ➤ Stream Tag in TX (Permitir etiqueta de flujo en TX) permite seleccionar automáticamente la casilla de verificación Stream Tag (Etiqueta de flujo) (consulte la página 201) cada vez que se crea una prueba Frame Analyzer (Analizador de tramas). La casilla de verificación Stream Tag in TX (Permitir etiqueta de flujo en TX) está seleccionada por defecto.
 - IP Address (Dirección IP): introduzca la dirección IP para el flujo y para el puerto Ethernet. La dirección IP por defecto de fábrica es 10.10.x.xy, donde x e y son respectivamente los dos bytes de menor importancia de la dirección MAC por defecto para el puerto.

Default/Ethernet Test Preferences (Preferencias de prueba Ethernet/por defecto)

- Automatic IP Address (Permitir dirección IP automática): permite seleccionar automáticamente DHCP cuando se crea una prueba para obtener una dirección IP dinámicamente de un servidor DHCP. La casilla de verificación Automatic IP Address (Permitir dirección IP automática) no está seleccionada por defecto.
- Subset Mask (Máscara de subred): introduzca la máscara de subred para el flujo y para el puerto Ethernet. La configuración por defecto es 255.255.0.0.
- Default Gateway (Puerta de enlace por defecto): introduzca la dirección de la puerta de enlace por defecto para el flujo y para el puerto Ethernet. La puerta de enlace por defecto debe estar activada para poder activar el campo de dirección de la puerta de enlace por defecto. La configuración por defecto es 0.0.0.

Enable (permitir): Permita la dirección IP de la puerta de enlace por defecto tanto para el flujo como para el puerto Ethernet. La casilla de verificación **Enable** (Permitir) no está activada por defecto.

IPv6 Test Preferences (Preferencias de prueba IPv6)

Press (Preferencias de prueba IPv6)System (Sistema) y Preferences/IPv6 Test Preferences (Preferencias/preferencias de prueba IPv6).

Nota: los siguientes parámetros de configuración se aplican al flujo y la interfaz.

- Port Selector (Selector de puerto) (FTB-8510B): permite seleccionar el número de puerto para visualizar o cambiar sus parámetros. Las opciones son Port 1 (Puerto 1) y Port 2 (Puerto 2). La configuración por defecto es Port 1 (Puerto 1).
- IP Version (Versión de IP): permite seleccionar la versión de IP (IPv4 o IPv6) que se seleccionará por defecto al crear un caso de prueba.
- **Nota:** los siguientes parámetros se aplican sólo a IPv6 incluso cuando se selecciona IPv4 como **IP Version** (Versión de IP) por defecto. Consulte Default/Ethernet Test Preferences (Preferencias de prueba Ethernet/por defecto) en la página 430 para obtener más información sobre los parámetros de IPv4.

➤ Link-Local IPv6 Address (Dirección IPv6 local de enlace): Link-Local IPv6 Address (LLA) (dirección IPv6 local de enlace) se utiliza paras las comunicaciones locales entre vecinos conectados y para el proceso de descubrimiento de vecinos.

Mode (modo)

- Stateless Auto (Automático sin estado) permite generar de forma automática una dirección IPv6 basada en la dirección MAC. El modo Stateless Auto (Automático sin estado) está seleccionado por defecto.
- Static (Estático) permite introducir la dirección IP. Link-Local IPv6 Address (Dirección IPv6 local de enlace) debe comenzar con FE80. La dirección por defecto es FE80::[ID de la interfaz] donde [ID de la interfaz] se genera desde la dirección MAC de origen.
- Global IPv6 Address (Dirección IPv6 global): Global IPv6 Address (GUA) (dirección IPv6 global) se utiliza para las comunicaciones con vecinos conectados y para comunicaciones globales con hosts ubicados fuera de la subred.

Mode (modo)

- None (ninguno) desconecta Global IPv6 address (dirección IPv6 global) y Default Gateway address (dirección de la puerta de enlace por defecto).
- Stateless Auto (Automático sin estado) permite generar de forma automática una dirección IPv6 basada en el ID de interfaz de la dirección local de enlace y el prefijo obtenido de los anuncios del enrutador. Si no se ha obtenido ningún ID de interfaz para la dirección local de enlace, no se generará la dirección global. El modo Stateless Auto (Automático sin estado) está seleccionado por defecto.
- Static (Estático) permite introducir la dirección IP. La dirección por defecto es 2001::[ID de la interfaz] donde [ID de la interfaz] se genera desde la dirección MAC de origen.

Interface ID Coupled (ID de interfaz acoplada): disponible cuando se selecciona **Static Mode** (Modo estático). Permite acoplar el ID de interfaz de la dirección global a la dirección local de enlace de origen. El ID de interfaz de la dirección global coincidirá con el ID de interfaz de la dirección local de enlace. La casilla de verificación **Interface ID Coupled** (ID de interfaz acoplado) está seleccionada por defecto.

Prefix Mask (Máscara de prefijo): disponible cuando se selecciona **Static Mode** (Modo estático). Permite especificar un prefijo que defina la subred. Por ejemplo:

Dirección global	2001:0DB8:0001:0002:02AA:00FF:FE11:1111
Máscara de prefijo	FFFF:FFFF:FFFF:0000:0000:0000:0000
Prefijo correspondiente	2001:0DB8:0001

- **Nota:** cuando la configuración del modo de la dirección global es Stateless Auto (Automático sin estado), los prefijos se obtienen a partir de los mensajes de los anuncios del enrutador. Si no se obtiene ningún prefijo, la dirección global queda sin especificar y se declara que el siguiente paso está dentro de la subred.
 - Default Gateway Address (Dirección de la puerta de enlace por defecto): Default Gateway Address (Dirección de la puerta de enlace por defecto) se utiliza para enviar paquetes fuera de la subred. Default Gateway Address (Dirección de la puerta de enlace por defecto) no está disponible cuando la opción Mode (Modo) de la dirección IPv6 global está configurada en None (Ninguno).

Mode (modo)

- Automatic (automático) permite la selección automática de la puerta de enlace por defecto.
- Static (Estático) permite introducir la dirección IP de la puerta de enlace por defecto. La dirección por defecto es FE80::.

FC Test Preferences (Preferencias de prueba FC)

Nota: no disponible con FTB-8510G.

Press (Preferencias de prueba FC)System (Sistema) y Preferences/FC Test Preferences (Preferencias/preferencias de prueba FC).

Para FTB-8510B:

Configuration	Interface Configuration	
🔽 Laser On	Port 1	- Port 2
	SP (Link Protocol)	PSP (Link Protocol)
	🔽 Login	✓ Login
	Advertised BB_Credit	Advertised BB_Credit
	10	10
	WWN Source	WWN Source
	20-00-00-30-10-00-00-01	20-00-00-30-10-00-00-01
Eth.Test Preferences IF	Pv6 Test Preferences FC Test Preferences	

Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535:

Configuration	Interface Configuration
Laser On	Port
	PSP (Link Protocol)
	₩ Login
	Advertised BB_Credit
	10
	WWN Source
	20-00-00-30-10-00-00-01
Eth.Test Preferences	Pv6 Test Preferences FC Test Preferences

Permite establecer los parámetros por defecto de la prueba que se aplicarán cada vez que se cree de forma manual una prueba mediante **Test Setup** (Configuración de prueba). Los cambios realizados en las preferencias de prueba por defecto sólo se aplicarán cuando se cree caso de prueba nuevo. Las preferencias de prueba por defecto se pueden sobrescribir mediante la configuración de la prueba.

Nota: las preferencias de prueba por defecto se guardan por ranuras en FTB-500, lo que quiere decir que la configuración no seguirá al módulo cuando se cambie el módulo de una ranura a otra. Sin embargo, se mantendrá una configuración en una ranura específica al sustituir un módulo por otro del mismo modelo.

Configuration (configuración)

Laser On (láser activado): permite seleccionar **Laser On** (Láser activado) cada vez que se cree una prueba de forma manual utilizando el asistente. Esta configuración está seleccionada por defecto.

Interface Configuration (Configuración de la interfaz)

- **Nota:** los siguientes parámetros de configuración de la interfaz están disponibles para los dos puertos (FTB-8510B).
 - PSP (Link Protocol) (PSP [protocolo de enlace]): la activación del protocolo de secuencias de primitivas (PSP) permite la gestión de enlaces. Si se desactiva PSP, el puerto queda obligado al modo Active (Activo).
 - Login (Inicio de sesión): Login (inicio de sesión) sólo está disponible con Framed Layer 2 (capa de trama 2) y permite cambiar el valor de Advertised BB_Credit (BB_Credit anunciado).
 - Advertised BB_Credit (BB_Credit anunciado): Advertised BB_Credit (BB_Credit anunciado) es el número de búferes de trama de los que dispone un puerto local para recibir tramas de otro puerto y se anuncia al puerto remoto a través del proceso de inicio de sesión.

Introduzca el valor de **Advertised BB_Credit** (BB_Credit anunciado). Las opciones van de **1** a **65535**. La configuración por defecto es **10**.

WWN Source (Origen de WWN): el nombre WWN sólo está disponible cuando Login (Inicio de sesión) está activado con la topología de red Fabric. Introduzca la dirección de origen del nombre WWN.

Module Information (Información del módulo)

Press **(Paquete de software)System** (Sistema) y **Module Information** (Información del módulo).

oftware Product	Item	Description	
.1.0.4	SUI Version	2.1.0.4	
	Instrument Version		
	Firmware Version		
	Boot Version		
dule Description			
odule ID	Item		Description
	Location		
	Slot ID		0
	Description		
	Assembly Hardware	Revision	
	Serial Number		
	Calibration Date		
dware Options -			
	Thom	Description	
evice Type	100m		
vice Type	1.cem		
evice Type	Item		
avice Type	100m		
wice Type			
avice Type			
evice Type			

 Installed Software (software instalado)Packages (paquetes): indica la versión del producto de software y las versiones de SUI, de Instrument (instrumento), de Firmware y de Boot (arranque).

> Module Description (descripción del módulo)

Proporciona la ubicación y la descripción del módulo Serie FTB-8500 y FTB-8120NGE/8130NGE.

► Location (ubicación)

Slot ID (ID de ranura) indica el número de ranura donde está insertado el Serie FTB-8500 y FTB-8120NGE/8130NGE.

> Description (Descripción)

Assembly Hardware Revision (revisión de hardware del conjunto): indica la revisión de hardware del conjunto del producto.

Serial Number (número de serie): indica el número de serie del módulo.

Calibration Date (fecha de calibración): indica la fecha de la última calibración del módulo.

> Opciones de hardware

Proporciona información de hardware relacionada con el SFP/XFP.

SFP/XFP: La siguiente información está disponible para el SFP/XFP insertado.

Module ID (ID de módulo) Port Number (número de puerto) Vendor Name (nombre del distribuidor) Part Number (número de pieza) Serial Number (número de serie) Revision Number (número de revisión) Connector Type (tipo de conector): LC, MT-RJ, etc. Speed (Velocidad): 100Base-FX/LX, 1000Base-SX, FC-1X, FC-2X, FC-4X, 10G Type (tipo): Tipo de alcance: FC: distancia corta, LR/LW, etc. Wavelength (longitud de onda): 850 nm, 1310 nm y 1550 nm. Modo: FC: fibra multimodo (M6), etc.

Opciones de software

Permite instalar las opciones de software. EXFO generará una clave de opción de software por cada opción comprada.

Press **(Opciones de software) System** (Sistema) y **Software Option** (Opción de software).

Nota: La instalación de opciones de software sólo es posible cuando no se ha creado ningún caso de prueba.

ftware Options					
onfiguration					
Software Option Ke	у				
x00000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	ad Key App	ply	
vailable Options					
Category	Name	Description	Status		
Feature	SK-802-3AH	802.3ah OAM Protocol	Enabled		
Feature	SK-ADV-FILTERS	Advanced Traffic Filtering	Enabled		
Feature	SK-DATA-CAPTURE	Ethernet Frame Capture for Advanced Troubleshooting	Enabled		
Feature	SK-ETHERSAM	Ethernet Service Activation Methodology Application Type	Enabled		Oracianaa d
Feature	SK-IPTV-MAXSTREAM	Internet Protocol Television (IPTV) Max Stream	Enabled		— Opciones a
Feature	SK-IPTV-MON	Internet Protocol Television (IPTV) Monitoring	Enabled		
Feature	SK-IPV6	Internet Protocol Version 6 (IPv6)	Enabled	1	sottware
Feature	SK-MPLS	Multi Protocol Label Switching	Enabled		
Feature	SK-PBB-TE	Provider Backbone Bridge with Traffic Engineering	Enabled		para
Feature	SK-TCP-THPUT	SK-TCP-THPUT TCP Throughput Measurement Application Enabled			
Feature SK-TRAFFIC-SCAN		Traffic Scan Troubleshooting Feature	Enabled		FIB-8510B
Interface	SK-1000M-E	Ethernet 1000Base-T (Electrical) Interface	Enabled		
Interface	SK-1000M-O	Ethernet 1000Base-X (Optical) Interface	Enabled		
Interface	SK-100M-E-AP	Ethernet 1000Base-X (Optical) Interface Enabled Ethernet 100Base-X (Electrical) Interface on All Ports Enabled			
Interface	SK-100M-O-AP	Ethernet 100Base-FX (Optical) Interface on All Ports	Enabled		
Interface	SK-10M-E-AP	Ethernet 10Base-T (Electrical) Interface on All Ports	Enabled		
Interface	Figure SK-2ND-PORT Enable the second part Enabled				
Interface	SK-ETH-THRU	Ethernet Throughmode	Enabled		
Interface	SK-FC-1X	Fibre Channel 1x (Optical) Interface (1Gbps)	Enabled	i ¥	
Interface	SK-FC-2X	Fibre Channel 2x (Optical) Interface (2Gbps)	Enabled		
				-	

Configuration (configuración)

La clave de la licencia del software se puede introducir (escribir) o cargar (empleando el botón **Load Key**).

- Software Option Key (clave de opción de software) permite escribir la clave de la opción de software.
- El botón Load Key (cargar clave) permite seleccionar un archivo que contenga la clave de la opción.

El directorio por defecto es d:\ToolBox\User Files\PacketBlazerG2\Key.

► El botón **Apply** (aplicar) envía la clave de opción al Serie FTB-8500 y FTB-8120NGE/8130NGE. Se mostrará un mensaje de confirmación.

Available Options (opciones disponibles)

Las opciones de software disponibles se enumeran con el **Status** (Estado) que indica qué opciones de software hay instaladas (habilitadas) o no (deshabilitadas) en el módulo.

Para FTB-8510B:

Categoría	Name (nombre)	Description (Descripción)
Interfaz	SK-10M-E-AP	La interfaz Ethernet de 10 Mbps está activada en ambos puertos.
	SK-100M-E-AP	La interfaz Ethernet de 100 Mbps está activada en ambos puertos.
	SK-1000M-E	La interfaz eléctrica Ethernet de 1000 Mbps está activada en el puerto nº 1.
	SK-100M-O-AP	La interfaz óptica Ethernet de 100 Mbps está activada en ambos puertos.
	SK-1000M-O	La interfaz óptica Ethernet de 1000 Mbps está activada en el puerto nº 1.
	SK-2ND-PORT	Todas las interfaces activadas en el puerto nº 1 también están activadas en el puerto nº 2.
	SK-ETH-THRU	Modo directo de Ethernet.
	SK-FC-1X	Interfaz (óptica) de canal de fibra de 1x (100 Mbps)
	SK-FC-2X	Interfaz (óptica) de canal de fibra de 2x (200 Mbps)

Opciones de software

Categoría	Name (nombre)	Description (Descripción)
Feature	SK-802-3AH	El protocolo 802.3ah OAM está activado.
(Función)	SK-TCP-THPUT	La aplicación de medición del caudal de tráfico TCP está activada.
	SK-IPTV-MON	El control de IPTV está activado con una función de control de 10 flujos.
	SK-IPTV-MAXSTRE AM	Incrementa la función de control de IPTV a 100 flujos.
	SK-ADV-FILTERS	Filtro de tráfico avanzado
	SK-DATA-CAPTURE	Captura de datos
	SK-ETHERSAM	Tipo de aplicación de metodología para la activación del servicio Ethernet
	SK-PBB-TE	Puente troncal del proveedor con ingeniería de tráfico
	SK-MPLS	Conmutación de etiquetas multiprotocolo
	SK-IPV6	Protocolo de Internet versión 6 (IPv6)
	SK-TRAFFIC-SCAN	Herramienta de solución de problemas de exploración de tráfico

Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535:

Categoría	Name (nombre)	Description (Descripción)		
Interfaz	SK-10M-E-AP	La interfaz Ethernet de 1000 Mbps está activada.		
	SK-100M-E-AP	La interfaz Ethernet de 100 Mbps está activada.		
	SK-1000M-E	La interfaz eléctrica Ethernet de 1000 Mbps está activada.		
	SK-100M-O-AP	La interfaz óptica Ethernet de 100 Mbps está activada.		
	SK-1000M-O	La interfaz óptica Ethernet de 1000 Mbps está activada.		
	SK-FC-1X	Interfaz (óptica) de canal de fibra de 1x (100 Mbps)		
	SK-FC-2X	Interfaz (óptica) de canal de fibra de 2x (200 Mbps)		
	SK-FC-4X	Interfaz (óptica) de canal de fibra de 4x (400 Mbps)		
	SK-FC-10X	Interfaz (óptica) de canal de fibra de 10x (10 Gbps)		
Feature	SK-ADV-FILTERS	Filtro de tráfico avanzado		
(Función)	SK-DATA-CAPTURE	Captura de datos		
	SK-ETHERSAM	Tipo de aplicación de metodología para la activación del servicio Ethernet		
	SK-PBB-TE	Puente troncal del proveedor con ingeniería de tráfico		
	SK-MPLS	Conmutación de etiquetas multiprotocolo		
	SK-IPV6	Protocolo de Internet versión 6 (IPv6)		
	SK-FRAME- ANALYZER	Funciones de prueba del analizador de tramas		
	SK-TRAFFIC-SCAN	Herramienta de solución de problemas de exploración de tráfico		
Red	SK-LAN	Funciones de prueba LAN para 10 Gbps		
	SK-WAN	Funciones de prueba de WAN para 10 Gbps		

Para FTB-8510G:

Categoría	Name (nombre)	Description (Descripción)
Interfaz	SK-ADV-FILTERS	Filtro de tráfico avanzado
	SK-ETHERSAM	Tipo de aplicación de metodología para la activación del servicio Ethernet
	SK-IPV6	Protocolo de Internet versión 6 (IPv6)
SK-LAN		Funciones de prueba LAN
	SK-WAN	Funciones de prueba WAN
	SK-PBB-TE	Puente troncal del proveedor con ingeniería de tráfico
	SK-MPLS	Conmutación de etiquetas multiprotocolo
	SK-TRAFFIC-SCAN	Herramienta de solución de problemas de exploración de tráfico

Sincronización del reloj

Nota: La sincronización del reloj sólo está disponible para las interfaces Ethernet 10G y Fibre Channel 10x, así como para el conjunto de pruebas duales en el modo de medición de latencia unidireccional.

Press **(Sincronización del reloj)System** (Sistema) **Clock Synchronization** (Sincronización del reloj).

Clock Synchronization	
RX Configuration Interface Type None Line Coding	Termination Mode Alarm Analysis Frequency (Analysis Framing LOF Frequency (Ops) Framing EOF Frequency Offset Frequency Frequency (Diffset Frequency Offset
Backplane Configuration Clock Mode Internal	Enable IOC
Configuration Divider Ratio	Signal Analysis Frequency (MHz) 0 Output Presence

RX

Configuration (configuración): permite la selección y la configuración del reloj de entrada. Este reloj se empleará para la sincronización de la prueba si se ha seleccionado el reloj externo durante la configuración de prueba o para la configuración del plano posterior cuando se ha seleccionado el modo de reloj externo.

- Interface Type (tipo de interfaz): permite seleccionar la interfaz del reloj. Las opciones son None (Ninguno), DS1 y E1. La configuración por defecto es None (Ninguno). Para FTB-8120NGE y FTB-8130NGE, el Interface Type (Tipo de interfaz) se establece automáticamente en 1PPS en el modo de medición de latencia unidireccional del conjunto de pruebas duales.
- ► **Termination Mode** (modo de finalización): el modo de finalización está configurado como **Term** (Final.) para DS1 y E1.

► Line Coding (codificación de línea): permite seleccionar la codificación de línea de interfaz. Las opciones son:

Para DS1: AMI y B8ZS. La configuración por defecto es B8ZS.

Para E1: AMI y HDB3. La configuración por defecto es HDB3.

 Entramado: permite seleccionar el tipo de entramado de la interfaz. Las opciones son:

Para DS1: SF y ESF. La configuración por defecto es SF.

Para E1: PCM30, PCM30 CRC-4, PCM31 y PCM31 CRC-4. La configuración por defecto es PCM30.

Alarm Analysis (análisis de alarma)

- Nota: Sólo la alarma LOPPS-L está disponible con la señal 1PPS.
 - LOS (pérdida de señal): la alarma LOS indica la ausencia de una señal de entrada o que se ha recibido una señal de todo ceros.
 - AIS (señal de indicación de alarma): la alarma AIS se declara cuando se recibe una señal sin entramado de todo unos.
 - **LOF** (pérdida de trama):

Para DS1:

- con entramado SF: se declara el estado de pérdida de trama cuando se han recibido en 5 tramas consecutivas 2 errores de tramas terminales o de tramas de señalización.
- Con entramado ESF: se declara el estado de pérdida de trama cuando se han recibido en 5 tramas consecutivas 2 errores de tramas FPS.

Para E1: se declarará el estado de pérdida de tramas cuando se hayan recibido de forma consecutiva tres señales de alineación de tramas incorrectas.

 Frequency (frecuencia): la alarma de frecuencia indica si el valor de la señal recibida cumple (verde) las especificaciones del valor siguientes o no (rojo).

Señal	Especificación de valor	
DS1	1544000 ±15 bps (±9,2 ppm)	
E1	2048000 ±19 bps (±9,2 ppm)	

LOPPS-L (Loss Of Pulse Per Second - Local [Pérdida de pulso por segundo - Local)] se declara cuando no se recibe ningún pulso o cuando no se recibe antes de 1 segundo ± 6.6 μs después del pulso anterior. Sólo compatible con la señal 1PPS en el modo de prueba del Dual Test Set (Conjunto de pruebas duales).

Frequency Analysis (análisis de frecuencia)

- ➤ Frequency (bps) (Frecuencia en bps) muestra la velocidad de la señal DS1/2M/E1 recibida en bps.
- Frequency Offset (desviación de frecuencia) muestra la desviación de frecuencia positiva o negativa entre la especificación de valor estándar y el valor de la señal recibida. La unidad de frecuencia se puede establecer como bps o ppm. La configuración por defecto es bps.
- **Nota:** El valor de frecuencia muestra ">50" cuando la desviación de frecuencia es superior a ±50 ppm. Sin supervisión para el tipo de interfaz 1PPS.

Backplane (plano posterior)

La propiedad de plano posterior permite compartir el mismo reloj de plano posterior de 8kHz con fines del grupo de sincronización. El otro módulo debe ser compatible con la función de reloj de plano posterior para poder usar el reloj de plano posterior generado.

Configuration (configuración): permite la selección y configuración del reloj de 8 kHz de plano posterior que se generará al activarse.

 Clock Mode (modo de reloj): permite la selección de la fuente de reloj. La configuración por defecto es Internal (interna).

Modo de reloj	LAN	WAN
Internal (interno): reloj interno de la unidad (STRATUM 3). El reloj interno es el único reloj disponible cuando está seleccionado el modo de transceptor 10GigE LAN con las pruebas Frame Analyzer (Analizador de tramas), BERT o RFC 2544 .	Х	Х
External (externo): reloj de la señal del reloj externo DS1/E1/2M conectado (paraFTB-8510G: puerto EXT. CLK DS1/2M IN; para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535: puerto AUX). Una vez creada la prueba, consulte <i>Clock Synchronization</i> (Sincronización del reloj) <i>-RX</i> para completar la configuración del reloj externo. Para FTB-8120NGE y FTB-8130NGE, External (Externo) no está disponible en el modo de latencia unidireccional del Dual Test Set (Conjunto de pruebas duales).	-	X
Recovered (recuperado): Reloj recibido desde la señal de entrada del puerto óptico de la prueba. El recuperado es el único reloj disponible cuando se selecciona el modo de transceptor 10GigE LAN con la prueba Smart Loopback (Bucle invertido Smart). Recovered está sólo disponible para la prueba de Bucle invertido Smart.	X	X
Backplane (plano posterior): reloj de 8 kHz de otro módulo en el FTB-500. Tenga en cuenta que el otro módulo debe admitir la función de reloj de plano posterior y estar activado (consulte <i>Backplane (plano posterior)</i> en la página 451 para obtener más información).		Х

 Enable (permitir): permite activar el reloj de plano posterior seleccionado.

Alarm Analysis (análisis de alarma)

 LOC (pérdida de reloj): indica si el módulo es capaz (verde) o no (rojo) de sincronizarse con el reloj de prueba seleccionado.

(Salida de reloj)Ref Output (Salida de referencia)

- Nota: (Salida de reloj)Ref Output (Salida de referencia) sólo está disponible con FTB-8510G, FTB-8535 y FTB-8130NGE. Para FTB-8130NGE y FTB-8535, la señal REF OUT (SALIDA DE REFERENCIA) se activa automáticamente en el puerto REF OUT (SALIDA DE REFERENCIA) (conector SMA) cuando el láser del puerto está activado.
- **Nota:** Para FTB-8120NGE y FTB-8130NGE, (Salida de reloj)Ref Output (Salida de referencia) no está disponible en en el modo de medida de latencia unidireccional del conjunto de pruebas duales.

Configuration (configuración)

Divider (divisor) Ratio (relación): permite seleccionar el divisor del reloj de prueba de transmisión. Las opciones son 16, 32 y 64. La siguiente tabla muestra la frecuencia de salida correspondiente en MHz.

Relación del divisor	Modo de transceptor LAN	Modo de transceptor WAN	Canal de fibra de 10x ^a
16	644,53 MHz	622,08 MHz	657,421875 MHz
32	322,266 MHz	311,04 MHz	328,7109380 MHz
64	161,133 MHz	155,52 MHz	164,355469 MHz

a. No disponible con FTB-8510G.

Signal Analysis (análisis de señal)

- **Nota:** no disponible con FTB-8510G.
 - ► Frequency (MHz) (frecuencia en MHz): muestra la frecuencia de la señal generada en MHz.
 - ➤ Output Presence (presencia de salida): indica la presencia de una señal en el puerto REF OUT (verde) o la ausencia (gris).

Remote Control (Control remoto)

Press System (Sistema) y Remote Control (Control remoto).

User Information (Información de usuario)

El campo User Information (información de usuario) permite que un usuario deje un mensaje a otros usuarios que estén conectados al mismo módulo. Se permiten hasta 80 caracteres.

Nota: Consulte la guía del usuario de **Visual Guardian Lite** para obtener más información.
21 Fichas de herramientas

Nota: las fichas de **Tools** (Herramientas) sólo están disponibles cuando se crea una prueba.

		Disponi	ble con	
	Ficha	Ethernet	Canal de fibra ^a	Página
Script (secuencia de comandos)	Script (Secuencia de comandos)	Х		456
Ping y ruta de traza ^b	Ping Configuration (Configuración de ping)	Х		461
	Trace Route Configuration (Configuración de ruta de traza)	Х		468
ENIU OAM ^{bc}	ENIU Configuration (Configuración de ENIU)	Х		473
	ADC Configuration (Configuración de ADC)	Х		475
	802.3ah Configuration (Configuración de 802.3ah) ^d	Х		479
	802.3ah Statistics (Estadísticas de 802.3ah) ^d	Х		482
	802.3ah Events (Eventos de 802.3ah) ^d	Х		485
Traffic Scan (Exploración de tráfico)	Traffic Scan (Exploración de tráfico)	Х		488

a. No disponible con FTB-8510G.

- b. No disponible cuando Through Mode (Modo directo) está seleccionado.
- c. **ENIU OAM** sólo está disponible con **Framed Layer 2** (Capa de trama 2). ENIU OAM no está disponible con 10Gig-E.
- d. La opción 802.3ah necesita estar activada en el módulo FTB-8510B para estar disponible. Consulte *Available Options (opciones disponibles)* en la página 444.

Script (Secuencia de comandos)

La herramienta de secuencias de comandos le permite al usuario automatizar procesos de prueba mediante la creación de secuencias de comandos que contienen la configuración y acciones de prueba. Esta herramienta permite también crear, guardar, cargar, modificar y ejecutar archivos de secuencias de comandos. Las secuencias de comandos se pueden crear manualmente o con la herramienta de grabación integrada (**Script Tool** [herramienta de secuencias de comandos]). Para poder crear y editar secuencias de comandos es recomendable tener conocimientos de programación en lenguaje **Visual Basic .NET (Visual Basic)**.

Nota: se genera una secuencia de comandos para reproducirla para un tipo de módulo específico en una ranura determinada. Para poder reproducir una secuencia de comandos generada para un módulo en otra ranura, se debería editar manualmente el archivo de la secuencia. Una secuencia de comandos sólo se puede volver a reproducir en módulos que sean del mismo tipo que aquel en el que se grabó.

Edit (Editar)

Muestra el contenido de la secuencia de comandos actual y permite editarlo. Los usuarios que tengan conocimientos de programación en lenguaje **Visual Basic .NET (Visual Basic)** podrán personalizar sus secuencias de comandos a través de la inserción de retardos, por ejemplo. Tenga en cuenta que los retardos no se insertan automáticamente durante la grabación.

Output (salida)

Indica el estado de la secuencia de comandos en marcha.

File (archivo)

Permite cargar, guardar y generar un nuevo archivo de secuencia de comandos.

- **Nota:** el directorio por defecto para los archivos de secuencia de comandos es: d:\ToolBox\User Files\PacketBlazerG2\Scripts
 - Press New (Nuevo) para crear una secuencia de comandos nueva y borrar la de la ficha Edit (Editar), si la hubiera. Escriba un nuevo nombre de archivo en el campo File name (Nombre de archivo) y press Save (Guardar).
 - Press Load (Cargar) y seleccione un archivo de secuencia de comandos press Load (Cargar).
 - Press **Save** (Guardar) y seleccione un nombre para el archivo de secuencia de comandos seguido de la extensión **scp** y press **Save** (Guardar). La extensión **scp** se añade automáticamente si se ha omitido.

Script Tools (herramientas de secuencias de comandos)

Permite generar automáticamente secuencias de comandos estableciendo paso por paso los parámetros desde la ficha Test Setup (Configuración de la prueba) y las fichas relacionadas de la prueba.

Press Record (Grabar) para iniciar la grabación de la secuencia de comandos. Press el campo File Name (Nombre de archivo) y aparecerá un teclado emergente en el que deberá introducir un nuevo nombre de archivo para la nueva secuencia de comandos, seguido de la extensión scp y press Save (Guardar). La extensión scp se añade automáticamente si se ha omitido. El LED del botón de registro se muestra en rojo durante la grabación.

En **Test Setup** (configuración de la prueba) cree un caso de prueba y configure sus parámetros.

Nota: antes de crear una prueba nueva, también se puede borrar la existente. Esto es útil para eliminar las pruebas de forma automática antes de crear otras nuevas y no tener que hacerlo manualmente.

Una vez que se ha creado la prueba se pueden llevar a cabo, además de grabar, las siguientes acciones.

- En los paneles de prueba relacionados, configurar los parámetros de la prueba.
- ► Iniciar la prueba.
- > Detener la prueba.
- ► Generar un informe.
- ► Guardar el informe.
- ► Etc.

En la ficha **Script** (Secuencia de comandos), press **Record** (Grabar) de nuevo para finalizar la sesión de grabación de la secuencia de comandos y guardar el archivo correspondiente. La secuencia de comandos generada se muestra una vez concluida la grabación.

- **Nota:** sólo se guardan la ruta del caso de prueba y su configuración. La configuración y los resultados de la SUI no se guardan.
- Nota: no obstante, para RFC 2544, se deben completar todas las pruebas seleccionadas (Throughput [caudal de tráfico], Back-to-Back [transmisión recíproca], Frame Loss [pérdida de trama] y/o Latency [latencia]) antes de detener la grabación dado que las pruebas que no se han ejecutado no formarán parte de la secuencia de comandos.
 - Press Play (Reproducir) para ejecutar la secuencia de comandos que genera la conexión y establece los parámetros según se han registrado.

La ficha **Edit** (editar) cambia de forma automática a la ficha **Output** (salida) cuando se reproduce una secuencia de comandos, lo que permite ver el estado de ejecución de la secuencia de comandos.

La secuencia de comandos dejará de reproducirse automáticamente cuando se produzca un error o cuando finalice la secuencia de comandos.

Pressing **Play** (Reproducir) durante la reproducción de la secuencia de comandos la interrumpirá (detendrá).

Nota: el botón **Play** (Reproducir) no está disponible si no hay una secuencia de comandos cargada o si se ha generado una nueva secuencia de comandos y todavía no se ha guardado.

Script Line Editing (Edición de la línea de la secuencia de comandos)

- > Interface (interfaz): seleccione la Interface (interfaz) de la lista.
- > Member (miembro): seleccione el Member (miembro) de la lista.
- Member Description (descripción del miembro): muestra la descripción del miembro que se corresponde con la Interface (interfaz)/el Member (miembro) seleccionados.
- Botón Insert (insertar): permite insertar la línea de la secuencia de comandos seleccionada. Asegúrese de que el cursor se encuentra en la posición en la que se debe insertar la nueva línea de la secuencia de comandos. La opción para insertar la línea de la secuencia de comandos sólo está disponible cuando hay una secuencia de comandos en la ficha Edit (editar).
- BotónShow/Hide Keyboard: permite mostrar u ocultar el teclado. Press el botón show/hide keyboard (Mostrar/ocultar el teclado) cuando el teclado está oculto para desplegar el teclado emergente. Press show/hide keyboard (Mostrar/ocultar el teclado) cuando el teclado está en pantalla para ocultarlo
- Botón Help (ayuda): proporciona ayuda sobre los miembros y funciones del instrumento.

Ping Configuration (Configuración de ping)

Esta herramienta Ping se usa para determinar si se puede acceder a algún dispositivo de la red. Ping no está disponible si no se ha creado ninguna prueba.

Press **Tools** (Herramientas), **Ping**, **Configuration** (Configuración) y en la lista **Tool** (Herramienta), press **Ping**.

Nota: Para **Trace Route** (Ruta de la traza), consulte Trace Route Configuration (Configuración de ruta de traza) en la página 468.

Setup IP Address 10.1.200.238	Run 🌑	Tool Ping			
Timeout (ms)	Delay (ms)	Data Size (Bytes)	Time To Live (TTL)		
Attempts 4	Continuous	Type Of Service (TOS)	F Binary		
Configuration Result	J				
Setup IP Address FE80:0000:0000:0000:00	203:01FF:FE08:23E9	Run 🌑	Tool Ping		
Timeout (ms)	Delay (ms)	Data Size (Bytes)	HOP Limit (TTL)	Flow Label	
Attempts 4	Continuous	Traffic Class (TOS)	F Binary		
Configuration Result	J				

Setup (Configuración)

- ➤ IP Address/IPv6 Address (Dirección IP/Dirección IPv6): Introducir la dirección IP del equipo de red que se debe detectar. La versión de la dirección IP dependerá de la versión seleccionada durante la configuración de la prueba.
- > Run (Ejecutar): Press Run (Ejecutar) para iniciar el comando Ping.

Configuration (configuración)

- ➤ Timeout (ms) (Tiempo de espera en ms): introduzca el tiempo máximo permitido entre un eco ICMP y la respuesta. Las opciones van de 200 ms a 10000 ms. La configuración por defecto es 4000 ms.
- Delay (ms) (Retardo en ms): disponible sólo para ping. Introduzca el retardo entre cada intento (PING). Las opciones van de 100 a 10000 ms. La configuración por defecto es 1000 ms.
- ➤ Data Size (Bytes) (Tamaño de los datos en bytes): disponible sólo para ping. Introduzca el tamaño del búfer que se enviará al dispositivo de red que se desee detectar. Las opciones van de 0 a 1472 bytes. El valor por defecto es 32 bytes.
- Time To Live (TTL) [Tiempo de vida (TTL)] para IPv4 HOP Limit (TTL) [Límite HOP (TTL)] para IPv6 Introduzca el número máximo de rutas de clase alta que puede atravesar el paquete. Las opciones van del 1 al 255. La configuración por defecto es 128.
- Flow Label (Etiqueta de flujo) (sólo IPv6): introduzca el número de Flow Label (Etiqueta de flujo) que se utilizará para identificar una serie de paquetes relacionados de un origen a un destino. Las opciones van del 0 al 1048575. La configuración por defecto es 0.

- Attempts (intentos) y Continuous (continuo): introduzca el número de intentos que se van a llevar a cabo para conectarse con el equipo de red o press Continuous (Continuo) para intentarlo de forma indefinida. Las opciones van del 1 al 100. La configuración por defecto es 4 y Continuous (Continuo) está desactivado.
- ➤ Type Of Service (TOS) [tipo de servicio (TOS)] para IPv4 Traffic Class (TOS) [Clase de tráfico (TOS)] para IPv6 Introduzca el tipo de servicio. Las opciones van de 00 a FF. La configuración por defecto es 00.
- Binary (binario): active Binary (Binario) para establecer el campo TOS en modo binario. De lo contrario, el campo TOS se hallará en modo hexadecimal. Esta configuración está desactivada por defecto.

Ping Results (Resultados de ping)

Press **Tools** (Herramientas), **Ping** en la lista **Tool** (Herramienta), press **Ping** y press **Result** (Resultado).

Nota: para **Trace Route** (Ruta de traza), consulte Trace Route Configuration (Configuración de ruta de traza) en la página 468.

¥	Status	Repl	ed From	Bytes	Time (ms)	TTL	Stat	(socs			
	Successful Successful	10.1 10.1	200.238 200.238	40 40	123 83	127 127	★ RX	(packets) (packets)	4		
	Successful Successful	10.1	200.238 200.238	40 40	82	127 127	▲ Lo Min ▼ Ma ▼ Av	st (%) himum (ms) eximum (ms) rerage (ms)	0.0 82 123 92		
figu	ration Result	Result # 1 2 3 4	Status Successful Successful Successful Successful		Reply Details IP = FE80:00 Bytes = 40, IP = FE80:00 Bytes = 40, IP = FE80:00 Bytes = 40, IP = FE80:00 Bytes = 40,	: 00:0000:00 Time = 13 m: 00:0000:00 Time = 8 ms, 00:0000:00 Time = 7 ms, 00:0000:00 Time = 8 ms,	0:0203:01FF , TTL = 1 0:0203:01FF TTL = 1 0:0203:01FF TTL = 1 0:0203:01FF TTL = 1	:FE08:23E9 :FE08:23E9 :FE08:23E9 :FE08:23E9		Statistics TX (packets) RX (packets) Lost (%) Minimum (ms) Maximum (ms) Average (ms)	4 4 0.0 7 13 9
									2	z	

Para que se realice correctamente, el dispositivo de red debe reconocer una instrucción Ping dentro de un periodo de retardo determinado. Normalmente una instrucción Ping puede fallar por los siguientes motivos:

- > La dirección IP no está disponible o se desconoce.
- El tiempo permitido para ejecutar la instrucción de ping es demasiado breve.
- > El equipo remoto no es compatible con la mensajería ICMP.
- ▶ # (N°): indica el número de intento.

estado	Description (Descripción)
Successful (Correcto)	Se ha recibido una respuesta de eco ICMPv4/ICMPv6 válida.
User Aborted (Cancelado por el usuario)	Cuando un usuario ha detenido de forma manual la función Ping antes de concluir los intentos.
Time Out (Tiempo de espera)	Cuando no se ha recibido una respuesta de eco ICMPv4/ICMPv6 dentro del tiempo de espera definido.
Destination Specified	Con las direcciones IP reservadas:
is invalid (El destino especificado no es	Para IPv4: 0.0.0.0, 127.0.0.0 y todas las direcciones superiores a 240.0.0.0 (clase E y superiores).
vando)	Para IPv6: 0::/8 (reservada/sin especificar), 0::1/128 (bucle invertido), FF00::/8 (multidifusión).
TTL Expired (TTL caducado)	Cuando el número de TTL no fue suficiente para conectar con el host de destino.
Destination Unreachable (Destino inaccesible)	Para IPv4: cuando no se puede conectar con la dirección IP (no hay puerta de enlace por defecto para una dirección IP, no están en la misma subred o se ha recibido el mensaje de ICMP inaccesible).
	Para IPv6: cuando no se puede conectar con la dirección IP (no hay puerta de enlace por defecto para una dirección IP, no están en la misma subred o ha fallado la resolución de direcciones) o se ha recibido un mensaje de destino ICMP inaccesible.
Data Corrupted (Datos dañados)	Sólo para IPv4, cuando la cadena de la respuesta de Ping recibida no es válida.
Packet Too Big (Paquete demasiado grande)	Sólo para IPv6: el paquete no se puede enviar debido a que es más grande que MTU del enlace saliente.
Indefinido	Para cualquier otro error en Ping que no se incluye en ninguno de la descripción anterior.

Status (estado): indica el estado del intento.

Ping Results (Resultados de ping)

Para IPv4:

- Replied From (respuesta de): indica la dirección IP del equipo que responde.
- **Bytes**: indica el tamaño de búfer de la respuesta del eco ICMP.
- ► Time (ms) (Tiempo en ms): indica el tiempo de respuesta en milisegundos.
- **TTL**: indica el TTL de la respuesta del eco ICMP.

Para IPv6:

Replied Details (Detalles de respuesta): indica la dirección IP del equipo que responde, el tamaño de búfer de la respuesta del eco ICMP (bytes), el tiempo de respuesta en milisegundos y TTL de la respuesta del eco ICMP (límite HOP).

Estadísticas

- Packets Transmitted (Paquetes transmitidos) indica el número de paquetes enviados.
- Packets Received (Paquetes recibidos): indica el número de paquetes recibidos.
- Percentage Lost (%) (Porcentaje de pérdida): indica el porcentaje de paquetes perdidos.
- Minimum Round Trip Time (ms) (Tiempo mínimo de ida y vuelta en ms): indica el tiempo mínimo registrado para la respuesta de una solicitud Ping.
- Maximum Round Trip Time (ms) (Tiempo máximo de ida y vuelta en ms): indica el tiempo máximo registrado para la respuesta de una solicitud Ping.
- Average Round Trip Time (ms) (Tiempo medio de ida y vuelta en ms): indica el tiempo medio registrado para la respuesta de una solicitud Ping.
- **Nota:** cuando MPLS está activado, no hay estadísticas disponibles de los enrutadores de conmutación de etiquetas (LSR).

Trace Route Configuration (Configuración de ruta de traza)

La ruta de la traza se emplea para obtener la lista de todos los enrutadores identificados entre el puerto local (Serie FTB-8500 y FTB-8120NGE/8130NGE) y el puerto IP de destino.

Press (Ruta de la traza)Tools (Herramientas), Configuration (Configuración) en la lista Tool (Herramientas), press Trace Route (Ruta de la traza).

Para **Ping**, consulte *Ping Configuration (Configuración de ping)* en la página 461.

Setup IP Address 10.1.200.238 Configuration	Run 💽 Tool
4000 Max. Hop Count 128 Configuration Result	Setup Tool IP Address Tool FE80:0000:0000:0000:0000:000:000:000:000:
	Configuration Result

Setup (Configuración)

- ➤ IP Address (Dirección IP/Dirección IPv6): Introducir la dirección IP del equipo de red que se debe detectar. La versión de la dirección IP dependerá de la versión seleccionada durante la configuración de la prueba.
- Run (Ejecutar): Press Run (Ejecutar) para iniciar el comando Trace Route (Ruta de la traza).

Configuration (configuración)

- Timeout (ms) (Tiempo de espera en ms): introduzca el tiempo máximo permitido entre un eco ICMP y la respuesta en cada salto. Las opciones van de 200 ms a 10000 ms. La configuración por defecto es 4000 ms.
- Max Hop Count (Recuento máximo de saltos): introduzca el número máximo de dispositivos de red que puede atravesar el paquete. Las opciones van del 1 al 255. La configuración por defecto es 128.

Trace Route Results (Resultados de la ruta de traza)

Press **Tools** (Herramientas), **Ping**, **Configuration** (Configuración) en la **Tool list** (Lista de herramientas), press **Trace Route** (Ruta de la traza) y press **Results** (Resultados).

Para Ping, consulte Ping Results (Resultados de ping) en la página 464.

¢ (Status	Repli	ed From	Bytes	Time (ms)	1 TTL		TV (nackets)	4			
	Successful	10.1.	200.238	40	123	127		TA (packets)	-			
2	Successful	10.1.	200.238	40	83	127	1	RX (packets)	4			
3	Successful	10.1.	200.238	40	82	127		Loct (%)	0.0			
ł	Successful	Result	s							Chakishing		
		#	Status		Reply Details					The for a share		
					IP = FE80:000	0:0000:000	0:0203:	01FF:FE08:23E9	-	TX (packets	<i>.</i> ,	4
		1	Successful		Bytes = 40, Tir	ne = 13 ms	, TTL =	1		🚖 RX (packet:	;)	4
		2	Successful		IP = FE80:000 Bytes = 40, Tir	0:0000:000 ne = 8 ms,	0:0203: TTL = 1	:01FF:FE08:23E9		▲ Lost (%)		0.0
			Commented		IP = FE80:000	000:000:000	0:0203:	01FF:FE08:23E9		— Minimum (m	s)	7
figur	ation Result	2	Successi ui		Bytes = 40, Tir	ne = 7 ms,	TTL = 1			Maximum (r	ns)	13
-		4	Successful		IP = FE80:000 Bytes = 40, Tir	0:0000:000 me = 8 ms,	0:0203: TTL = 1	:01FF:FE08:23E9		¥ Average (m	is)	9
										T		

Para que se realice correctamente, el dispositivo de red debe reconocer un comando **Trace Route** (Ruta de la traza) dentro de un periodo de retardo determinado. Normalmente una instrucción de **Trace Route** (Ruta de traza) puede fallar por los siguientes motivos:

- ► La dirección IP no está disponible o se desconoce.
- El tiempo permitido para ejecutar la instrucción Trace Route (ruta de la traza) es demasiado breve.
- > El equipo remoto no es compatible con la mensajería ICMP.

Los resultados de Trace Route (Ruta de traza) se muestran con las siguientes columnas:

▶ # (N°): indica el número de intento.

Trace Route Results (Resultados de la ruta de traza)

estado	Description (Descripción)
Successful (Correcto)	Se ha recibido una respuesta de eco ICMPv4/ICMPv6 válida.
User Aborted (Cancelado por el usuario)	Cuando un usuario ha detenido de forma manual la función Ping antes de concluir los intentos.
Time Out (Tiempo de espera)	Cuando no se ha recibido una respuesta de eco ICMPv4/ICMPv6 dentro del tiempo de espera definido.
Destination Specified	Con las direcciones IP reservadas:
is invalid (El destino especificado no es	Para IPv4: 0.0.0.0, 127.0.0.0 y todas las direcciones superiores a 240.0.0.0 (clase E y superiores).
	Para IPv6: 0::/8 (reservada/sin especificar), 0::1/128 (bucle invertido), FF00::/8 (multidifusión).
Hop Reached (Salto alcanzado)	Cuando se recibe un mensaje de tiempo superado de un host mientras se ejecuta la función Trace Route (Ruta de traza).
Destination Unreachable (Destino inaccesible)	Para IPv4: cuando no se puede conectar con la dirección IP (no hay puerta de enlace por defecto para una dirección IP, no están en la misma subred o se ha recibido el mensaje de ICMP inaccesible).
	Para IPv6: cuando no se puede conectar con la dirección IP (no hay puerta de enlace por defecto para una dirección IP, no están en la misma subred o ha fallado la resolución de direcciones) o se ha recibido un mensaje de destino ICMP inaccesible.
Data Corrupted (Datos dañados)	Sólo para IPv4, cuando la cadena de la respuesta de Ping recibida no es válida.
Packet Too Big (Paquete demasiado grande)	Sólo para IPv6: el paquete no se puede enviar debido a que es más grande que MTU del enlace saliente.
Indefinido	Para cualquier otro error en Ping que no se incluye en ninguno de la descripción anterior.

Status (estado): indica el estado del intento.

Fichas de herramientas

Trace Route Results (Resultados de la ruta de traza)

- Replied From (respuesta de): indica la dirección IP del equipo que responde.
- ► Time (ms) (Tiempo en ms): indica el tiempo de respuesta en milisegundos.

Estadísticas

- Packets Transmitted (Paquetes transmitidos): indica el número de paquetes enviados.
- Packets Received (Paquetes recibidos): indica el número de paquetes recibidos.

ENIU Configuration (Configuración de ENIU)

Permite establecer la capa de **Operation** (Operación), **Administration** (Administración) y **Maintenance** (Mantenimiento) (OAM) entre un Aplicación Ethernet y canal de fibra y una ENIU (Unidad de Interfaz de Red Ethernet) de otro proveedor. No disponible con 10Gig-E.

Nota: Sólo se puede conectar un módulo Serie FTB-8500 y FTB-8120NGE/8130NGE de forma simultánea a una ENIU.

> Press (Configuración de ENIU)Tools (Herramientas), ENIU y ENIU Config (Configuración de ENIU).

Eniuado (P1)/ENIU	
entanoe (r xyesto	
Configuration	
ENIU Type	
ADC T	
HOC	
E Foshio CAM	
) Lindble OAM	
ENIU Config. ADC Config.	
Hoc coning.	

ENIU Type (Tipo de ENIU)

Para FTB-8510B: permite seleccionar el tipo de ENIU. Las opciones son **ADC** y **802.3ah**. Para 802.3ah, la opción de software necesita estar instalada para estar disponible. Consulte *Available Options (opciones disponibles)* en la página 444.

Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535: Sólo se permiten las **ADC ENIU** (ENIU de ADC).

Enable OAM (Permitir OAM)

Activa la interfaz OAM cuando la casilla de verificación **Enable OAM** (Permitir OAM) está seleccionada. Esta casilla de verificación está desmarcada por defecto.

Nota: El proceso de descubrimiento de ENIU se iniciará de forma automática cuando la casilla de verificación **Enable OAM** (permitir OAM) esté seleccionada y el enlace esté activado.

ADC Configuration (Configuración de ADC)

Nota: La ficha **ADC Config** (Configuración de ADC) sólo está disponible cuando ADC está seleccionado como tipo de ENIU. Para realizar la configuración para poder trabajar, ENIU de ADC necesita establecerse en el modo EXFO. No disponible con 10Gig-E.

Press **(Configuración de ADC)Tools** (Herramientas), **ENIU** y **ADC Config** (Configuración de ADC).

lemote	ENIU					Selected ENIU	
Index	System Name	MAC Address	Loopback Status	ENIU Status		MAC Address	
0	Jean-Claude	AA:BB:CC:DD:E	Enabled	Valid		AA:BB:CC:DD:EE:F1	Copy MAC to Stream
1	Mario	88:8B:CC:DD:EE	Disabled	Rejected		,	
2	Stephane	00:8B:CC:DD:EE 1	In Progress	Incompat		System Name	Loopback Status
3	Charles	AF:BB:CC:DD:EE		Timeout		Jean-Claude	Enabled
4	5e	AE:BB:CC:DD:EE		Timeout	Ľ.	1	,
5	6e	AD:BB:CC:DD:E		Timeout	¥	Loopback Request	
6	7e	AC:BB:CC:DD:E		Timeout	T	V	Send
7	8e	AB:BB:CC:DD:EE		Timeout	Ľ		
		Refresh List				Loopback Timeout	min 🔲 Enable

Lista de ENIU remotas

Muestra las ENIU detectadas en la red o parte del dominio de VLAN de Aplicación Ethernet y canal de fibra cuando la VLAN está activada. Se pueden mostrar hasta 20 ENIU.

- ID: indica el número de la ENIU. Las ENIU se numeran de forma secuencial según se van detectando.
- System Name (Nombre del sistema): indica el nombre de la ENIU detectada.
- MAC Address (Dirección MAC): indica la dirección MAC de la ENIU detectada.
- ► Loopback Status (Estado del bucle invertido): indica el estado del bucle invertido (activado/desactivado) de la ENIU.

Fichas de herramientas

ADC Configuration (Configuración de ADC)

► ENIU Status (Estado de la ENIU): indica el estado de la ENIU. Los estados posibles son:

Valid (Válida): la ENIU remota cumple las condiciones siguientes: compatible con bucle invertido, no se detectan eventos, ENIU estable y la versión de la PDU de OAM de la ENIU y de EXFO son compatibles.

Rejected (Rechazada):

La ENIU remota se rechaza porque envía notificaciones de eventos críticos.

La ENIU remota no es compatible con el bucle invertido. La ENIU remota no es estable.

Incompatible: las versiones de ENIU y protocolo OAM son incompatibles.

Timeout (Tiempo de espera): Aplicación Ethernet y canal de fibra no ha recibido PDU de OAM en los últimos 30 segundos.

 Refresh List (Actualizar lista): permite actualizar la lista de ENIU remotas reiniciando el proceso de descubrimiento.

Press cualquier ENIU de la lista para seleccionarla. A continuación, se mostrará la información de la ENIU seleccionada en la sección **Selected ENIU** (ENIU seleccionada). Sólo se pueden seleccionar las ENIU que tengan un estado válido.

ENIU seleccionado

Indica la información relacionada con la ENIU seleccionada.

- MAC Address (Dirección MAC): indica la dirección MAC de la ENIU seleccionada.
- Copy MAC to Stream (copiar MAC a flujo): permite copiar los parámetros de destino MAC y VLAN para la prueba/flujo.

Para la prueba Performance Analyzer (Analizador de rendimiento): la dirección MAC de destino, ID de la VLAN y prioridad de la VLAN del panel de configuración de la interfaz se sustituirán por los parámetros de la ENIU seleccionada.

Para la prueba Frame Analyzer (Analizador de tramas) en FTB-8510B: la dirección MAC de destino, ID de la VLAN y prioridad de la VLAN de cada flujo desactivado en el panel de configuración de flujo, se sustituirán por los parámetros de la ENIU seleccionada. Los flujos que ya estén activados no se verán afectados por la copia.

 System Name (Nombre del sistema): indica el nombre de la ENIU detectada.

Bucle invertido

Permite enviar una solicitud de bucle invertido a la ENIU seleccionada.

- **Nota:** si la ENIU seleccionada resulta ser no válida, no se podrá enviar la solicitud de bucle invertido.
 - Request (solicitud): permite seleccionar la solicitud de bucle invertido. Las opciones son Enabled (Activado) y Disabled (Desactivado).
 - Send (enviar): envía una solicitud de activación o desactivación de bucle invertido según se seleccione en el campo de solicitud.
 - Loopback Status (Estado del bucle invertido): indica el estado del bucle invertido de la ENIU seleccionada.

Enabled (activado) cuando Aplicación Ethernet y canal de fibra ha recibido confirmación de que la ENIU está en modo de bucle invertido.

Disabled (desactivado) cuando Aplicación Ethernet y canal de fibra no ha recibido confirmación de que la ENIU está en modo de bucle invertido o cuando la ENIU no está en modo de bucle invertido.

In progress (en curso) cuando se ha enviado una solicitud de bucle invertido a la ENIU pero Aplicación Ethernet y canal de fibra no ha recibido confirmación todavía.

"--" cuando no se ha seleccionado ninguna ENIU válida.

Timeout (Tiempo de espera): permite seleccionar el tiempo de espera cuando está activado. Las opciones van de 1 a 10080 minutos. La configuración por defecto es de 60 minutos.

Enable (permitir): permite activar el tiempo de espera. Si está activado, se puede establecer el valor del tiempo de espera. Si está desactivado, el tiempo de espera es infinito.

802.3ah Configuration (Configuración de 802.3ah)

Nota: La ficha **802.3ah Config** (Configuración de 802.3ah) sólo está disponible cuando 802.3ah está seleccionado como tipo de ENIU.

Press (Configuración de 802.3ah) Tools (Herramientas), ENIU (ENIU) y 802.3ah Config (Configuración de 802.3ah).

OAM Mode	Configuration Destination MACAddress [01:80:C2:00:00:02 Loopbak Request Send	Remote Status	OAM Discovery Statistics Local	H C Critical Eve Dying Gasj Link Fault	Seconds nt
ENIU Config. 802.3a	ah Config. 802.3ah Sta	ts 802.3ah Events			

OAM Mode (modo OAM)

El modo OAM está establecido como **Active** (Activo) y no se puede configurar. En el modo **Active** (Activo), Serie FTB-8500 y FTB-8120NGE/8130NGE iniciará el proceso de descubrimiento y no responderá a las solicitudes de variables ni a las instrucciones de bucle invertido recibidas.

Configuration (configuración)

Destination MAC Address (dirección MAC de destino): al puerto Ethernet se le asignará una dirección de control de acceso a medios (MAC) por defecto. La dirección MAC de destino de multidifusión de 802.3ah por defecto es 01:80:C2:00:00:02 estándar. Press el campo Destination MAC Address (Dirección MAC de destino) si desea cambiar la dirección MAC para este puerto e introduzca la nueva dirección MAC.

Enable (Permitir) permite editar **Destination MAC Address** (Dirección MAC de destino) cuando la casilla de verificación Enable (Permitir) está seleccionada. La dirección MAC de destino vuelve a su valor por defecto (**01:80:C2:00:00:02**) cuando la casilla de verificación **Enable** (Permitir) está desactivada.

➤ Bucle invertido

Request (Solicitud) permite seleccionar la solicitud de bucle invertido que se enviará al equipo enlazado OAM remoto. Las opciones son **Enabled** (Activado) y **Disabled** (Desactivado). La configuración por defecto es **Enabled** (Activado). La solicitud sólo se enviará pressing el botón **Send** (Enviar).

Send (enviar) permite enviar la solicitud seleccionada al equipo enlazado OAM remoto.

Remote Status (Estado remoto): indica el estado del equipo enlazado OAM remoto.

OAM Discovery Statistics (Estadísticas de descubrimiento OAM)

► Local

Status (Estado) indica el estado de descubrimiento del enlace OAM local. Los estados posibles son **Evaluating** (Evaluando), **Stable** (Estable) y **Unsatisfied** (No satisfecho).

► Remoto

Status (Estado) indica el estado de descubrimiento del enlace OAM remoto. Los estados posibles son **Evaluating** (Evaluando), **Stable** (Estable) y **Unsatisfied** (No satisfecho).

Critical Event (evento crítico): indica que el equipo enlazado OAM ha enviado una notificación de evento crítico.

Dying Gasp (Desconexión inadvertida): indica que el equipo enlazado OAM ha enviado una notificación de fallo local irrecuperable.

Link Fault (fallo de enlace): indica que el equipo enlazado OAM ha enviado una notificación de fallo de enlace.

802.3ah Statistics (Estadísticas de 802.3ah)

Nota: La ficha **802.3ah Stats** (Estadísticas de 802.3ah) sólo está disponible cuando 802.3ah está seleccionado como tipo de ENIU.

Press **(Estadísticas de802.3ah)Tools** (Herramientas), **ENIU** y **802.3ah Stats** (Estadísticas de802.3ah).

 OAM Version	Max OAMPDU Size	OAM Mode	
OAM Revision	Vendor Specific Info	OUI	
Multiplier Action	Unidirectional	Variable Request	
Parser Action	Loopback	Link Events	
Parser Action	Loopback	Link Events	

La ventana 802.3ah Statistics (estadísticas de 802.3ah) proporciona una dirección MAC y estadísticas OAM del equipo enlazado OAM remoto.

MAC Address (dirección MAC) indica la dirección MAC del equipo enlazado OAM remoto.

OAM Statistics (estadísticas OAM) proporciona las siguientes estadísticas del equipo enlazado OAM remoto.

- OAM Version (versión de OAM): indica la versión del protocolo admitida por DTE.
- ► OAM Revision (Revisión de OAM): indica la revisión de TLV de información.
- Multiplier Action (Acción del multiplicador): el bit 2 del byte de State (estado) informa de la acción del multiplexor.

Forward (Enviar) (el bit 2 está establecido en "0"): el dispositivo está enviando elementos no OAMPDU a la subcapa inferior.

Discard (descartar) (el bit 2 está establecido en "1"): el dispositivo está descartando elementos no OAMPDU.

 Parser Action (Acción del analizador): los bits 0 y 1 del byte de State (estado) informan de la acción del analizador.

Forward (Enviar) (los bits 1 y 0 están establecidos en "00"): el dispositivo está enviando elementos no OAMPDU a la subcapa superior.

Loopback (Bucle invertido) (los bits 1 y 0 están establecidos en "01"): el dispositivo está realizando bucle invertido de elementos no OAMPDU a la subcapa inferior.

Discard (Descartar) (los bits 1 y 0 están establecidos en "10"): el dispositivo está descartando elementos no OAMPDU.

- Max OAMPDU Size (Tamaño máximo de OAMPDU): los bits de 0 a 10 del campo de dos bytes OAMPDU Configuration (Configuración de OAMPDU) informan del tamaño máximo de OAMPDU. Max OAMPDU Size (Tamaño máximo de OAMPDU) es la OAMPDU más larga en bytes compatible con el DTE.
- Vendor Specific Info (Información específica del proveedor): el campo de 32 bits Vendor Specific Information (información específica del proveedor) identifica el modelo y la versión del producto del proveedor.
- Unidirectional (Unidireccional): el bit 1 del byte de OAM Configuration (configuración de OAM) informa de la capacidad de compatibilidad unidireccional.

Supported (Compatible) (el bit 1 está establecido en "1"): DTE puede enviar OAMPDU cuando la ruta de recepción no está operativa.

Unsupported (No compatible) (el bit 1 está establecido en "0"): DTE no puede enviar OAMPDU cuando la ruta de recepción no está operativa.

Loopback (bucle invertido): el bit 2 del byte de OAM Configuration (configuración de OAM) informa de la capacidad de compatibilidad de bucle invertido remota de OAM.

Supported (Compatible) (el bit 2 está establecido en "1"): DTE puede establecer el modo de bucle invertido remoto de OAM.

Unsupported (No compatible) (el bit 2 está establecido en "0"): DTE no puede establecer el modo de bucle invertido remoto de OAM.

 OAM Mode (Modo OAM): el bit 0 del byte de OAM Configuration (configuración de OAM) informa del modo OAM.

Active (Activo) (el bit 0 está establecido en "1"): DTE está configurado en el modo Active (activo).

Passive (pasivo) (el bit 0 está establecido en "0"): el DTE está configurado en el modo **Passive** (Pasivo).

- OUI: el campo de identificador único organizativo IEEE de 24 bits identifica el proveedor.
- Variable Request (solicitud de variables): el bit 4 del byte de OAM Configuration (configuración de OAM) informa de la capacidad de recuperación de variables.

Supported (Compatible) (el bit 4 está establecido en "1"): DTE admite el envío de OAMPDU de respuesta de variables.

Unsupported (No compatible) (el bit 4 está establecido en "0"): DTE no admite el envío de OAMPDU de respuesta de variables.

 Link Events (Eventos de enlace): el bit 3 del byte de OAM Configuration (configuración de OAM) informa de la capacidad de eventos de enlace.

Supported (Compatible) (el bit 3 está establecido en "1"): DTE admite la interpretación de eventos de enlace.

Unsupported (No compatible) (el bit 3 está establecido en "0"): DTE no admite la interpretación de eventos de enlace.

802.3ah Events (Eventos de 802.3ah)

Nota: La ficha **802.3ah Events** (Eventos de 802.3ah) sólo está disponible cuando 802.3ah está seleccionado como tipo de ENIU.

Press **(Eventos de 802.3ah)Tools** (Herramientas), **ENIU** y **802.3ah Events** (Eventos de 802.3ah).

Error Event Statistics	Symbol Period	Frame	Frame Period	Frame Sec
Date Stamp				
Time Stamp		-	-	
Window		-	-	
Threshold			-	
Error Count				
Error Running Total				
Event Running Total		-	-	-
ENIU Config. 802.	.3ah Config.	802.3ah Stats	802.3ah Events	-

- Date Stamp (Marca de fecha): fecha en que se recibió el último evento.
- > Time Stamp (Marca de hora): hora en que se recibió el último evento.
- ► Window (ventana).

Symbol Period (Periodo de símbolo)	Ventana de símbolos con errores en segundos	
Frame (Trama)	Ventana de eventos de trama con errores en segundos	
Frame Period (Periodo de trama)	Ventana de periodos de trama con errores - periodo de duración en número de tramas de 64 bytes	
Frame Seconds (Segundos de trama)	Ventana de resumen de segundos de trama con errores	

802.3ah Events (Eventos de 802.3ah)

► Threshold (umbral).

Symbol Period (Periodo de símbolo)	Umbral de símbolos con errores en segundos	
Frame (Trama)	Umbral de eventos de trama con errores en segundos	
Frame Period (Periodo de trama)	Umbral de periodos de trama con errores en segundos	
Frame Seconds (Segundos de trama)	Umbral de resumen de segundos de trama con errores en segundos	

Error Count (recuento de errores).

Symbol Period (Periodo de símbolo)	Número de errores de símbolo en la ventana	
Frame (Trama)	Número de errores de eventos de trama en la ventana	
Frame Period (Periodo de trama)	Número de errores de periodos de trama en la ventana	
Frame Seconds (Segundos de trama)	Número de errores de resumen de segundos de trama en la ventana	

Symbol Period	Número de errores de símbolo desde el último
(Periodo de símbolo)	reinicio
Frame (Trama)	Número de errores de eventos de trama desde el último reinicio
Frame Period	Número de errores de periodos de trama desde
(Periodo de trama)	el último reinicio
Frame Seconds	Número de errores de resumen de segundos de
(Segundos de trama)	trama desde el último reinicio

Error Running Total (total de errores en ejecución).

> Event Running Total (Total de eventos en ejecución)

Symbol Period	Número de eventos de símbolo desde el último	
(Periodo de símbolo)	reinicio	
Frame (Trama)	Número de eventos de trama desde el último reinicio	
Frame Period	Número de eventos de periodo de trama desde el	
(Periodo de trama)	último reinicio	
Frame Seconds	Número de eventos de segundos de trama desde	
(Segundos de trama)	el último reinicio	

Traffic Scan (Exploración de tráfico)

La herramienta de exploración de tráfico permite descubrir y supervisar los flujos de tráfico VLAN o MPLS en la red.

Nota: Para poder acceder a la exploración de tráfico, debe crearse una prueba que no se esté ejecutando. Si se inicia la prueba mientras se ejecuta la exploración de tráfico, esta se detendrá automáticamente.

Traffic Scan Mode Traffic Scan Scan 🕒 VLAN Mode Level Port -Port #1 💌 Scan 🕓 MPLS All Link Rate (Mbps) Rate Lay 58,999 Line Utili Link Rate (Mbps) Rate Layer Discovered Limit Reached Line Utilization 💌 E-VLAN Priority ID 🔺 MPLS Label#2 MPLSTabel#1 Statistics ID 🔺 COS ID COS Frame Count Rate (Mbps) Last Seen All All All All ---304545 39 004-00-00-00 -------1048574 80821 10 00d:00:00:00 6 ---1048575 1 57690 9 00d:00:00:00 * 21 5 22 6 . 23 • ¥ T Details Total 443056 59 Details

Press Tools (Herramientas) y Traffic Scan (Exploración de tráfico).

Scan (Exploración)

Inicia/detiene una prueba de exploración de tráfico.

Mode (modo)

Permite seleccionar el modo de exploración de tráfico de **VLAN** o **MPLS**. La configuración por defecto es **VLAN**.

Nivel

Permite la selección de los criterios que se usarán para filtrar los flujos de tráfico VLAN o MPLS entrantes. La configuración predeterminada es **All (Todas)**. Las opciones son:

Mode (modo)	Nivel	Description (Descripción)
VLAN	C-VLAN	Descubre y supervisa únicamente las tramas en las que la VLAN externa es una C-VLAN (TPID de 0x8100).
	S-VLAN	Descubre y supervisa únicamente las tramas en las que la VLAN externa es una S-VLAN (TPID de 0x8100, 0x88A8, 0x9100, 0x9200 o 0x9300)
	E-VLAN	Descubre y supervisa únicamente las tramas en las que la VLAN externa es una E-VLAN (TPID de 0x8100, 0x88A8, 0x9100, 0x9200 o 0x9300)
	Sin etiquetar	Supervisa únicamente tramas sin etiquetar (no VLAN)
	Todos	Supervisa tramas sin etiquetar y hasta 3 niveles de tramas VLAN apiladas
MPLS	1 etiqueta	Supervisa tramas MPLS con sólo una etiqueta (EtherType de 0x8847 o 0x8848)
	2 etiquetas	Supervisa tramas MPLS con sólo dos etiquetas (EtherType de 0x8847 o 0x8848)
	Sin etiquetas	Supervisa únicamente tramas sin etiquetas (sin etiqueta MPLS)
	Todos	Supervisa tramas sin etiquetas y tramas MPLS con hasta dos etiquetas

Puerto

Permite seleccionar el puerto cuando se crea una prueba de puerto dual. Para una única prueba de puerto, se muestra el puerto seleccionado para la prueba.

Link Rate (Velocidad de enlace) (Mbps)

Indica la velocidad del enlace de red basada en las tramas recibidas con un FCS válido, independientemente de si la trama coincide o no con los flujos de tráfico y los filtros, y sin tener en cuenta si se ha ignorado el flujo de tráfico porque se ha alcanzado el límite (consulte *Limit Reached (Límite alcanzado)* en la página 490). La velocidad se expresa en **Line Utilization** (Utilización de línea) o **Ethernet Bandwidth** (Ancho de banda de Ethernet) (consulte *Rate Layer (Capa de velocidad)*).

Rate Layer (Capa de velocidad)

Permite la selección de la unidad de velocidad que se utilizará para las estadísticas de **Link Rate** (Velocidad de enlace) y **Rate** (Valor).

- ► Line Utilization (Utilización de línea) se utiliza para expresar la velocidad de línea real, incluidos el Preámbulo, SFD y IFG.
- ➤ Ethernet BW (Bandwidth) (Ancho de banda de Ethernet) se utiliza para expresar la velocidad de ancho de banda de Ethernet, sin incluir el Preámbulo, SFD y IFG.

Descubiertos

Indica el número de flujos de tráfico diferentes supervisados basándose en criterios de exploración y filtros.

Limit Reached (Límite alcanzado)

Pueden supervisarse hasta 128 flujos de tráfico distintos; el LED de **Limit Reached** (Límite alcanzado) se activa al alcanzar el límite.
Monitored Frames Table (Tabla de tramas supervisadas)

Se recopilan las estadísticas para cada flujo de tráfico diferente que coincida con los criterios de exploración y los filtros. Cada flujo de tráfico diferente crea una entrada independiente en la tabla de exploración. Cuando se alcanza el límite, no se tienen en cuenta los nuevos flujos de tráfico, aunque se siguen supervisando los flujos de tráfico existentes.

Nota: Las estadísticas de exploración se eliminan al reiniciar la exploración o cuando se elimina la prueba.

Para el modo VLAN, el nivel de VLAN (sin etiquetas, E-VLAN, S-VLAN, C-VLAN), y los valores de ID de VLAN, Prioridad y TPID se utilizan para identificar un flujo de tráfico. Cualquier diferencia en uno de esos valores, excepto los establecidos en **Ignore** (Ignorar) (consulte *Filtros* en la página 493), creará una entrada independiente en la tabla. Se ignoran las tramas PBB-TE.

	Scan Scan Link Rate (Mb)	os) Ra	ode AN 💌 te Layer ne Utilization	Level All Discov	vered	Port Port #1 Limit Reache	y d o				
	E-VI	AN	S-V	LAN	C-VI	AN		Statistics			
	ID 🔺	Priority	ID	Priority	ID	Priority	Frame Count	Rate (Mbps)	Last Seen		— Ordenación
Filtros —	All	All	All	All	All	All					de campos
							37606976	33	00d:00:00:00		•
					31	7	6396352	6	00d:00:00:00		
			4069	5	27	3	8084279	7	00d:00:00:00	*	
	-		4070	6	26	2	7230659	5	00d:00:00:00		
	21	5	4075	3	21	5	1108701	1	00d:00:00:00		
	22	6	4074	2	22	6	2309794	1	00d:00:00:00	-	
	23	7	4073	1	23	7	3326104	3	00d:00:00:00		
										¥	
										≖	
		_				Total	66062865	58.999			
	Details										

Traffic Scan (Exploración de tráfico)

Para el modo MPLS, se usan los niveles de MPLS (Sin etiquetas, 1 etiqueta, 2 etiquetas) y los valores de ID de etiqueta y COS para identificar un flujo de tráfico. Cualquier diferencia en uno de esos valores, excepto para los establecidos en **Ignore** (Ignorar) (consulte *Filters* (Filtros) a continuación), creará una entrada independiente en la tabla.

➤ Filtros

Los botones de conmutación **All** (Todos)/**Ignore** (Ignorar) de la columna se usan para establecer los criterios de filtrado.

Sólo se tendrán en cuenta los parámetros establecidos en **All** (Todos) para identificar cada flujo de tráfico. La disponibilidad de los filtros depende del nivel VLAN o MPLS seleccionado.

Scan (Exploración)	Nivel	Filtros
VLAN	All (Todos) y E-VLAN	Prioridad E-VLAN, ID y prioridad de S-VLAN, ID y prioridad de C-VLAN.
	S-VLAN	Prioridad S-VLAN, ID y prioridad de C-VLAN.
	C-VLAN	Prioridad de C-VLAN.
	Sin etiquetar	No aplicable
MPLS	All (Todos) y 2 Labels (2 etiquetas)	MPLS etiqueta n.º 2 COS, ID de MPLS etiqueta n.º 1 y COS.
	1 etiqueta	MPLS etiqueta n.º 1 COS
	Sin etiquetas	No aplicable

El filtrado de un ID de VLAN requiere que todos los ID de VLAN, desde el actual hasta el VLAN externo, se incluyan en los criterios de filtrado. El filtrado de una prioridad de VLAN requiere que se incluya su ID de VLAN en los criterios de filtrado.

Nota: La configuración de un ID de VLAN en **Ignore** (Ignorar) ignorará automáticamente sus valores de Priority (Prioridad) y TPID.

La configuración de un ID de MPLS en **Ignore** (Ignorar) cambiará automáticamente su filtro de COS en **Ignore** (Ignorar).

Traffic Scan (Exploración de tráfico)

 Frame Count (Recuento de tramas) indica para cada flujo de tráfico el número de tramas que coinciden con los criterios de exploración y los filtros seleccionados.

Total indica el número de tramas que coinciden con los criterios de exploración y los filtros seleccionados.

Rate (Mbps) (Velocidad en Mbps) indica para cada flujo de tráfico la velocidad de tramas recibidas que coincide con los criterios de exploración y los filtros seleccionados. La velocidad se expresa en Line Utilization (Utilización de línea) o Ethernet Bandwidth (Ancho de banda de Ethernet) (consulte Rate Layer (Capa de velocidad) en la página 490).

Total indica la velocidad total de tramas que coinciden con los criterios de exploración y los filtros seleccionados.

- Last Seen (Vista por última vez) indica el tiempo transcurrido desde la última trama que coincide con los criterios de exploración y los filtros seleccionados.
- **Nota:** Los flujos de tráfico pueden ordenarse mediante cualquier parámetro que aparezca en la tabla al pressing en la etiqueta de columna correspondiente (consulte Orden de tabla en la página 57).

► Detalles

Permite ver información detallada acerca del flujo de tráfico seleccionado. Seleccione un flujo de tráfico en la lista y haga clic en el botón **Details** (Detalles). La información detallada incluye:

Para VLAN: la etiqueta VLAN y su TPID (ID de protocolo de etiqueta), ID y prioridad.

Traffic Flow Details Fraffic Flow Details EtherType 0x8847 Level TPID ID Priority E-VLAN 2 0 Level ID cos 0x9100 S-VLAN 0×88A8 2 0 MPLS Label#2 16 0 C-VLAN 0×8100 2 0 MPLS Label#1 16 0 0 Close 0 Close

Para MPLS: el EtherType y su nivel de MPLS, ID y COS.

22 Fichas de modo experto

Nota: las fichas de modo experto sólo están disponibles con las pruebas BERT y RFC 2544 de Ethernet (no disponibles con canal de fibra).

	Dispon		
Ficha	Ethernet	Canal de fibra ^a	Página
Expert Mode (Modo experto) (RFC 2544)	Х		498
Caudal de tráfico (RFC 2544)	Х		500
Back-to-Back (Transmisión recíproca) (RFC 2544)	Х		502
Frame Loss (Pérdida de tramas) (RFC 2544)	Х		504
Latency (Latencia) (RFC 2544)	Х		506
Expert Mode (Modo experto) (BERT)	Х		508
Port (Puerto) (BERT)	Х		510
Ethernet (BERT)	Х		512
Pattern (Patrón) (BERT)	Х		514

a. No disponible con FTB-8510G.

Expert Mode (Modo experto) (RFC 2544)

Expert Mode (Modo experto) permite la configuración de los umbrales con los que se comprobará cada estadística para emitir un veredicto de ÉXITO o FRACASO.

Press (Modo experto)TEST (PRUEBA) y Expert Mode (Modo experto).

T Current Marda	Threshold	Chatura	Enable Criteria
P Expert Mode	64 0	Status	Com Eng
Expert Mode Status	128 0		Measurement
Throughput	256 0		Unit
Back-to-Back	512 0		bps
Frame Loss	1024 0	•	Layer
Latency	1280 0	۲	Displayed Results
	1518 0		Current
Throughput Back-to-Back	Frame Loss Later	icy	

Expert Mode (Activar modo experto)

Permite activar/desactivar **Expert Mode** (Modo experto). Esta configuración está desactivada por defecto.

Expert Mode Status (Estado del modo experto)

Da el veredicto, **Pass** (Éxito) o **Fail** (Fallo), de las pruebas **Throughput** (Caudal de tráfico), **Back-to-Back** (Transmisión recíproca), **Frame Loss** (Pérdida de tramas) y **Latency** (Latencia) según la configuración de **Expert Mode** (Modo experto).

- Se declara Pass (Éxito) si todos los valores de los resultados cumplen los criterios configurados.
- Se declara Fail (Fallo) si alguno de los valores de los resultados no cumple los criterios configurados.
- "--" aparece cuando al menos se cumple una de las condiciones siguientes:
 - Expert Mode (Modo experto) no está activado.
 - Si no hay ningún criterio definido.
 - Cuando aún no se haya ejecutado la prueba específica.
- **Nota:** Los resultados del veredicto sólo están disponibles cuando se ha activado Expert Mode (modo experto) y cuando se ha completado la prueba particular [**Throughput** (caudal de tráfico), **Back-to-Back** (transmisión recíproca), **Frame Loss** (pérdida de trama) o **Latency** (latencia)].

Caudal de tráfico (RFC 2544)

Press **(Caudal de tráfico)TEST** (PRUEBA), **Expert Mode** (Modo experto) y **Throughput** (Caudal de tráfico).

Expert Mode	Threshold Frame Size TX-to-RX	Status	F Enable Criteria
Evpert Mode Status	64 0	۲	Copy From
Verdict	128 0		Measurement
Throughput	256 0	۲	Unit
Back-to-Back	512 0		Dps Var
Frame Loss	1024 0	۲	Layer 1-2-3
Eutency	1280 0	۲	Displayed Results
	1518 0	۲	Current
Throughput Back-to-Back	Frame Loss Latency		

- ➤ Enable Criteria (activar criterios): permite activar los criterios de Throughput (Caudal de tráfico) Pass/Fail (Éxito/fallo). Esta configuración está desactivada por defecto.
- **Nota:** Tanto **Enable Criteria** (activar criterios) como la propia prueba (consulte Configuración global en la página 348) deben estar activados para una prueba específica a fin de poder cambiar los valores de los criterios.
 - Frame Size (Tamaño de trama): indica los tamaños de tramas seleccionados para la prueba.
 - TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): introduzca los valores mínimos de caudal de tráfico permitidos para cada tamaño de tramas antes de declarar Fail (Fallo). Los valores por defecto son el caudal de tráfico máximo. P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.
 - > Status (estado): indica el estado en tiempo real de éxito/fallo.

LED gris: indica que **Expert Mode** (Modo experto) está desactivado o que aún no se ha realizado la prueba.

LED verde: indica que se cumple el umbral [**Pass** (Éxito)]. **LED rojo**: indica que no se ha cumplido el umbral [**Fail** (Fallo)].

- Botón Copy From Measurement (Copiar de medición): copia los resultados de rendimiento de la prueba que se realizó previamente y los usa como criterios de Pass/Fail (Éxito/fallo). Si no se ha realizado ninguna prueba con anterioridad se empleará como valor por defecto 0 bps.
- Unit (unidad): seleccione la unidad. Las opciones son: bps, Kbps, Mbps, Bps, KBps, MBps, Gbps, GBps, % Útil y fps (tramas por segundo). La configuración por defecto es bps.
- Layer (capa): seleccione la capa. Las opciones son Layer 1,2,3 (Capa 1, 2, 3), Layer 2,3 (Capa 2, 3) y Layer 3 (Capa 3). La configuración por defecto es Layer 1,2,3 (Capa 1, 2, 3).

Layer 1,2,3 (Capa 1, 2, 3) incluye los valores de preámbulo, delimitador de inicio de trama, dirección MAC, dirección IP y datos.

Layer 2,3 (Capa 2, 3) incluye la dirección MAC, dirección IP y datos.

Layer 3 (Capa 3) incluye la dirección IP y datos.

Displayed Results (Resultados mostrados): seleccione el modo de visualización de resultados. Las opciones son Current (Actual),
 Minimum (Mínimo), Maximum (Máximo) y Average (Medio). La configuración por defecto es Current (Actual).

Back-to-Back (Transmisión recíproca) (RFC 2544)

Press **(Transmisión recíproca)TEST** (PRUEBA), **Expert Mode** (Modo Experto) y **Back-to-Back** (Transmisión recíproca).

		Threshold			
	Expert Mode	Frame Size	TX-to-RX	Status	Enable Criteria
	Expert Mode Status	64	100.0		Copy From
	Verdict	128	100.0		Measurement
	Throughput	256	100.0		Unit
	Back-to-Back	512	100.0		<u>%</u> ▼
	Frame Loss	1024	100.0		Layer 1-2-3
	Latency	1280	100.0		Displayed Results
		1518	100.0	9	Current
l	Throughput Back-to-Back	Frame Loss	Latency		

- Enable Criteria (activar criterios): permite activar los criterios de Back-to-Back (Transmisión recíproca) Pass/Fail (Éxito/fallo). Esta configuración está desactivada por defecto.
- **Nota:** Tanto **Enable Criteria** (activar criterios) como la propia prueba (consulte Configuración global en la página 348) deben estar activados para una prueba específica a fin de poder cambiar los valores de los criterios.
 - Frame Size (Tamaño de trama): indica los tamaños de tramas seleccionados para la prueba.
 - ➤ TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local): introduzca los valores de número de trama mínimos para cada tamaño de trama permitidos con el caudal de tráfico máximo antes de declarar un estado de fracaso. P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.
 - **Status** (estado): indica el estado en tiempo real de éxito/fallo.

LED gris: indica que Expert Mode (Modo experto) está desactivado o que aún no se ha realizado la prueba. LED verde: indica que se cumple el umbral [Pass (Éxito)].

LED rojo: indica que no se ha cumplido el umbral [Fail (Fallo)].

- Botón Copy From Measurement (Copiar de medición): copia los resultados de rendimiento de la prueba que se realizó previamente y los usa como criterios de Pass/Fail (Éxito/fallo). Si no se ha realizado ninguna prueba con anterioridad se empleará como valor por defecto 0 Frames/Burst (0 tramas/ráfaga).
- Unit (unidad): seleccione la unidad. Las opciones son: bps, Kbps, Mbps, Bps, KBps, MBps, Gbps, GBps, % Util, fps (tramas por segundo),Frames/Burst (Tramas/ráfaga) y Bytes/Burst (Bytes/ráfaga). La configuración por defecto es Frames/Burst (Tramas/ráfaga).
- ➤ Layer (capa): seleccione la capa. Las opciones son Layer 1,2,3 (Capa 1, 2, 3), Layer 2,3 (Capa 2, 3) y Layer 3 (Capa 3). La configuración por defecto es Layer 1,2,3 (Capa 1, 2, 3).

Layer 1,2,3 (Capa 1, 2, 3) incluye los valores de preámbulo, delimitador de inicio de trama, dirección MAC, dirección IP y datos.

Layer 2,3 (Capa 2, 3) incluye la dirección MAC, dirección IP y datos.

Layer 3 (Capa 3) incluye la dirección IP y datos.

Displayed Results (Resultados mostrados): seleccione el modo de visualización de resultados. Las opciones son Current (Actual),
 Minimum (Mínimo), Maximum (Máximo) y Average (Medio). La configuración por defecto es Current (Actual).

Frame Loss (Pérdida de tramas) (RFC 2544)

Press **(Pérdida de tramas)TEST** (PRUEBA), **Expert Mode** (Modo experto) y **Frame Loss** (Pérdida de tramas).

	Threshold -			
🕅 Expert Mode	Frame Size	TX-to-RX	Status	Enable Criteria
-Expert Mode Status	64	0.0		Copy From
Verdict	128	0.0		Measurement
Throughput	256	0.0		Unit
Back-to-Back	512	0.0		% Loss
Frame Loss	1024	0.0		
Latency	1280	0.0		Displayed Results
	1518	0.0	۲	Current
Throughput Back-to-Back	Frame Loss	Latency		

- Enable Criteria (activar criterios): permite activar los criterios de Frame Loss (Pérdida de tramas) Pass/Fail (Éxito/fallo). Esta configuración está desactivada por defecto.
- **Nota:** Tanto **Enable Criteria** (activar criterios) como la propia prueba (consulte Configuración global en la página 348) deben estar activados para una prueba específica a fin de poder cambiar los valores de los criterios.
 - Frame Size (Tamaño de trama): indica los tamaños de tramas seleccionados para la prueba.
 - ➤ TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local):

Introduzca el porcentaje máximo de tramas para cada tamaño de tramas que se pueden perder antes de declarar un estado de **Fail** (Fallo).

> Status (estado): indica el estado en tiempo real de éxito/fallo.

LED gris: indica que **Expert Mode** (Modo experto) está desactivado o que aún no se ha realizado la prueba.

LED verde: indica que se cumple el umbral [Pass (Éxito)].

LED rojo: indica que no se ha cumplido el umbral [Fail (Fallo)].

- Botón Copy From Measurement (Copiar de medición): copia los resultados de rendimiento de la prueba realizada anteriormente y los utiliza como criterio de éxito/fallo. Si no se ha realizado ninguna prueba con anterioridad se empleará como valor por defecto 0% Loss (0% de pérdida).
- Unit (unidad): la unidad se establece como % Loss (% de pérdida) de tramas.
- Displayed Step (Paso mostrado): indica el último porcentaje de velocidad empleado para la prueba. Los valores posibles van de 100% (o % máximo de velocidad) a 0% con un incremento definido por la granularidad de prueba de Frame Loss (Configuración de pérdida de tramas) en la página 363. La configuración por defecto es 100% (o % máximo de velocidad). Displayed Step (Paso mostrado) sólo está disponible una vez que la prueba de pérdida de tramas está en ejecución o completada.
- Displayed Results (Resultados mostrados): seleccione el modo de visualización de resultados. Las opciones son Current (Actual),
 Minimum (Mínimo), Maximum (Máximo) y Average (Medio). La configuración por defecto es Current (Actual).

Latency (Latencia) (RFC 2544)

Press (Latencia)TEST (PRUEBA), Expert Mode (Modo experto) y Latency (Latencia).

	Threshold			1
Expert Mode	Frame Size	TX-to-RX	Status	Enable Criteria
Expert Mode Status	64	125.0	۲	Copy From
Verdict	128	125.0		Measurement
Throughput	256	125.0	۲	Unit
Back-to-Back	512	125.0	۲	Mode
Frame Loss	1024	125.0	۲	Store and Forward
Latency	1280	125.0	۲	Displayed Results
	1518	125.0	۲	Current
Throughput Back-to-Back	Frame Loss	Latency		

- Enable Criteria (activar criterios): permite activar los criterios de Latency (Latencia) Pass/Fail (Éxito/fallo). Esta configuración está desactivada por defecto.
- **Nota:** Tanto **Enable Criteria** (activar criterios) como la propia prueba (consulte Configuración global en la página 348) deben estar activados para una prueba específica a fin de poder cambiar los valores de los criterios.
 - Frame Size (Tamaño de trama): indica los tamaños de tramas seleccionados para la prueba.
 - ➤ TX-to-RX (TX a RX)/P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1)/Local to Remote (Local a remoto)/Remote to Local (Remoto a local):

Introduzca el tiempo máximo requerido para el retorno de la trama enviada para cada tamaño de trama antes de declarar un estado de Fail (fracaso). P1-to-P2 (P1 a P2)/P2-to-P1 (P2 a P1) sólo está disponible con FTB-8510B.

> Status (estado): indica el estado en tiempo real de éxito/fallo.

LED gris: indica que **Expert Mode** (Modo experto) está desactivado o que aún no se ha realizado la prueba. **LED verde**: indica que se cumple el umbral [**Pass** (Éxito)].

LED rojo: indica que no se ha cumplido el umbral [Fail (Fallo)].

- Botón Copy From Measurement (Copiar de medición): copia los valores mínimos de resultados de rendimiento de la prueba que se realizó previamente y los usa como criterios de Pass/Fail (Éxito/fallo). Si no se ha realizado ninguna prueba con anterioridad se empleará como valor por defecto 0,015 ms con el modo Store and Forward (Guardar y enviar).
- Unit (unidad): seleccione la unidad. Las opciones son s, ms, μs y ns. La configuración por defecto es ms.
- Modo: seleccione el modo. Las opciones son Cut Through (Cortar y enviar) y Store and Forward (Guardar y enviar). La configuración por defecto es Store and Forward (Guardar y enviar).

Cut Through (Cortar y enviar) permite el cálculo de tiempo de propagación de un bit.

Store and Forward (Guardar y enviar) permite el cálculo del tiempo de propagación de una trama.

Displayed Results (Resultados mostrados): seleccione el modo de visualización de resultados. Las opciones son Current (Actual),
 Minimum (Mínimo), Maximum (Máximo) y Average (Medio). La configuración por defecto es Current (Actual).

Expert Mode (Modo experto) (BERT)

Expert Mode (Modo experto) permite la configuración de los umbrales con los que se comprobará cada estadística para emitir un veredicto de ÉXITO o FRACASO.

Press (Modo experto)TEST (PRUEBA) y Expert Mode (Modo experto).

Propiedades generales

Expert Mode (permitir modo experto): Permite activar/desactivar **Expert Mode** (Modo experto). Esta configuración está desactivada por defecto.

Expert Mode Status (Estado del modo experto)

Verdict (Veredicto): da el veredicto, **Pass** (Éxito) o **Fail** (Fallo) de las pruebas de **Port** (Puerto), **Ethernet** y **Pattern** (Patrón) según la configuración de **Expert Mode** (Modo experto).

Veredicto	Description (Descripción)
Correcto	Si todos los valores de los resultados cumplen los criterios configurados.
Fracaso	Si algún valor de los resultados no cumple los criterios configurados.
<د›	Aparece cuando al menos se cumple una de las condiciones siguientes: Expert Mode (Modo experto) no está activado, no hay ningún criterio definido o la prueba específica no se ha ejecutado todavía.

Nota: Los resultados del veredicto sólo están disponibles cuando se ha activado **Expert Mode** (modo experto) y cuando se ha parado o completado la prueba.

Port (Puerto) (BERT)

Press **(Puerto)TEST** (PRUEBA), **Expert Mode** (Modo experto) **Port** (Puerto).

Expert Mode	Alarms	Port 1 0	Status	Unit Second	□ Enable Criteria
Port Ethernet Pattern	Frequency Frequency (bps) Offset Max.	Port 1 100	Status	Unit	
Port Ethernet Pattern		1.00		ppm r	

Enable Criteria (Permitir criterios de puerto): **Enable Criteria** (Permitir criterios de puerto) permite la configuración de los valores de umbral del puerto (**Port 1** (Puerto 1) y **Port 2** (Puerto 2) para **Dual Ports** (Puertos duales) en FTB-8510B) **Pass/Fail** (Éxito/Fracaso). Esta configuración está desactivada por defecto.

Alarms (Alarmas)

LOS (sólo interfaz óptica): introduzca el recuento de los segundos dentro de los cuales se pueden producir una o más alarmas LOS antes de declarar un fallo. las opciones van de **0** a **1800** segundos. La configuración por defecto es **0** segundo.

Frequency (frecuencia)

Introduzca las desviaciones máxima y mínima de la frecuencia en ppm o en bps de acuerdo con la selección de la unidad.

- Frequency (bps) (Frecuencia en bps): indica la frecuencia de la señal de entrada.
- Offset Max (Desviación máxima): introduzca el valora de frecuencia máximo permitido antes de declarar un fallo. Las opciones van de 0 a 120 ppm. La configuración por defecto es 100 ppm.
- Offset Min (Desviación mínima): introduzca el valor de frecuencia mínimo permitido antes de declarar un fallo. Las opciones van de -120 ppm a 0 ppm. La configuración por defecto es -100 ppm.
- > Status (estado): indica el estado en tiempo real de éxito/fallo.

LED gris: indica que el modo experto está desactivado o que aún no se ha realizado la prueba.

LED verde: indica que se cumple el umbral [Pass (Éxito)]. **LED rojo**: indica que no se ha cumplido el umbral [Fail (Fallo)].

► Unit (unidad): seleccione la unidad. Las opciones son: bps y ppm. La configuración por defecto es ppm.

Ethernet (BERT)

Press TEST (PRUEBA), Expert Mode (Modo experto) Ethernet.

Expert Mode Status Errors Po Port FCS Error 0 Ethernet Symbol 0 Pattern Symbol 0	rt 1 Sta	tatus Unit	- Citteria
Port FCS Error 0 Ethernet Symbol 0		Second	T
Pattern Symbol 0			<u> </u>
	:	Second	
	`	Second	

Enable Criteria (Permitir criterios de Ethernet): Enable Criteria (Permitir criterios de Ethernet) permite configurar los valores de umbral de Pass/Fail (Éxito/fallo) de Ethernet (Port 1 (Puerto 1) y Port 2 (Puerto 2) para Dual Ports (Puertos duales) en FTB-8510B). Esta configuración está desactivada por defecto.

Alarms (Alarmas)

Introducir el valor umbral para **Link Down** (Enlace roto). las opciones van de **0** a **1800** segundos. La configuración por defecto es **0** segundo.

Errores

Error	Segundo	Recuento	Valor	Por defecto
Block (Bloque)	0 a 1800	de 0 a	1.0E-20 a	0 segundos
(10 Gbps)	segundos	1800000000000	1.0E-00	
FCS Error (error FCS) [Framed Layer 2 (Capa de trama 2)]	0 a 1800 segundos	de 0 a 27000000000	4.0E-11 a 1.0E-00	0 segundos
Símbolo	0 a 1800	de 0 a	1.0E-14 a	0 segundos
(10/100/1000 Mbps)	segundos	225000000000	1.0E-00	
Inactivo	0 a 1800	de 0 a	1.0E-14 a	0 segundos
(10/100/1000 Mbps)	segundos	225000000000	1.0E-00	

Introduzca el valor de umbral para cada error.

> Status (estado): indica el estado en tiempo real de éxito/fallo.

LED gris: indica que **Expert Mode** (Modo experto) está desactivado o que aún no se ha realizado la prueba.

LED verde: indica que se cumple el umbral [**Pass** (Éxito)]. LED rojo: indica que no se ha cumplido el umbral [**Fail** (Fallo)].

 Unit (unidad): seleccione la unidad. Las opciones son Second (Segundo), Count (Recuento) y Rate (Velocidad). La configuración por defecto es Second (Segundo).

Pattern (Patrón) (BERT)

Press **(Patrón)TEST** (PRUEBA), **Expert Mode** (Modo experto) y **Pattern** (Patrón).

Expert Mode	Alarms Pattern Loss No Traffic	Port 1 0	Status ම	Unit Second Second	☐ Enable Criteria
Port Ethernet Pattern	Errors Bit Error	Port 1	Status	Unit Second	
Port Ethernet Pattern					

Enable Criteria (Permitir criterios de patrón): **Enable Criteria** (Permitir criterios de patrón) permite la configuración de los valores de umbral y parámetros de patrón de éxito/fallo (**Port 1** (Puerto 1) y **Port 2** (Puerto 2) para **Dual Ports** (Puertos duales) en FTB-8510B). Esta configuración está desactivada por defecto.

Alarms (Alarmas)

Introduzca el valor de umbral para cada alarma: **Pattern Loss** (pérdida de patrón) y **No Traffic** (sin tráfico).

> Status (estado): indica el estado en tiempo real de éxito/fallo.

LED gris: indica que **Expert Mode** (Modo experto) está desactivado o que aún no se ha realizado la prueba.

LED verde: indica que se cumple el umbral [**Pass** (Éxito)]. **LED rojo**: indica que no se ha cumplido el umbral [**Fail** (Fallo)].

► Unit (unidad): la unidad es Second (segundo).

Errores

Introduzca el valor de umbral para **Bit Error** (Error de bit).

Error	Segundo	Recuento	Valor	Por defecto
Error de bit	0 a 1800 segundos	de 0 a 1800000000000	1.0E-14 a 1.0E-00	0 segundos

 Status (estado): indica el estado en tiempo real de Pass/Fail (Éxito/fallo).

LED gris: indica que Expert Mode (Modo experto) está desactivado o que aún no se ha realizado la prueba.
LED verde: indica que se cumple el umbral [Pass (Éxito)].
LED rojo: indica que no se ha cumplido el umbral [Fail (Fallo)].

 Unit (unidad): seleccione la unidad. Las opciones son Second (Segundo), Count (Recuento) y Rate (Velocidad). La configuración por defecto es Second (Segundo).

23 *Recuperación automática tras la pérdida de la alimentación*

La recuperación automática tras la pérdida de alimentación se emplea para volver a generar y reiniciar la prueba que se estaba realizando antes de perder la alimentación. Una prueba que se haya creado pero que no estuviera en marcha antes de perder la alimentación se volverá a generar pero no se reiniciará. La configuración de la prueba se guarda automáticamente una vez creada la prueba. El diario, las inyecciones y la configuración se guardan periódicamente.

Los siguientes requisitos controlan el proceso de recuperación tras la pérdida de la alimentación:

- La pérdida de la alimentación se produjo cuando se había creado la prueba. Una condición de pérdida de alimentación se produce cuando la alimentación de CA se ha interrumpido mientras la batería de la unidad no tiene alimentación suficiente para mantenerla en funcionamiento.
- La aplicación de inicio está activada para este módulo en el FTB-500 ToolBox. Consulte la guía del usuario de ToolBox para obtener más información.

Recuperación automática tras la pérdida de la alimentación

Si se cumplen los requisitos 1 y 2, se cargará la configuración guardada al volver a arrancar la unidad tras una pérdida de alimentación. En este caso, se volverá a generar la prueba que se estaba realizando, se configurará y se reiniciará; las pruebas que no estuvieran en marcha se volverán a generar y se configurarán.

No obstante, si FTB-500 no tiene pilas, la recuperación tras la pérdida de la alimentación sólo funcionará cuando Windows no requiera un nombre de usuario y una contraseña. Tenga en cuenta que FTB-500 está configurado para solicitar un nombre de usuario y una contraseña por defecto. Para desactivar el nombre de usuario y la contraseña de Windows en FTB-500, haga lo siguiente:

- > Inicie sesión como Supervisor.
- Pulse Inicio, Todos los programas, Accesorios, Herramientas del sistema y Cuentas de usuario (avanzado).
- > Seleccione una cuenta de usuario.
- Desmarque la casilla User must enter a user name and password to use this computer (el usuario debe introducir un nombre de usuario y una contraseña para utilizar este ordenador) e introduzca una contraseña para confirmar.

Recuperación manual tras la pérdida de la alimentación

Si sólo se cumple el requisito 1, la configuración guardada se cargará cuando Serie FTB-8500 y FTB-8120NGE/8130NGE se arranque de forma manual desde el **ToolBox**. En este caso, se volverá a generar la prueba que se estaba realizando, se configurará y se reiniciará.

- **Nota:** Para **RFC 2544,** se cargará la configuración, pero la prueba no se reiniciará de forma automática.
- **Nota:** la recuperación tras pérdida de alimentación está desactivada cuando la SUI se finaliza de forma normal o cuando se concluye la prueba.

Cuando se emplea el temporizador para la prueba

Consultar *Timer Configuration (configuración del temporizador)* en la página 141 para obtener más información sobre el temporizador para la prueba.

La prueba que se estaba realizando se volverá a generar y a iniciar tras una pérdida de alimentación si se cumplen todas las condiciones siguientes:

- ► La prueba estaba en marcha.
- > La aplicación de inicio está activada en FTB-500.
- > El tiempo de inicio no ha expirado durante la pérdida de alimentación.
- El tiempo de detención o la duración no han expirado durante la pérdida de alimentación.

Cuando se emplea SmartMode (modo inteligente)

No se admite SmartMode (modo inteligente), lo que significa que volverá a su configuración de fábrica por defecto tras la recuperación de una pérdida de alimentación.

24 Mantenimiento

Para conseguir un funcionamiento duradero y sin problemas:

- Examine siempre los conectores de fibra óptica antes de usarlos y límpielos si fuese necesario.
- > Evite que la unidad acumule polvo.
- Limpie la carcasa y el panel frontal de la unidad con un paño ligeramente humedecido con agua.
- Conserve la unidad a temperatura ambiente en un lugar limpio y seco. Mantenga la unidad alejada de la luz solar directa.
- > Evite la humedad alta o las fluctuaciones de temperatura significativas.
- ► Evite golpes y vibraciones innecesarios.
- Si se derrama algún líquido sobre la unidad o dentro de ella, desconéctela inmediatamente de la red de alimentación y deje que se seque por completo.

Advertencia

El uso de controles, ajustes y procedimientos de funcionamiento y mantenimiento distintos a los especificados en la presente documentación puede provocar una exposición peligrosa a la radiación.

Recalibración de la unidad

Las calibraciones de fábrica y las realizadas en el centro de asistencia se basan en la norma ISO/CEI 17025, que especifica que los documentos de calibración no pueden indicar un intervalo de calibración recomendado, a no ser que este se haya acordado previamente con el cliente.

La validez de las especificaciones depende de las condiciones de funcionamiento. Por ejemplo, el periodo de validez de la calibración puede ser más largo o más corto en función de la intensidad del uso, las condiciones ambientales y el mantenimiento de la unidad. Deberá averiguar el intervalo de calibración adecuado para la unidad según sus requisitos de precisión.

En condiciones normales de uso, EXFO le recomienda calibrar la unidad cada dos años.

Reciclaje y desecho (solo para la Unión Europea)

Recicle y deseche su producto (incluidos los accesorios eléctricos y electrónicos) de forma adecuada, de acuerdo con las regulaciones locales. No lo deposite en los contenedores de basura convencional.

Este equipo se ha vendido después del 13 de agosto de 2005 (tal y como indica el rectángulo negro).

- ➤ A menos que se indique lo contrario en un acuerdo independiente entre EXFO y un cliente, distribuidor o socio comercial, EXFO se hará cargo de los costes relacionados con la recogida, tratamiento, recuperación y desecho de los residuos de fin de ciclo de vida útil que generen los equipos electrónicos distribuidos después del 13 de agosto de 2005 en un estado miembro de la Unión Europea, según la legislación relacionada con la directiva comunitaria 2002/96/CE.
- Salvo por razones de seguridad o beneficio medioambiental, los equipos producidos por EXFO, bajo su marca, se han diseñado, por norma general, para facilitar el desmontaje y reciclaje.

Para ver los procedimientos completos de reciclaje y desecho, así como la información de contacto, puede visitar el sitio web de EXFO en www.exfo.com/recycle.

25 Resolución de problemas

Cómo solucionar problemas comunes

Antes de llamar a la asistencia técnica de EXFO, lea los siguientes problemas comunes que se pueden producir y su solución correspondiente.

Problema	Causa posible	Solución	
El LED del láser óptico está apagado y el conector no genera la señal.	 La opción Laser On (láser activado) está desactivada. 	 Asegúrese de que el botón Laser (láser) está activado (On). 	
	 Hay una discordancia de configuración entre el SFP/XFP enchufado y la velocidad seleccionada para el caso de prueba (LAN o WAN). 	Asegúrese de que el SFP/XFP es compatible con la velocidad empleada para el caso de prueba (LAN o WAN).	
	 El SFP/XFP no es compatible con el Serie FTB-8500 y FTB-8120NGE/8130NGE. 	 Asegúrese de usar un SFP/XFP compatible. Consulte Interfaces físicas y LED en la página 11. 	

Búsqueda de información en la página web de EXFO

Búsqueda de información en la página web de EXFO

El sitio web de EXFO le ofrece respuestas para las preguntas frecuentes relacionadas con el uso del Aplicación Ethernet y canal de fibra.

Para acceder a las preguntas más frecuentes:

- **1.** Escriba http://www.exfo.com en la barra de dirección del navegador de Internet.
- 2. Haga clic en la ficha Support (asistencia).
- **3.** Haga clic en **FAQ** y siga las instrucciones de la pantalla. Se le mostrará una lista de preguntas relacionadas con el asunto.

El sitio web de EXFO también le ofrece las especificaciones técnicas más recientes del producto.
Contacto con el grupo de asistencia técnica

Para obtener servicio posventa o asistencia técnica para el presente producto, póngase en contacto con EXFO a través de uno de los siguientes números de teléfono. El grupo de asistencia técnica está disponible para atender sus llamadas de lunes a viernes, de 8:00 a 19:00 H (hora este de Estados Unidos).

Para obtener información detallada sobre asistencia técnica, visite el sitio web de EXFO en www.exfo.com.

Grupo de soporte técnico 400 Godin Avenue Quebec (Quebec) G1M 2K2 CANADÁ

1 866 683-0155 (EE. UU. y Canadá) Tel.: 1 418 683-5498 Fax: 1 418 683-9224 support@exfo.com

Para agilizar el proceso, se ruega que facilite información como el nombre y número de serie (consulte la etiqueta de identificación del producto, como en el ejemplo que se muestra a continuación), así como una descripción del problema.

Transporte

Mantenga un rango de temperatura dentro de las especificaciones al transportar la unidad. Un manejo inadecuado puede derivar en daños en el transporte. Se recomienda seguir los siguientes pasos para minimizar posibles daños:

- Guarde la unidad en su embalaje original cuando tenga que transportarla.
- > Evite una humedad alta o grandes fluctuaciones de temperatura.
- > Mantenga la unidad alejada de la luz solar directa.
- > Evite golpes y vibraciones innecesarios.

26 Garantía

Información general

EXFO Inc. (EXFO) garantiza este equipo contra defectos en materiales y mano de obra durante un periodo de un año a partir de la fecha de entrega original. EXFO garantiza también que este equipo cumple las especificaciones aplicables a su uso normal.

Durante el periodo de garantía, EXFO procederá, a discreción propia, a la reparación, sustitución o devolución del importe de cualquier producto defectuoso, así como a la comprobación y ajuste del producto, sin ningún tipo de coste, en caso de que el equipo necesite repararse o que la calibración original sea errónea. En caso de que el equipo se devuelva para verificar la calibración durante el periodo de garantía y se compruebe que cumple todas las especificaciones publicadas, EXFO cobrará los gastos estándar de calibración.

IMPORTANTE

La garantía puede quedar anulada si:

- la unidad se ha modificado, reparado o han trabajado con ella personas no autorizadas o personal ajeno a EXFO;
- > se ha retirado la pegatina de la garantía.
- se han extraído tornillos de la carcasa distintos de los especificados en este manual.
- se ha abierto la carcasa de forma distinta a la explicada en este manual;
- se ha modificado, borrado o retirado el número de serie de la unidad.
- se ha hecho un mal uso de la unidad, un uso negligente o si la unidad ha resultado dañada a consecuencia de un accidente.

LA PRESENTE GARANTÍA SUSTITUYE A CUALQUIER OTRO TIPO DE GARANTÍAS EXPLÍCITAS, IMPLÍCITAS O ESTATUTARIAS INCLUYENDO, PERO SIN LIMITARSE A, LAS GARANTÍAS IMPLÍCITAS DE COMERCIABILIDAD Y ADECUACIÓN A UN PROPÓSITO PARTICULAR. EXFO NO SERÁ RESPONSABLE EN NINGÚN CASO DE DAÑOS ESPECIALES, ACCIDENTALES O CONSECUENCIALES.

Responsabilidad

EXFO no será responsable de los daños que se originen del uso del producto, ni de ningún defecto en el funcionamiento de otros objetos a los que esté conectado el producto, ni del funcionamiento de ningún sistema del que el producto pueda formar parte.

EXFO no será responsable de los daños que se originen debido al uso inadecuado o a una modificación no autorizada del producto, ni de los accesorios y software que se distribuyen con él.

Exclusiones

EXFO se reserva el derecho de efectuar cambios en el diseño o fabricación de cualquiera de sus productos en cualquier momento sin que por ello incurra en la obligación de efectuar cambio alguno en las unidades ya distribuidas. Los accesorios (que incluyen, entre otros, fusibles, luces de aviso, baterías e interfaces universales [EUI]) que se emplean con los productos de EXFO no quedan cubiertos por la presente garantía.

Esta garantía excluye las averías que se originen a raíz de: un uso o instalación inadecuados, uso y desgaste natural, accidente, abuso, negligencia, fuego, agua, rayos u otras catástrofes naturales, causas externas al producto u otros factores fuera del control de EXFO.

IMPORTANTE

EXFO cobrará por la sustitución de conectores ópticos dañados por un mal uso o una mala limpieza.

Certificación

EXFO certifica que este equipo cumple las especificaciones publicadas en el momento de salida de la fábrica.

Mantenimiento y reparaciones

EXFO se compromete a ofrecer servicio al producto y reparaciones en los cinco años siguientes a la fecha de compra.

Para enviar cualquier equipo para mantenimiento o reparación:

- 1. Llame a uno de los centros de asistencia autorizados de EXFO (consulte *EXFO Centros de asistencia en todo el mundo* en la página 534). El personal de asistencia determinará si el equipo necesita servicio, reparación o calibración.
- **2.** Si se debe devolver el equipo a EXFO o a un centro de asistencia autorizado, el personal de asistencia emitirá un número de autorización de devolución de compra (RMA) y proporcionará una dirección para la devolución.
- **3.** Realice una copia de sus datos, si es posible, antes de enviar la unidad a reparar.
- **4.** Guarde el equipo en su material de envío original. Asegúrese de incluir una descripción o informe en los que se detalle con precisión el defecto y las condiciones en las que se observó.
- **5.** Envíe el equipo de vuelta, tras pagar los costes de envío, a la dirección que le indique el personal de asistencia. Asegúrese de indicar el número de RMA en la nota de envío. *EXFO rechazará y devolverá todos los paquetes que no incluyan un número de RMA*.
- **Nota:** Se aplicará una tarifa de comprobación a todas las unidades devueltas que, tras la comprobación, se demuestre que cumplían las especificaciones aplicables.

Después de la reparación, se devolverá el equipo con un informe de reparación. Si el equipo no se encuentra en garantía, se facturará el coste que figura en el informe. EXFO se hace cargo de los costes de envío de devolución al cliente para los equipos en garantía, El seguro de transporte correrá a cargo del cliente.

La recalibración rutinaria no se incluye en ninguno de los planes de garantía. Dado que las calibraciones y verificaciones no quedan incluidas dentro de las garantías básica ni extendida, se puede optar por adquirir los paquetes de calibración y verificación FlexCare por un determinado periodo de tiempo. Póngase en contacto con un centro de asistencia autorizado (consulte *EXFO Centros de asistencia en todo el mundo* en la página 534).

EXFO Centros de asistencia en todo el mundo

Si su producto necesita asistencia técnica, póngase en contacto con su centro de asistencia más cercano.

Centro de asistencia central de EXFO

400 Godin Avenue Quebec (Quebec) G1M 2K2 CANADÁ 1 866 683-0155 (EE. UU. y Canadá) Tel.: 1 418 683-5498 Fax: 1 418 683-9224 quebec.service@exfo.com

Centro de servicio de Europa de EXFO

Omega Enterprise Park, Electron Way	Tel.: +44 2380 246810
Chandlers Ford, Hampshire S053 4SE	Fax: +44 2380 246801
INGLATERRA	europe.service@exfo.com

EXFO Telecom Equipment

(Shenzhen) Ltd. 3rd Floor, Building 10, Yu Sheng Industrial Park (Gu Shu Crossing), No. 467, National Highway 107, Xixiang, Bao An District, Shenzhen, China, 518126

Tel: +86 (755) 2955 3100 Fax: +86 (755) 2955 3101 beijing.service@exfo.com

A Especificaciones

Interfaces ópticas Ethernet

Para FTB-8510B:

OPTICAL INTERFACES

Optical interfaces	Two ports at 100M	and GigE			
Available wavelengths (nm)	850, 1310 and 15	50			
	100Base-FX	100Base-LX	1000Base-SX	1000Base-LX	1000Base-ZX
Wavelength (nm)	1310	1310	850	1310	1550
Tx level (dBm)	-20 to -15	-15 to -8	-9 to -3	-9.5 to -3	0 to +5
Rx level sensitivity (dBm)	-31	-28 to -8	-20	-22	-22
Maximum reach	2 km	15 km	550 m	10 km	80 km
Transmission bit rate (Gbit/s)	0.125	0.125	1.25	1.25	1.25
Reception bit rate (Gbit/s)	0.125	0.125	1.25	1.25	1.25
Tx operational wavelength range (nm)	1280 to 1380	1261 to 1360	830 to 860	1270 to 1360	1540 to 1570
Measurement accuracy					
Frequency (ppm)	±4.6	±4.6	±4.6	±4.6	±4.6
Optical power (dB)	±2	±2	±2	±2	±2
Maximum Rx before damage (dBm)	+3	+3	+6	+6	+6
Jitter compliance	ANSI X3.166	IEEE 802.3	IEEE 802.3	IEEE 802.3	
Ethernet classification	ANSI X3.166	IEEE 802.3	IEEE 802.3	IEEE 802.3	
Laser type	LED	FP	VCSEL	FP	DFB
Eye safety	CLASS 1	CLASS 1	CLASS 1	CLASS 1	CLASS 1
Connector	LC	LC	LC	LC	LC
Transceiver type	SFP	SFP	SFP	SFP	SFP

Interfaces ópticas bidireccionales	1000Base-BX10-U	1000Base-BX10-D
Long. de onda (nm)	TX: 1310	TX: 1490
	RX: 1490	RX: 1310
Nivel de TX (dBm)	-9 a -3	-9 a -3
Nivel de sensibilidad de RX (dBm)	-20	-20
Alcance máximo	10 Km	10 Km
Velocidad de transmisión de bits (Gbps)	1.25	1.25
Velocidad de recepción de bits (Gbps)	1.25	1.25
Intervalo de longitud de onda operativo de TX	1260 a 1360	1.480 a 1500
(nm)		
Precisión de medición:		
Frecuencia (ppm)	±15	±15
Potencia óptica (dB)	±2	±2
Máxima Rx antes de daño (dBm)	±6	±6
Cumplimiento de la fluctuación	IEEE 802.3ah	IEEE 802.3ah
Clasificación Ethernet	IEEE 802.3ah	IEEE 802.3ah
Tipo de láser	FP	DFB
Seguridad ocular	Clase 1	Clase 1
Conector	LC	LC
Tipo de transceptor	SFP	SFP

Especificaciones

Interfaces ópticas Ethernet

Para FTB-8510G:

OPTICAL INTERF	OPTICAL INTERFACES					
	10BASE-SW	10BASE-SR	10BASE-LW	10BASE-LR	10BASE-EW	10BASE-ER
Wavelength	850 nm	850 nm	1310 nm	1310 nm	1550 nm	1550 nm
	Multimode	Multimode	Singlemode	Singlemode	Singlemode	Singlemode
Tx level (802.3ae-compliant)	-7.3 to -1 dBm	-7.3 to -1 dBm	-8.2 to +0.5 dBm	-8.2 to +0.5 dBm	-4.7 to +4.0 dBm	-4.7 to +4.0 dBm
Rx level sensitivity	-9.9 to -1.0 dBm	-9.9 to -1.0 dBm	-14.4 to +0.5 dBm	-14.4 to +0.5 dBm	-15.8 to -1.0 dBm	-15.8 to -1.0 dBm
Transmission bit rate	9.95328 Gbit/s ± 4.6 ppm*	10.3125 Gbit/s ± 4.6 ppm*	9.95328 Gbit/s ± 4.6 ppm*	10.3125 Gbit/s ± 4.6 ppm*	9.95328 Gbit/s ± 4.6 ppm*	10.3125 Gbit/s ± 4.6 ppm
Reception bit rate	9.95328 Gbit/s ± 150 ppm	10.3125 Gbit/s ± 150 ppm	9.95328 Gbit/s ± 150 ppm	10.3125 Gbit/s ± 150 ppm	9.95328 Gbit/s ± 150 ppm	10.3125 Gbit/s ± 150 ppr
Tx operational wavelength range	e 840 nm to 860 nm	840 nm to 860 nm	1260 nm to 1355 nm	1260 nm to 1355 nm	1530 nm to 1565 nm	1530 nm to 1565 nm
(802.3ae-compliant)						
Measurement accuracy						
frequency	±4.6 ppm	±4.6 ppm				
optical power	< 2 dB	< 2 dB				
Maximum Rx before damage	0 dBm	0 dBm	+1.5 dBm	+1.5 dBm	+4.0 dBm	+4.0 dBm
Jitter compliance	IEEE 802.3ae	IEEE 802.3ae				
Ethernet classification	IEEE 802.3ae	IEEE 802.3ae				
Laser type	VCSEL	VCSEL	DFB	DFB	EML	EML
Eye safety	Class 1 laser; complies	Class 1M laser; complies	Class 1M laser; complies			
	with 21 CFR 1040.10	with 21 CFR 1040.10				
	and IEC 60825-1	and IEC 60825-1				
Connector	Duplex LC	Duplex LC				
Transceiver type	XFP	XFP	XFP	XFP	XFP	XFP
(compliant with XFP MSA)						
* When clocking is in internal	mode					

Especificaciones

Interfaces ópticas Ethernet

Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535:

100 Mbit/s AND GigE OPTICAL INTERFACES

	100Base-FX	100Base-LX	1000Base-SX	1000Base-LX	1000Base-ZX
Wavelength (nm)	1310	1310	850	1310	1550
Tx level (dBm)	-20 to -15	-15 to -8	-9 to -3	-9.5 to -3	0 to +5
Rx level sensitivity (dBm)	-31	-28 to -8	-20	-22	-22
Maximum reach	2 km	15 km	550 m	10 km	80 km
Transmission bit rate (Gbit/s)	0.125	0.125	1.25	1.25	1.25
Reception bit rate (Gbit/s)	0.125	0.125	1.25	1.25	1.25
Tx operational wavelength range (nm)	1280 to 1380	1261 to 1360	830 to 860	1270 to 1360	1540 to 1570
Measurement accuracy					
Frequency (ppm)	±4.6	±4.6	±4.6	±4.6	±4.6
Optical power (dB)	±2	±2	±2	±2	±2
Maximum Rx before damage (dBm)	+3	+3	+6	+6	+6
Jitter compliance	ANSI X3.166	IEEE 802.3	IEEE 802.3	IEEE 802.3	IEEE 802.3
Ethernet classification	ANSI X3.166	IEEE 802.3	IEEE 802.3	IEEE 802.3	IEEE 802.3
Laser type	LED	FP	VCSEL	FP	DFB
Eye safety	CLASS 1	CLASS 1	CLASS 1	CLASS 1	CLASS 1
Connector	LC	LC	LC	LC	LC
Transceiver type	SFP	SFP	SFP	SFP	SFP

10GBASE-SW 10GBASE-SR 10GBASE-LW 10GBASE-LR 10GBASE-EW 10GBASE-ER Wavelength (nm) 850 850 1310 1310 1550 1550 Multimode Multimode Singlemode Singlemode Singlemode Singlemode Tx level (802.3ae-compliant) (dBm) -7.3 to -1 -7.3 to -1 -8.2 to +0.5 -8.2 to +0.5 -4.7 to +4.0 -4.7 to +4.0 Rx level sensitivity (dBm) -9.9 to -1.0 -14.4 to +0.5 -14.4 to +0.5 -15.8 to -1.0 -15.8 to -1.0 -9.9 to -1.0 10.3125 Gbit/s ± 4.6 ppm ^a 10.3125 Gbit/s ± 4.6 ppm ^a 9.95328 Gbit/s ± 4.6 ppm ^a 9.95328 Gbit/s ± 4.6 ppm ^a 9.95328 Gbit/s ± 4.6 ppm ^a 10.3125 Gbit/s ± 4.6 ppm ^a Transmission bit rate Reception bit rate 9.95328 Gbit/s ± 135 ppm 10.3125 Gbit/s ± 135 ppm 9.95328 Gbit/s ± 135 ppm 10.3125 Gbit/s ± 135 ppm 9.95328 Gbit/s ± 135 ppm 10.3125 Gbit/s ± 135 ppm Tx operational wavelength range 840 to 860 840 to 860 1260 to 1355 1260 to 1355 1530 to 1565 1530 to 1565 (802.3ae-compliant) (nm) Measurement accuracy Frequency (ppm) ±4.6 ±4.6 ±4.6 ±4.6 ±4.6 ±4.6 Optical power (dB) ±2 ±2 ±2 ±2 ±2 +9 Maximum Rx before damage (dBm) 0 +1.5+1.50 +4.0+4.0Jitter compliance IEEE 802.3ae IEEE 802.3ae IEEE 802.3ae IEEE 802.3ae IEEE 802.3ae IEEE 802.3ae Ethernet classification IEEE 802.3ae IEEE 802.3ae IEEE 802.3ae IEEE 802.3ae IEEE 802.3ae IEEE 802.3ae VCSEL DFB DFB EML EML Laser type VCSEL Class 1 laser: complies Class 1M laser: complies Class 1M laser: complies Eye safety Class 1 laser: complies Class 1 laser: complies Class 1 laser: complies with 21 CFR 1040.10 and IEC 60825-1 Connector Duplex LC Duplex LC Duplex LC Duplex LC Duplex LC Duplex LC Transceiver type XFP XFP XFP XFP XFP XFP (compliant with XFP MSA)

NOTE

a. When clocking is in internal mode.

Interfaces de canal de fibra

Para FTB-8510B:

FC-1X/2X			
Wavelength (nm)	850	1310	1550
Tx level (dBm)	-9 to -3	-9.5 to -3	+0 to +5
Rx level sensitivity (dBm)	-18 at FC-2X	-21 at FC-2X	-21 @ FC-2X
	-20 at FC-1X	-22 at FC-1X	-22 @ FC-1X
Max reach	550 m on 50/125 µm MMF at FC-1X	10 km	80 km
	300 m on 50/125 µm MMF at FC-2X		
	300 m on 62.5/125 µm MMF at FC-1X		
	150 m on 62.5/125 µm MMF at FC-2X		
Transmission bit rate (Gbit/s)	1.0625 to 2.125	1.0625 to 2.125	1.0625 to 2.125
Reception bit rate (Gbit/s)	1.0625 to 2.125	1.0625 to 2.125	1.0625 to 2.125
Tx operational wavelength range (nm)	830 to 860	1270 to 1360	1540 to 1570
Measurement accuracy			
frequency (ppm)	±4.6	±4.6	±4.6
optical power (dB)	±2	±2	±2
Max Rx before damage (dBm)	+6	+6	+6
Jitter compliance	ANSI FC-PI-2	ANSI FC-PI-2	ANSI FC-PI-2
FC classification	ANSI FC-PI-2	ANSI FC-PI-2	ANSI FC-PI-2
Laser type	VCSEL	Fabry-Perot	DFB
Eye safety	CLASS 1	CLASS 1	CLASS 1
Connector	LC	LC	LC
Transceiver type	SFP	SFP	SFP
			/

Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535:

FC-1X/2X/4X					
Wavelength (nm)	850	1310	1310	1550	
Tx level (dBm)	-9 to -2.5	-8.4 to -3	0 to +5	+1 to +5	
Rx level sensitivity (dBm)	-15 at FC-4	-18 at FC-4	-18 at FC-4	-16.5 at FC-4	
	-18 at FC-2	-21 at FC-2	-21 at FC-2	-20.5 at FC-2	
	-20 at FC-1	-22 at FC-1	-22 at FC-1	-22 at FC-1	
Maximum reach	500 m on 50/125 µm MMF	a 4 km	30 km	40 km	
	300 m on 62.5/125 µm MM	Fa			
Transmission bit rate (Gbit/s)	1.06/2.125/4.25	1.06/2.125/4.25	1.06/2.125/4.25	1.06/2.125/4.25	
Reception bit rate (Gbit/s)	1.06/2.125/4.25	1.06/2.125/4.25	1.06/2.125/4.25	1.06/2.125/4.25	
Tx operational wavelength range (nm)	830 to 860	1260 to 1350	1285 to 1345	1544.5 to 1557.5	
Measurement accuracy:					
Frequency (ppm)	±4.6	±4.6	±4.6	±4.6	
Optical power (dB)	±2	±2	±2	±2	
Max Rx before damage (dBm)	+3	+3	+3	+3	
Jitter compliance	ANSI FC-PI-2	ANSI FC-PI-2	ANSI FC-PI-2	ANSI FC-PI-2	
FC classification	ANSI FC-PI-2	ANSI FC-PI-2	ANSI FC-PI-2	ANSI FC-PI-2	
Laser type	VCSEL	Fabry-Perot	DFB	DFB	
Eye safety	Class 1	Class 1	Class 1	Class 1	
Connector	LC	LC	LC	LC	
Transceiver type	SFP	SFP	SFP	SFP	
FC-10X					
Wavelength (nm)	850	1310	1310	1550	1550
Tx level (dBm)	-5 to -1	+0.5 max	-6 to -1	-1 to +2	0 to +4
Rx level sensitivity (dBm)	-11.1	-12.6	-14.4	-16	-23
Maximum reach	300 m on 50/125 µm MMF	10 km	10 km	40 km	80 km
	30 m on 62.5/125 µm MMF				
Transmission bit rate (Gbit/s)	10.5	10.5	10.5	10.5	10.5
Reception bit rate (Gbit/s)	10.5	10.5	10.5	10.5	10.5
Tx operational wavelength range (nm)	840 to 860	1260 to 1355	1290 to 1330	1530 to 1565	1530 to 1565
Measurement accuracy:					
Frequency (ppm)	±4.6	±4.6	±4.6	±4.6	±4.6
Optical power (dB)	±2	±2	±2	±2	±2
Max Rx before damage (dBm)	+6	+6	+6	+2	+4
Jitter compliance	ANSI FC-PI-3	ANSI FC-PI-3	ANSI FC-PI-3	ANSI FC-PI-3	ANSI FC-PI-3
FC classification	ANSI FC-PI-3	ANSI FC-PI-3	ANSI FC-PI-3	ANSI FC-PI-3	ANSI FC-PI-3
Laser type	VCSEL	DFB	DFB	EML	EML
Eye safety	Class 1	Class 1	Class 1	Class 1	Class 1
Connector	LC	LC	LC	LC	LC
Transceiver type	XFP	XFP	XFP	XFP	XFP

NOTE

a. Values in the table correspond to FC-1 rate. For FC-2, maximum reach is 300 m on 50/125 µm MMF and 150 m on 62.5/125 µm MMF. For FC-4, maximum reach is 150 m on 50/126 µm MMF and 70 m on 62.5/125 µm MMF.

Interfaces eléctricas Ethernet

Para FTB-8510B:

ELECTRICAL INTERFACES			
Electrical interfaces	Two ports 10/100Bas Straight/crossover cal	eT half/full duplex, 1000 ble selection.	BaseT a full duplex.
	10Base-T	100Base-T	1000Base-T
Tx bit rate	10 Mbit/s	125 Mbit/s	1 Gbit/s
Tx accuracy (ppm)	±100	±100	±100
Rx bit rate	10 Mbit/s	125 Mbit/s	1 Gbit/s
Rx measurement accuracy (ppm)	±4.6	±4.6	±4.6
Duplex mode	Half and full duplex	Half and full duplex	Full duplex
Jitter compliance	IEEE 802.3	IEEE 802.3	IEEE 802.3
Connector	RJ-45	RJ-45	RJ-45
Maximum reach (m)	100	100	100

Note

a. Available as a software option.

Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535:

ELECTRICAL INTERFACES			
	10Base-T	100Base-T	1000Base-T
Tx bit rate	10 Mbit/s	125 Mbit/s	1 Gbit/s
Tx accuracy (ppm)	±100	±100	±100
Rx bit rate	10 Mbit/s	125 Mbit/s	1 Gbit/s
Rx measurement accuracy (ppm)	±4.6	±4.6	±4.6
Duplex mode	Half and full duplex	Half and full duplex	Full duplex
Jitter compliance	IEEE 802.3	IEEE 802.3	IEEE 802.3
Connector	RJ-45	RJ-45	RJ-45
Maximum reach (m)	100	100	100

Cables Ethernet

Se requiere un cable Categoría 3 como mínimo para una conexión 10Base-T, mientras que para las conexiones 100Base-TX y 1000Base-T se requiere un cable Categoría 5.

La longitud máxima de cable (entre dos nodos) para las conexiones 10Base-T, 100Base-TX o 1000Base-T es de 100 metros (328 pies).

► Cable no cruzado (10/100 Mbps)

Se necesita un cable no cruzado sin blindaje de par cruzado (UTP) para conectar un puerto 10Base-T/TX de Aplicación Ethernet y canal de fibra con un equipo de capa 1 o 2 (ej. concentrador, conmutador).

Cable cruzado (10/100 Mbps)

Se necesita un cable cruzado sin blindaje de par cruzado (UTP) para conectar un puerto 10Base-T/100Base-TX de Aplicación Ethernet y canal de fibra con un equipo de capa 3 (ej. enrutador).

Especificaciones

Interfaces eléctricas Ethernet

► Cable no cruzado (1000 Mbps)

► Cable cruzado (1000 Mbps)

Interfaces de sincronización

Para FTB-8510G:

DS1/E1 external input clock interface Parameter DS1 E1 Rx level sensitivity (short haul only) For 772 kHz: For 1024 kHz: Reception bit rate 1.544 Mbit/s ± 50 ppm 2.048 Mbit/s ± 50 ppm Input jitter tolerance AT&T PUB 62411, GR-499 section 7.3 G.823 section 7.2 Line coding AMI and B82S HDB3 and AMI Input impedance 100 ohms ± 5%, balanced 120 ohms ± 5%, balanced (resistive termination) E BANTAM BANTAM	SYNCHRONIZATION INTERFACES				
Parameter DS1 E1 Rx level sensitivity (short haul only) For 772 kHz: For 1024 kHz: TERM: 6 dB (cable loss only) TERM: 6 dB (cable loss only) TERM: 6 dB (cable loss only) Reception bit rate 1.544 Mbit/s ± 50 ppm 2.048 Mbit/s ± 50 ppm Input ijter tolerance AT&T PUB 62411, GR-499 section 7.3 G.823 section 7.2 Line coding AMI and B82S HDB3 and AMI Input impedance 100 ohms ± 5%, balanced 120 ohms ± 5%, balanced (resistive termination) E E	DS1/E1 external input clock interface				
Rx level sensitivity (short haul only) For 772 kHz: For 1024 kHz: TERM: 6 dB (cable loss only) TERM: 6 dB (cable loss only) TERM: 6 dB (cable loss only) Reception bit rate 1.544 Mbit/s ± 50 ppm 2.048 Mbit/s ± 50 ppm Input ijter tolerance AT& PUB 62411, GR-499 section 7.3 G.823 section 7.2 Line coding AMI and B&ZS HDB3 and AMI Input impedance 100 ohms ± 5%, balanced 120 ohms ± 5%, balanced (resistive termination) E	Parameter	DS1	E1		
TERM: 6 dB (cable loss only) TERM: 6 dB (cable loss only) Reception bit rate 1.544 Mbit/s ± 50 ppm 2.048 Mbit/s ± 50 ppm Input jitter tolerance AT&T PUB 62411, GR-499 section 7.3 G.823 section 7.2 Line coding AMI and B8ZS HDB3 and AMI Input jitter tolerance 100 ohms ± 5%, balanced 120 ohms ± 5%, balanced (resistive termination) Connector type BANTAM	Rx level sensitivity (short haul only)	For 772 kHz:	For 1024 kHz:		
Reception bit rate 1.544 Mbit/s ± 50 ppm 2.048 Mbit/s ± 50 ppm Input jitter tolerance AT&T PUB 62411, GR-499 section 7.3 G.823 section 7.2 Line coding AMI and B8ZS HDB3 and AMI Input impedance 100 ohms ± 5%, balanced 120 ohms ± 5%, balanced (resistive termination)		TERM: 6 dB (cable loss only)	TERM: 6 dB (cable loss only)		
Input jitter tolerance AT&T PUB 62411, GR-499 section 7.3 G.823 section 7.2 Line coding AMI and B82S HDB3 and AMI Input impedance 100 ohms ± 5%, balanced 120 ohms ± 5%, balanced (resistive termination) Connector type BANTAM Clock out interface Parameter Value	Reception bit rate	1.544 Mbit/s ± 50 ppm	2.048 Mbit/s ± 50 ppm		
Line coding AMI and B8ZS HDB3 and AMI Input impedance 100 ohms ± 5%, balanced 120 ohms ± 5%, balanced (resistive termination) Connector type BANTAM BANTAM BANTAM Clock out interface	Input jitter tolerance	AT&T PUB 62411, GR-499 section 7.3	G.823 section 7.2		
Input impedance 100 ohms ± 5%, balanced 120 ohms ± 5%, balanced (resistive termination) Connector type BANTAM BANTAM Clock out interface Parameter Value	Line coding	AMI and B8ZS	HDB3 and AMI		
Connector type BANTAM BANTAM Clock out interface Parameter Value	Input impedance (resistive termination)	100 ohms \pm 5%, balanced	120 ohms ± 5%, balanced		
Clock out interface Parameter Value	Connector type	BANTAM	BANTAM		
	Clock out interface	Value			
Tx nulse amplitude 600 mVpp ± 130 mV	Tx pulse amplitude	600 mVpp + 130 mV			
Transmission frequency LAN WAN	Transmission frequency	LAN WAN			
Clock divider = 16 644.53 MHz 622.08 MHz	Clock divider = 16	644.53 MHz 622.08 MHz			
Clock divider = 32 322.266 MHz 311.04 MHz	Clock divider = 32	322.266 MHz 311.04 MHz			
Clock divider = 64 161.133 MHz 155.52 MHz	Clock divider = 64	161.133 MHz 155.52 MHz			
Output configuration AC coupled	Output configuration	AC coupled			
Load impedance 50 ohms	Load impedance	50 ohms			
Maximum cable length 3 meters	Maximum cable length	3 meters			
Connector type SMA	Connector type	SMA			

Para FTB-8120NGE/FTB-8130NGE y FTB-8525/FTB-8535:

SYNCH	RONISATION I	NTERFACES		
	External Clock DS1/1.5M	External Clock E1/2M	External Clock E1/2M	Trigger 2 MHz
Tx Pulse Amplitude	2.4 to 3.6 V	3.0 V	2.37 V	0.75 to 1.5 V
Tx Pulse Mask	GR-499 figure 9.5	G.703 figure 15	G.703 figure 15	G.703 figure 20
Tx LBO Preamplification	Typical power dBdsx +0.6 dBdsx (0-133 ft) +1.2 dBdsx (133-266 ft) +1.8 dBdsx (266-399 ft) +2.4 dBdsx (399-533 ft) +3.0 dBdsx (533-655 ft)			
Rx Level Sensivity	TERM: ≤ 6 dB (cable loss only) (at 772 kHz for T1) DSX-MON: ≤ 26 dB (20 dB resistive loss + cable loss ≤ 6 dB) Bridge: ≤ 6 dB (cable loss only)	TERM: = ≤ 6 dB (cable loss only) MON: ≤ 26 dB (20 dB resistive loss + cable loss ≤ 6 dB) Bridge: ≤ 6 dB (cable loss only)	TERM: = ≤ 6 dB (cable loss only) MON: ≤ 26 dB (resistive loss + cable loss ≤ 6 dB) Bridge: ≤ 6 dB (cable loss only)	≤ 6 dB (cable loss only)
Transmission Bit Rate	1.544 Mbit/s ± 4.6 ppm	2.048 Mbit/s ± 4.6 ppm	2.048 Mbit/s ± 4.6 ppm	
Reception Bit Rate	1.544 Mbit/s ± 50 ppm	2.048 Mbit/s ± 50 ppm	2.048 Mbit/s ± 50 ppm	
Intrinsic Jitter (Tx)	ANSI T1.403 section 6.3 GR-499 section 7.3	G.823 section 6.1	G.823 section 6.1	G.703 table 11
Input Jitter Tolerance	AT&T PUB 62411 GR-499 SECTION 7.3	G.823 section 7.2 G.813	G.823 section 7.2 G.813	
Line Coding	AMI and B8ZS	AMI and HDB3	AMI and HDB3	
Input Impedance (Resistive Termination)	75 ohms ± 5%, unbalanced	75 ohms ± 5%, unbalanced	75 ohms ± 5%, unbalanced	75 ohms ± 5%, unbalanced
Connector Type	BNC*	BNC ^a	BNC	BNC

a. Adaptation cable required for BANTAM.

B Glosario

Lista de acrónimos

?	Ayuda
CA	Corriente alterna
ACT	Actividad
AIS	Alarm Indication Signal (señal de indicación de alarma)
AIS-L	Alarm Indication Signal - Line (señal de indicación de alarma - línea)
AIS-P	Alarm Indication Signal - Path (señal de indicación de alarma - ruta)
AM	Ante Meridiem (periodo entre la medianoche y el mediodía)
AMI	Alternate Mark Inversion (inversión de marca alternativa)
APS	Automatic Protection Switching (conmutación de protección automática)
ARP	Protocolo de resolución de direcciones
AS	Available Second (segundo disponible)
ASCII	American Standard Code for Information Interchange (código estándar americano para intercambio de información)
ATM	Asynchronous Transfer Mode (modo de transferencia asincrónico)

Glosario

Lista de acrónimos

В

B-MAC	Dirección MAC troncal
B-VLAN	Red de área local virtual troncal
B1	BIP-8 - sección
B2	BIP-1536 - línea
B3	BIP-8 - ruta
B8ZS	Bipolar with 8 zero substitution (bipolar con sustitución de 8 ceros)
BB_Credit	Buffer-to-Buffer Credit (Crédito entre búferes)
BBE	Background Block Error (error de bloque de fondo)
BBER	Background Block Error Ratio (relación de errores de bloque de fondo)
BER	Bit Error Rate (tasa de errores de bit)
BERT	Prueba de tasa de errores de bit
BIP	Bit-Interleaved Parity (paridad de intercalado de bits)
BIP-8	Bit-Interleaved Parity - 8 bits (paridad de intercalado de bits - 8 bits)
BIP-1536	Bit-Interleaved Parity - 1536 bits (paridad de intercalado de bits - 8 bits)
bps	Bits por segundo
Bps	Bytes por segundo
BW	Ancho de banda

С	Actual
C-VLAN	Customer - Virtual Local Area Network (Cliente - Red de área local virtual)
CAGE	Commerce And Government Entities (entidades gubernamentales y mercantiles)
CBR	Constant Bit Rate (velocidad de bits constante)
CE	Conformidad europea
CIR	Velocidad de información concertada
CLK	Clock (reloj)
COS	Clase de servicio
cr	Retorno de carro
csv	Valores separados por comas
CRC	Cyclic Redundancy Check (comprobación de redundancia cíclica)
CRC-7	Comprobación de redundancia cíclica en 7 bits
CRITIC	Crítico
CRITIC/ECP	Proceso de llamadas críticas y de emergencia
CS_CTL	Control específico de clase
CSV	Valores separados por comas

D

D_ID	Identificador de destino
dB	Decibelios
dBm	Decibelios - milivatios
DCC	Canal de comunicación de datos (D1, D2 y D3)

Glosario Lista de acrónimos

DF	Factor de retardo
DF_CTL	Control de campo de datos
DS	Servicios diferenciados
DS1	Digital Signal-level 1 (nivel de señal digital 3), 1,544 Mbps
DS3	Digital Signal-level 3 (nivel de señal digital 3), 44,736 Mbps
Dst	Destination (Destino)
DQDB	Distributed Queue Dual Bus (bus dual de colas distribuidas)
DSCP	Punto de código de servicios diferenciados
DTE	Equipo terminal de datos
DUT	Device Under Test (dispositivo en comprobación)
DVB	Emisión de vídeo digital
DWDM	Multiplexado denso en longitud de onda

Е

E-VLAN	Extended - Virtual Local Area Network (Extendida - Red de área local virtual)
E1	Estándar europeo para el nivel de transmisión digital 1 (2,048 Mbps)
EB	Bloque con errores
EC	Error Count (recuento de errores)
ECN	Notificación explícita de congestión
ECP	Procesamiento de llamadas de emergencia
ECT	Transporte con capacidad ECN
EFS	Error Free Second (segundos libres de error)

Glosario

Lista de acrónimos

EIR	Velocidad excesiva de información
EMC	Electromagnetic Compatibility (compatibilidad electromagnética)
ENIU	Unidad de interfaz de redes Ethernet
EOF	Fin de trama
ERDI-PCD	Enhanced Remote Defect Indication - Path Connectivity Defect (indicación de defecto remoto ampliado - defecto de conectividad de ruta)
ERDI-PPD	Enhanced Remote Defect Indication - Path Payload Defect (indicación de defecto remoto ampliado - defecto de carga útil de ruta)
ERDI-PSD	Enhanced Remote Defect Indication - Path Server Defect (indicación de defecto remoto ampliado - defecto de servidor de ruta)
ES	Errored Second (segundos con errores)
ESD	Electrostatic Discharge (descarga electrostática)
ESF	Extended Superframe (supertrama ampliada)
ESR	Errored Second Ratio (proporción de segundos con errores)
EUI	EXFO Universal Interfaces (interfaces universales de EXFO)
EXP	Experimental
EXT CLK	Reloj externo

Glosario

Lista de acrónimos

F

1	
F_CTL	Control de trama
FC	Canal de fibra
FCC	Federal Communications Commission (comisión federal de comunicaciones)
FCS	Frame Check Sequence (secuencia de comprobación de trama)
FDDI	Fiber Distributed Data Interface (interfaz de datos distribuidos por fibra)
fps	frame per second (tramas por segundo)

G

Gbps	Gigabits por segundo
GBps	Gigabytes por segundo
GFP	Generic Framing Procedure (procedimiento de entramado genérico)
GMT	Greenwich Mean Time (horario del meridiano de Greenwich)
GUA	Dirección IPv6 global

Н	Historial
HDB3	High Density Bipolar 3 Code (código bipolar 3 de alta densidad)
HDLC	High-Level Data Link Control (control de enlace de datos de alto nivel)
HDTV	Televisión de alta definición
HLP	Protocolo de capa superior
HTML	Lenguaje de marcado de hipertexto
Hz	Hercios

I

I-TAG	Ficha de instancia de servicio troncal
IC	Industry Canada
ICMP	Protocolo de control de mensajes de Internet
ID	Identificación
IEC	Comisión Electrotécnica Internacional
IEEE	Institute of Electrical & Electronics Engineers (instituto de ingenieros en electricidad y electrónica)
IFG	Inter Frame Gap (tiempo entre tramas)
IGMP	Protocolo de administración de grupos de Internet
IN	Entrada
ISM	In-Service Monitoring (supervisión en servicio)
IP	Protocolo de Internet
IPTV	Televisión sobre protocolo de Internet
IPv4	Protocolo de Internet versión 4

IPv6	Protocolo de Internet versión 6
ISO	International Organization for Standardization (organización internacional de normalización)
ITU/UIT	Unión Internacional de Telecomunicaciones

Κ

Kbps	Kilobits por segundo
KBps	Kilobytes por segundo
Kg	Kilogramo

L

L3	Сара 3
L4	Capa 4
LAN	Red de área local
LAPS	Link Access Procedure for SDH (procedimiento de
	acceso de enlace para SDH)
LCD-P	Pérdida de delineación de grupo de código - Ruta
LED	Light-Emitting Diode (diodo emisor de luz)
lb	Libra
lf	Salto de línea
LLA	Dirección IPv6 local de enlace
LLC	Control de enlace lógico
LOC	Loss Of Clock (pérdida de reloj)
LOF	Loss Of Frame (pérdida de trama)
LOH	Line Overhead (encabezado de línea)

Glosario

Lista de acrónimos

LOP	Loss Of Pointer (pérdida de indicador)
LOP-P	Loss Of Pointer - Path (pérdida de indicador - ruta)
LOPPS-L	Loss Of Pulse Per Second - Local (Pérdida de pulso por segundo - Local)
LOPPS-R	Loss Of Pulse Per Second - Remote (Pérdida de pulso por segundo - Remoto)
LOS	Loss Of Signal (pérdida de señal)
LSB	Least-Significant Bit (bit de menor significado)
LSR	Enrutador conmutador de etiquetas
LSS	Loss of Sequence Synchronization (pérdida de sincronización de secuencia)

М

m	Minuto
m	Metro
MAC	Media Access Control (control de acceso a medios)
Mb/s	Megabits por segundo
MBps	Megabytes por segundo
MDI	Índice de envío de medios
MHz	Megahercio
MLR	Relación de pérdida de medios
MMF	Multi-Mode Fiber (fibra multimodo)
MPEG	Grupo de expertos en películas
MPLS	Conmutación de etiquetas multiprotocolo

Lista de acrónimos

MPTS	Flujo de transporte multiprograma
ms	milisegundo
MS	Multiplex Section (sección multiplex)
MTU	Unidad de transmisión máxima

Ν

NATO/OTAN	Organización del Tratado del Atlántico Norte
Nº	Número
NE	Network Element (elemento de red)
nm	Nanómetro
ns	Nanosegundo

0

OAM	Operación, administración y gestión
ОН	Encabezado
OOS	Fuera de secuencia
OOSM	Out-Of-Service Monitoring (supervisión fuera de servicio)
SO	Sistema operativo
OUI	Identificador único organizativo
OUT	OUTput (salida)
OX_ID	Identificador del remitente

Р

P1	Puerto número 1
P2	Puerto número 2
PAT	Tabla de asociación de programas
PBB-TE	Puentes troncales del proveedor con ingeniería de tráfico
PC	Ordenador personal
РСВ	Placa de circuito integrado
РСР	Punto de código de prioridad
PCR	Referencia del reloj de programa
PCS	Subcapa de codificación física
PDU	Unidad de datos de carga útil
PHY	Equipo de capa física
PID	Identificador de paquetes
PLM-P	Payload Label Mismatch - Path (incompatibilidad de etiqueta de carga útil - ruta)
РМ	Performance Monitoring (supervisión de rendimiento)
РМ	Post Meridiem (periodo desde el mediodía hasta la medianoche)
РМТ	Tabla de mapa de programas
ppm	partes por millón
PPP	Protocolo punto a punto
PRBS	Pseudo Random Bit Sequence (secuencia de bits pseudoaleatoria)
PSP	Protocolo de secuencias de primitivas
PVID	Identificador de puerto VLAN

Glosario

Lista de acrónimos

Q

QoE

Calidad de la	experiencia
---------------	-------------

R

R_CTR	Control de enrutamiento
PDF	Formato de documento portátil
RDI	Remote Defect Indication test (comprobación de indicación de defecto remoto), sustituye a los nombres FERF y RAI anteriores
RDI-L	Remote Defect Indication - Line (indicación de defecto remoto - línea)
RDI-P	Remote Defect Indication - Path (indicación de defecto remoto - ruta)
REI	Remote Error Indication (indicación de error remoto)
REI-L	Remote Error Indication - Line (indicación de error remoto - línea)
REI-P	Remote Error Indication - Path (indicación de error remoto - ruta)
RFC	Solicitud de comentarios
RMA	Return Merchandise Authorization (autorización de mercancía de retorno)
RS	Regenerator Section (sección de regenerador)
RX	Recepción
RX_ID	Identificador del contestador

S	segundo
S_ID	Identificador de origen
S-VLAN	Service Provider - Virtual Local Area Network (Proveedor de servicio - Red de área local virtual)
SDH	Synchronous Digital Hierarchy (jerarquía digital sincrónica)
SDL	Enlace de datos simple
SDT	Service Disruption Time (Tiempo de interrupción del servicio)
SEF	Severely Errored Framing (entramado con errores graves)
SELV	Safety Extra Low Voltage (tensión extra baja de seguridad)
SEQ_ID	Identificador de secuencia
SEQ_CNT	Recuento de secuencia
SES	Severely Errored Second (segundo con errores graves)
SESR	Severely Errored Second Ratio (proporción de segundos con errores graves)
SF	Superframe (supertrama)
SFD	Iniciar delimitador de tramas
SFP	Small Form Factor Pluggable (módulo de forma pequeña insertable)
SI	Sistema internacional
SID	Identificador de instancia de servicio
SLA	Acuerdo de nivel de servicio
SMA	Conector A subminiatura

SMF	Single Mode Fiber (fibra monomodo)
SNAP	Punto de acceso a subred
SOF	Inicio de trama
SOH	Section Overhead (encabezado de sección)
SONET	Synchronous Optical NETwork (red óptica sincrónica)
SPE	Synchronous Payload Envelope (envuelta de carga útil sincrónica)
SPTS	Flujo de transporte de programa único
Src	Source (Origen)
STS	Señal de transporte sincrónico
STS-1	Synchronous Transport Signal-Level 1 (señal de transporte sincrónico de 12º nivel), 51,84 Mbps
STS-n	Señal de transporte sincrónico de nivel n
SUI	Interfaz de usuario Smart

Т

ТСР	Protocolo de control de transporte
TLV	Variable tipo longitud
TOS	Tipo de servicio
TPID	Tag Protocol ID (Identificador de protocolo de etiqueta)
TR	Informe técnico
TS	Flujo de transporte
TTL	Tiempo de vida
TV	Televisión
TX	Transmisión

U

UAS	Unavailable Second (segundo no disponible)
UDP	Protocolo de datagramas de usuario
UNEQ-P	Unequipped - Path (no equipado - ruta)
μs	microsegundo
EE. UU.	Estados Unidos
UTC	Universal Time Coordinated (tiempo universal coordinado)
UTP	Par cruzado no blindado

V

VID	Identificador VLAN
VLAN	Virtual Local Area Network (red de área local virtual)
VoD	Vídeo a la carta
VoIP	Voz a través de protocolo de Internet
VT	Virtual Tributary (tributario virtual)

Glosario

Lista de acrónimos

W

WAN	Red de área extensa
WDM	Multiplexado por división de onda
WIS	Subcapa de interfaz WAN
WWN	Nombre WWN

Х

	XFP	Módulo pequeño insertable de 10 Gigabit
--	-----	---

VLAN/B-VLAN

Valores de VID/B-VID especiales (norma IEEE 802.1Q-1998)

ID	Description (Descripción)
0	El ID nulo de VLAN indica que el encabezado de la etiqueta contiene sólo información sobre la prioridad de usuario; no hay ningún identificador de VLAN presente en la trama. El valor VID no debe configurarse como un PVID, configurarse en una entrada de la base de datos de filtrado o emplearse en ninguna operación de gestión.
1	Valor de PVID por defecto empleado para clasificar tramas en la entrada a través de un puerto puente. El valor de PVID se puede cambiar en cada puerto.
4095	Reservado para las implementaciones. Este valor de VID no debe configurarse como un PVID, configurarse en ninguna entrada de la base de datos de filtrado, emplearse en ninguna operación de gestión o transmitirse en un encabezado de etiqueta.

Prioridad de VLAN/B-VLAN

0	000 - Prioridad baja	4	100 - Prioridad alta
1	001 - Low Priority (001 - Prioridad baja)	5	101 - Prioridad alta
2	010 - Low Priority (010 - Prioridad baja)	6	110 - Prioridad alta
3	011 - Low Priority (011 - Prioridad baja)	7	111 - Prioridad alta

Etiquetas MPLS

Las etiquetas MPLS aparecen en la tabla siguiente.

Etiqueta	Description (Descripción)
0	Nulo explícito IPv4
1	Alerta del enrutador
2	Nulo explícito IPv6
3	Nulo implícito
14	Alerta de OAM
de 4 a 13 y 15	No asignado
de 16 a 1048575	ID de etiqueta
Etiqueta de señal de ruta (byte C2)

Indica el contenido de la STS SPE, incluido el estado de la carga útil asignada.

C2 (hex.)	Description (Descripción)	C2 (hex.)	
00	No equipado	16	Asignación de HDLC a través de SONET
01	Equipado - No específico	17	SDL con mezclador de sincronización automática
02	Modo VT flotante	18	Asignación de HDLC/LAPS
03	Modo VT bloqueado	19	SDL con uso de un mezclador de ajuste-reajuste
04	Asignación asincrónica para DS3	1A	Ethernet de 10 GBps (IEEE 802.3)
05	Asignación en desarrollo	1B	GFP
12	Asignación asincrónica para 140M (DS4NA)	CF	Reservado (entramado HDLC/PPP obsoleto)
13	Asignación para ATM	El a FC	STS-1 con 1 defecto de carga útil VTx, STS-1 con 2 defectos se carga útil VTx, [] STS-1 con 28 VTx o STS-n/nc con defectos de carga útil
14	Asignación para DQDB	FE	Señal de prueba, asignación específica UIT-T 0.181
15	Asignación asincrónica para FDDI	FF	Estado STS SPE AIS

C Ventanas emergentes

Nota: las siguientes ventanas emergentes están disponibles en toda la interfaz de usuario.

Ficha	Página
VLAN Configuration (Configuración VLAN)	566
PBB-TE Interface configuration (Configuración de la interfaz PBB-TE)	568
IPv4 Configuration (Configuración de IPv4)	570
<i>IPv6 Addresses Configuration (Configuración de direcciones IPv6)</i>	572
Service Profile Configuration (Configuración de perfil del servicio)	578
Framing Configuration (Configuración del entramado)	580
Frame Size Configuration (Configuración del tamaño de trama)	582
MAC Configuration (Configuración de MAC)	585
Ping	593
MPLS Configuration (Configuración de MPLS)	587
UDP Configuration (Configuración de UDP)	589
TCP Configuration (Configuración de TCP)	589
Advanced TOS/DS (TOS/DS avanzado)	590
Filter Selection (Selección de filtro)	595
Truncation Calculator (Calculadora de truncamiento)	597
Field Match Configuration (Configuración de la coincidencia de campos)	599
Triggered Frame Details (Detalles de trama disparada)	601
Data Capture Export (Exportación de captura de datos)	602

VLAN Configuration (Configuración VLAN)

- Enable VLAN (Permitir VLAN) aparece únicamente para la configuración del servicio EtherSAM; para el resto de casos, VLAN se activa una vez que aparece la ventana emergente VLAN Configuration (Configuración de VLAN). Si se selecciona Enable VLAN (Permitir VLAN), se podrá configurar la VLAN. La casilla de verificación VLAN no está activada por defecto.
- Stacked VLAN (VLAN apiladas): activa hasta 3 VLAN apiladas.
- Binary (binario): cuando está activado, muestra el ID de VLAN con formato binario. Esta configuración está desactivada por defecto.

VLAN Configuration		
Enable VLAN Stacked VLAN		E Binary
-VLAN #1	Priority	
Туре		
VLAN #2		
ID Type	Priority	
Drop Eligible		
VLAN #3	Priority	
Type		
		Close

- ▶ VLAN nº 1 (C-VLAN)/ nº 2 (S-VLAN)/ nº 3 (E-VLAN)
 - ➤ ID: introduzca el ID de VLAN. Las opciones van de 0 a 4095; consulte VLAN/B-VLAN en la página 561 para obtener más información.
 - Priority (prioridad): seleccione la prioridad de usuario de VLAN. Las opciones van de 0 a 7; consulte VLAN/B-VLAN en la página 561 para obtener más información. La configuración por defecto es 0 (000: prioridad baja).
 - ➤ Type (tipo): permite seleccionar el tipo de Ethernet de VLAN. Las opciones son 8100, 88A8, 9100, 9200 y 9300. La configuración por defecto es 8100 para VLAN nº 1 (C-VLAN), 88A8 para VLAN nº 2 (S-VLAN) y 9100 para VLAN nº 3 (E-VLAN).
 - Drop Eligible (Seleccionable para descarte): cuando la casilla de verificación Drop Eligible (Seleccionable para descarte) está activada (DEI = 1), estas tramas transmitidas se descartarán primero en la recepción cuando se produzca una congestión durante la prueba. Drop Eligible (Seleccionable para descarte) no está disponible cuando el tipo de VLAN es 8100. Esta configuración está desactivada por defecto.

PBB-TE Interface configuration (Configuración de la interfaz PBB-TE)

La ventana de la interfaz de PBB-TE permite configurar los parámetros de origen y destino para la función de prueba de red PBB-TE. Esta ventana emergente aparece cuando se hace clic en el botón **PBB-TE Config** (Configuración de PBB-TE).

B-MAC Source Address (Dirección B-MAC de origen): introduzca la dirección MAC troncal de origen. La dirección por defecto es la misma que la dirección MAC de origen.

PBB-TE Interface	
B-MAC Source Address	B-MAC Destination Address 00:00:00:00:00
I-TAG	B-VLAN
SID 256	ID
Priority 0 (000 - Low) 💌	Priority 0 (000 - Low)
Drop Eligible	🗖 Drop Eligible
0	Close

► B-MAC Destination Address

(Dirección B-MAC de destino): introduzca la dirección MAC troncal de destino. La configuración por defecto es **00:00:00:00:00:00**.

> I-TAG (etiqueta de instancia de servicio troncal)

SID (Identificador de instancia de servicio): introduzca el valor SID de I-TAG que identifica la instancia de servicio troncal del flujo seleccionado. Las opciones van de **0** a **16777215**. La configuración por defecto es **256**.

Priority (prioridad): seleccione el punto de código de prioridad (PCP) del usuario de B-VLAN. Las opciones van del **0** al **7**. La configuración por defecto es **0** (**000** - Low) [0 (0000 - baja)].

Drop Eligible (Seleccionable para descarte): cuando la casilla de verificación **Drop Eligible** (Seleccionable para descarte) está activada (DEI = 1), estas tramas transmitidas se descartarán primero en la recepción cuando se produzca una congestión durante la prueba. Esta configuración está desactivada por defecto.

► B-VLAN (red de área local virtual troncal)

ID: introduzca el identificador de B-VLAN. Las opciones van de **0** a **4095** (consulte *VLAN/B-VLAN* en la página 561 para obtener más información).

Priority (prioridad): seleccione el punto de código de prioridad (PCP) del usuario de B-VLAN. Las opciones van de **0** a **7** (consulte *VLAN/B-VLAN* en la página 561 para obtener más información). La configuración por defecto es **0** (**000** - Low) [0 (0000 - baja)].

Drop Eligible (Seleccionable para descarte): cuando la casilla de verificación **Drop Eligible** (Seleccionable para descarte) está activada (DEI = 1), estas tramas transmitidas se descartarán primero en la recepción cuando se produzca una congestión durante la prueba. Esta configuración está desactivada por defecto.

IPv4 Configuration (Configuración de IPv4)

Source (Origen)

- **Nota:** para el conjunto de pruebas duales EtherSAM, la dirección IP de origen sólo se puede configurar a través de Network (Red) en la página 268.
 - Automatic IP Address (Dirección IP automática): permite obtener una dirección IP de forma dinámica de un servidor DHCP (protocolo de configuración dinámica de host).

	Source Automatic IP Add IP Address 10.10.0.0	ress Subnet Mask 255.255.0.0	Destination IP Address 10.10.0.0 MAC Address Status Default Gateway	Ping Resolve MACAddress
--	---	------------------------------------	---	----------------------------

- ➤ IP Address (Dirección IP): introduzca la dirección IP del servicio seleccionado. La configuración por defecto es 10.10.x.x, donde x e y son respectivamente los dos bytes de menor importancia de la dirección MAC por defecto para el puerto.
- Subset Mask (Máscara de subred): introduzca la máscara de subred del servicio seleccionado. La configuración por defecto es 255.255.0.0.

Destination (Destino)

- ► IP Address (Dirección IP): introduzca la dirección IP de destino del servicio seleccionado.
- Botón Ping: Press Ping para iniciar automáticamente la utilidad de ping rápida para la dirección IP de destino del servicio mediante los parámetros de ping de Setup (Configuración) en la página 462. Consulte Ping en la página 593 para obtener más información.

- Default Gateway (Puerta de enlace por defecto): introduzca la dirección IP de la puerta de enlace por defecto. Enable Default Gateway (Permitir puerta de enlace por defecto) debe estar activado para habilitar el campo de la dirección IP de la puerta de enlace por defecto. La configuración por defecto es 0.0.0.
- Enable (permitir): permite activar Default Gateway (Puerta de enlace por defecto).
- Resolve MAC Address (Resolver dirección MAC): si se activa, enviará una solicitud a la red para recuperar la dirección MAC correspondiente a la dirección IP de destino seleccionada. Esta configuración está desactivada por defecto.

MAC Address Status (Estado de la dirección MAC): indica el estado de Resolve MAC address (Resolver dirección MAC). Los estados posibles son:

estado	Description (Descripción)			
	Resolve MAC address (Resolver dirección MAC) no está activada.			
Resolving (Resolviendo)	La dirección MAC se está resolviendo.			
Resolved (Resuelta)	La dirección MAC se ha resuelto.			
Failed (Fallo)	La dirección MAC no se puede resolver.			

IPv6 Addresses Configuration (Configuración de direcciones IPv6)

IPv6 Addresses Configu	iration	
Link-Local IPv6 Address		
Mode	Address	Status
Stateless Auto. 💌		Undefined
Global IPv6 Address		
Mode	Address	Status
Stateless Auto.		Undefined
	Prefix Mask	
	J	
Default Gateway Addres	s	
Mode	Address	Status
Automatic 💌	FE80:0000:0000:0000:0000:0000:0000	Undefined
Destination IPv6 Addres	s	
	Address	
	FE80:0000:0000:0000:0200:00FF:FE00:0000	Ping
	MAC Address Status	
	I Resolve MACAddres	s
0		Close

Nota: Los parámetros por defecto de la dirección IPv6 se configuran en IPv6 Test Preferences (Preferencias de prueba IPv6) en la página 434.

Dirección IPv6 local de enlace

La dirección IPv6 local de enlace (LLA) se utiliza paras la comunicación local entre vecinos conectados.

Mode (modo)

- Stateless Auto (Automático sin estado) permite generar de forma automática una dirección IPv6 basada en la dirección MAC. El modo Stateless Auto (Automático sin estado) está seleccionado por defecto.
- Static (Estático) permite introducir la dirección IP. Link-Local IPv6 Address (Dirección IPv6 local de enlace) debe comenzar con FE80. La dirección por defecto es FE80:0000:0000::[ID de la interfaz], donde [ID de la interfaz] se genera desde la dirección MAC de origen.

Dirección IPv6 global

La dirección IPv6 global (GUA) se utiliza para la comunicación global con hosts ubicados fuera de la subred y con vecinos conectados.

- ► Mode (modo)
 - None (ninguno) desconecta Global IPv6 address (dirección IPv6 global) y Default Gateway address (dirección de la puerta de enlace por defecto).
 - Stateless Auto (Automático sin estado) permite generar de forma automática una dirección IPv6 basada en la dirección MAC y el prefijo obtenido de los anuncios del enrutador. Si no ha obtenido ningún prefijo, no se generará la dirección global. El modo Stateless Auto (Automático sin estado) está seleccionado por defecto.
 - Static (Estático) permite introducir la dirección IP. La dirección por defecto es 2001::[ID de la interfaz], donde [ID de la interfaz] se genera desde la dirección MAC de origen.
- Interface ID Coupled (ID de interfaz acoplada): disponible cuando se selecciona Static Mode (Modo estático). Permite acoplar el ID de interfaz de la dirección global a la dirección local de enlace de origen. El ID de interfaz de la dirección global coincidirá con el ID de interfaz de la dirección local de enlace. La casilla de verificación Interface ID Coupled (ID de interfaz acoplado) está seleccionada por defecto.
- Prefix Mask (Máscara de prefijo): disponible cuando se selecciona Static Mode (Modo estático). Permite especificar un prefijo que defina la subred. Por ejemplo:

Dirección global	2001:0DB8:0001:0002:02AA:00FF:FE11:1111
Máscara de prefijo	FFFF:FFFF:FFFF:0000:0000:0000:0000:000
Prefijo correspondiente	2001:0DB8:0001

Nota: La máscara de prefijo debe ser una serie, de izquierda a derecha, de unos binarios consecutivos seguidos de ceros consecutivos.

Ventanas emergentes

IPv6 Addresses Configuration (Configuración de direcciones IPv6)

Link-Local/Global IPv6 Address Status (estado de dirección IPv6 local de enlace/global)

Mode (modo)	estado	Description (Descripción)			
Stateless Auto (Automático sin estado)		Indefinido			
	Generating (Generando)	Configuración automática de la dirección sin estado en curso.			
	Successful (Correcto)	Se ha generado la dirección IP y no se ha detectado ninguna duplicación.			
	Duplication Detected (Duplicación detectada)	Se ha generado la dirección IP pero se ha detectado una duplicación.			
	Failed (Fallo)	No se ha generado la dirección IP.			
Estático		Indefinido			
	DAD Checking (Comprobación de DAD)	Detección de direcciones duplicadas en curso.			
	No Duplication (Ninguna duplicación)	No se ha detectado ninguna duplicación.			
	Duplication Detected (Duplicación detectada)	Se ha detectado una duplicación. Tenga en cuenta que la dirección duplicada no está asignada a la interfaz y, por lo tanto, se asume (::) sin especificar.			

Dirección de la puerta de enlace por defecto

Default Gateway Address (Dirección de la puerta de enlace por defecto) se utiliza para enviar paquetes fuera de la subred. **Default Gateway Address** (Dirección de la puerta de enlace por defecto) no está disponible cuando la opción **Mode** (Modo) de la dirección IPv6 global está configurada en **None** (Ninguno).

- ► Mode (modo)
 - Automatic (automático) permite la selección automática de la puerta de enlace por defecto.
 - Static (Estático) permite introducir la dirección IP de la puerta de enlace por defecto. La dirección por defecto es FE80::.
- Default Gateway Address Status (Estado de dirección de la puerta de enlace por defecto)

estado	Description (Descripción)
	Indefinido
Checking (Comprobando)	Detección en curso para determinar si se puede conectar con la puerta de enlace por defecto.
Inaccesible	No se puede acceder a la puerta de enlace por defecto.
Reachable (Accesible)	Se puede acceder a la puerta de enlace por defecto.

Dirección IPv6 de destino

- **Nota:** la dirección IPv6 de destino sólo está disponible para la configuración de servicios EtherSAM.
 - ➤ IP Address (Dirección IP): introduzca la dirección IP de destino del servicio seleccionado.
 - Botón Ping: Press Ping para iniciar automáticamente la utilidad de ping rápida para la dirección IP de destino del servicio mediante los parámetros de ping de Setup (Configuración) en la página 462. Consulte Ping en la página 593 para obtener más información.
 - Resolve MAC Address (Resolver dirección MAC): si se activa, enviará una solicitud a la red para recuperar la dirección MAC correspondiente a la dirección IP de destino seleccionada. Esta configuración está desactivada por defecto.

MAC Address Status (Estado de la dirección MAC): indica el estado de Resolve MAC address (Resolver dirección MAC). Los estados posibles son:

estado	Description (Descripción)
	Resolve MAC address (Resolver dirección MAC) no está activada.
Resolving (Resolviendo)	La dirección MAC se está resolviendo.
Resolved (Resuelta)	La dirección MAC está resuelta y se confirma la accesibilidad del siguiente paso.
Inaccesible	La dirección MAC está resuelta y se confirma la inaccesibilidad del siguiente paso.
Failed (Fallo)	La dirección MAC no se puede resolver.

Copy Service Network Configuration (Copia de configuración de red de servicio)

Esta ventana emergente sólo está disponible con el caso de prueba **EtherSAM (Y.1564)**.

Copy Service Network Conf	iguration						×
Copy from Service No.	To the foll	owing S	ervice(s)				
1	Сору То	No.	Service Name	Сору То	No.	Service Name	
	Г	1	Stream 1		6	Stream 6	
		2	Stream 2		7	Stream 7	
		3	Stream 3		8	Stream 8	
		4	Stream 4		9	Stream 9	
		5	Stream 5		10	Stream 10	
0						OK Cancel	

Para copiar la configuración del servicio a uno o más servicios.

- **1.** En la lista **Copy from Service No** (Copiar desde el servicio n^o), seleccione el número de servicio desde el que se va a copiar la configuración.
- **2.** Seleccione las casillas de verificación de todos los servicios que heredarán la configuración del servicio seleccionado.
- **3.** Press **OK** (Aceptar) para confirmar la copia de configuración del servicio en todos los servicios seleccionados.

Service Profile Configuration (Configuración de perfil del servicio)

Esta ventana emergente sólo está disponible con el caso de prueba **EtherSAM (Y.1564)**.

El perfil del servicio permite seleccionar y configurar los perfiles de servicio Voice (Voz), Video (Vídeo) o Data (Datos). La configuración por defecto es Data (Datos). No hay ningún parámetro para configurar en Data (Datos).

Service Profile Co	nfiguration			
Service Profile				
🔍 C Voice	Voice Codec	Nb Calls	CIR	Mbps
	Video Codec	Nb Channels	CIR	
C Video		<u> </u>]	Mops
1010 0101 🖲 Data				
			Close	
0			Close]

Para Voice (Voz):

- Las opciones de Voice Codec (Códec de voz) son VoIP G.711, VoIP G.723.1 y VoIP G.729. La configuración por defecto es VoIP G.711.
- Nb Calls (Nº de llamadas) permite seleccionar el número equivalente de llamadas que se generarán para el flujo seleccionado. La configuración por defecto es 1.
- CIR indica la velocidad de información concertada en Mbps según el número de llamada seleccionado.

Para Video (Vídeo):

- Las opciones de Video Codec son SDTV (MPEG-2), HDTV (MPEG-2) y HDTV (MPEG-4). Sólo SDTV (MPEG-2) está disponible con la interfaz de 10 Mbps. La configuración por defecto es SDTV (MPEG-2).
- Nb Channels (Nº de canales) permite seleccionar el número equivalente de canales que se generarán para el flujo seleccionado. La configuración por defecto es 1.
- CIR indica la velocidad de información concertada en Mbps según el número de canal seleccionado.

Framing Configuration (Configuración del entramado)

Esta ventana emergente sólo está disponible con el caso de prueba **EtherSAM (Y.1564)**.

- Data Link (Enlace de datos): seleccione el tipo de enlace de datos (capa 2). Las opciones son Ethernet II y 802.3 SNAP. PBB-TE/Ethernet II y PBB-TE/802.3 SNAP también están disponibles al activar PBB-TE.
- Network (Red): seleccione el tipo de tráfico de red (capa 3). La configuración por defecto es IPv4 o IPv6 cuando MPLS no está activado y MPLS/IPv4 o MPLS/IPv6 cuando MPLS está activado. Las opciones son:

versión de IP de la interfaz	Red
IPv4	IPv4, MPLS/None ^a (MPLS/Ninguno), MPLS/IPv4 ^a y None (Ninguno).
IPv6	IPv6, MPLS/None ^a (MPLS/Ninguno), MPLS/IPv6 ^a y None (Ninguno).

- a. Sólo está disponible cuando MPLS está activado.
- **Nota:** cuando el perfil del flujo está configurado en voz o vídeo, la red se configura de forma automática en **IPv4** o **IPv6**.

➤ Transport (Transporte): seleccione el tipo de tráfico de transporte (capa 4). Las opciones son UDP, TCP y None (Ninguno). La configuración por defecto es UDP. El transporte se configura de forma automática en None (Ninguno) al establecer Network (Red) en None (Ninguno). El transporte se configura de forma automática en UDP al establecer el perfil del flujo en voz o vídeo.

Frame Size Configuration (Configuración del tamaño de trama)

Esta ventana emergente sólo está disponible con el caso de prueba **EtherSAM (Y.1564)**.

Frame Size Configuration			
Frame Size Type Fixed	Size	64	Bytes
0			Close

- Type (tipo): Para un perfil de Data (Datos), seleccione un tamaño de trama Fixed (Fijo) o Random (Aleatorio). El Type (Tipo) está configurado como Fixed (Fijo) para los perfiles de Video (Vídeo) y Voice (Voz). La configuración por defecto es Fixed (Fijo).
- ► Size (Tamaño):

Pata un tipo **Fixed** (Fijo), seleccione el tamaño de trama. El tamaño es de **1374** para **Video** (Vídeo) y de **138** para **Voice** (Voz), y se puede configurar para el perfil de servicio de **Data** (Datos). Las opciones son:

Mínimo	Máximo					
	10 Mbps	100/1000 Mbps y 10 Gbps				
64 ^a	10000	16000				

a. El tamaño mínimo de la trama se ajustará según la estructura de la trama y los componentes seleccionados.

La siguiente tabla muestra todos los componentes que pueden afectar al valor de tamaño mínimo.

Componente	Description (Descripción)
VLAN	4 bytes por VLAN (hasta 3 VLAN)
PBB-TE	18 bytes
B-VLAN	4 bytes
MPLS	4 bytes por etiqueta (hasta dos etiquetas)
UDP	8 bytes
ТСР	20 bytes
Encabezado de Ethernet	14 bytes
Encabezados de LLC y SNAP	8 bytes
IPv4	20 bytes
IPv6	40 bytes

Para un tipo **Random** (Aleatorio), el tamaño de trama oscila entre 64 y 1518 bytes. Sin embargo, el tamaño mínimo de la trama se ajustará de acuerdo con la estructura de la trama y los componentes seleccionados. Consulte la tabla anterior para obtener los componentes que pueden afectar al valor de tamaño mínimo de trama. El valor de tamaño máximo de trama también se ajusta para PBB-TE (+18 bytes), B-VLAN (+ 4 bytes) y VLAN (+ 4 bytes por VLAN).

Nota: el envío de tráfico con tamaño de trama >1518 en una red conmutada puede provocar la pérdida de todas estas tramas.

Frame Format Configuration (Configuración del formato de trama)

Esta ventana emergente sólo está disponible con el caso de prueba **EtherSAM (Y.1564)**.

Frame Format Co	nfiguration	
Frame Format		
OUI	EtherType	
	- 86DD	
1		
0		Close

Frame Format (Formato de trama)

- OUI está disponible cuando Data Link (Enlace de datos) está configurado en 802.3 SNAP y permite la selección del OUI. Las opciones son RFC1042, 802.1H y User Defined (Definido por el usuario) [cuando Network (Red) está configurado en None (Ninguno)].
- ► Al seleccionar **User Defined** (Definido por el usuario), introduzca un valor hexadecimal para **OUI** (de **000000** a **FFFFFF**).
- EtherType está disponible cuando Network (Red) está configurado en None (Ninguno) y permite introducir un valor hexadecimal de EtherType (de 0000 a FFFF).

MAC Configuration (Configuración de MAC)

Esta ventana emergente sólo está disponible con el caso de prueba **EtherSAM (Y.1564)**.

Source (Origen)

MAC Address (Dirección MAC): indica la dirección MAC del servicio seleccionado.

Nota: MAC Address (Dirección MAC) de origen sólo se puede configurar en Network (Red) en la página 268.

Destination (Destino)

MAC Address (Dirección MAC): introduzca la dirección MAC de destino del servicio seleccionado. La configuración por defecto es **FE:FE:FE:FE:FE:FE:FE**.

Nota: el campo MAC Address (Dirección MAC) de destino no está disponible si se activa Resolve MAC Address (Resolver dirección MAC).

Resolve MAC Address (Resolver dirección MAC): si se activa, enviará una solicitud a la red para recuperar la dirección MAC correspondiente a la dirección IP de destino seleccionada. Esta configuración está desactivada por defecto.

Ventanas emergentes

MAC Configuration (Configuración de MAC)

Status (estado): indica el estado de Resolve MAC address (Resolver dirección MAC). Los estados posibles son:

estado	Description (Descripción)
	Resolve MAC address (Resolver dirección MAC) no está activada.
Resolving (Resolviendo)	La dirección MAC se está resolviendo.
Resolved (Resuelta)	La dirección MAC está resuelta y se confirma la accesibilidad del siguiente paso para la IPv6.
Inaccesible	Sólo para IPv6, la dirección MAC está resuelta y no se puede acceder al siguiente paso.
Failed (Fallo)	La dirección MAC no se puede resolver.

MPLS Configuration (Configuración de MPLS)

Esta ventana emergente sólo está disponible con el caso de prueba **EtherSAM (Y.1564)**.

Permite la configuración de MPLS de servicios con hasta dos capas de etiquetas MPLS, COS/EXP y parámetros TTL.

Nota: MPLS tiene que estar activado durante la configuración de la prueba (consulte MPLS en la página 118) y la configuración de entramado de Network (Red) establecida en MPLS/IPv4, MPLS/IPv6 o MPLS/None (MPLS/Ninguno) para permitir el acceso a la configuración de MPLS para el servicio seleccionado.

- ► Stacked Headers (Encabezados apilados): permite la activación de hasta dos encabezados MPLS. La configuración por defecto es 1.
- Label (Etiqueta): permite seleccionar etiquetas MPLS TX (de 0 a 1048575). El valor por defecto de la etiqueta es 16.

Ventanas emergentes

MPLS Configuration (Configuración de MPLS)

- ➤ COS/EXP (clase de servicio/experimental): seleccione el tipo de servicio. El valor por defecto es 0 (0000 - Low) [0 (0000 - baja)].
 - 0 (000 Low) [0 (000 baja)] 1 (001 - Low) [1 (001 - baja)] 2 (010 - Low) [2 (010 - baja)] 3 (011 - Low) [3 (011 - baja)] 4 (100 - High) [6 (110 - alta)] 5 (101 - High) [6 (110 - alta)] 6 (110 - High) [6 (110 - alta)] 7 (111 - High) [7 (111 - alta)]
- ➤ TTL (Tiempo de vida): seleccione el valor de TTL. Las opciones van del 0 al 255. La configuración por defecto es 128.

UDP Configuration (Configuración de UDP)

Esta ventana emergente sólo está disponible con el caso de prueba **EtherSAM (Y.1564)**.

Permite seleccionar el número de puerto TCP de origen y destino.

UDP Configuration	
Source UDP Port 49184	Destination UDP Port 7
0	Close

Las opciones van de **0** a **65535**. La configuración por defecto es **49184** para el puerto de origen y **7 (echo)** [7 (eco)] para el puerto de destino.

TCP Configuration (Configuración de TCP)

Esta ventana emergente sólo está disponible con el caso de prueba **EtherSAM (Y.1564)**.

Permite seleccionar el número de puerto TCP de origen y destino.

Las opciones van de **0** a **65535**. La configuración por defecto es **49184** para el puerto de origen y **7 (echo)** [7 (eco)] para el puerto de destino.

Advanced TOS/DS (TOS/DS avanzado)

Permitir servicios diferenciados

Permite activar los servicios diferenciados (DS). Esta configuración está desactivada por defecto.

Advanced TOS/DS Configuration	×
Enable Differentiated Services	
DS	
DSCP Codepoints	User Defined Codes
ECN	
-	
TOS	
Precedence	Delay
000 (Routine)	Normal
Throughout	Delishiku.
in roughput	Reliability
Normai	Normai
Monetary Cost	Reserved Bit
Normal	0 🔻
0	ОК

DS

- **Nota:** DS está disponible cuando Enable Differentiated Services (Permitir servicios diferenciados) está activado.
 - DSCP Codepoints (Puntos de código DSCP): seleccione los puntos de código DSCP. Las opciones son:
 000000 (CS0), 001000 (CS1), 010000 (CS2), 011000 (CS3), 100000 (CS4), 101000 (CS5), 110000 (CS6), 111000 (CS7), 001010 (AF11), 001100 (AF12), 001110 (AF13), 010010 (AF21), 010100 (AF22), 010110 (AF23), 011010 (AF31), 011100 (AF32), 011110 (AF33), 100010 (AF41), 100100 (AF42), 100110 (AF43), 101110 (EF) y User Defined (Definido por el usuario). La configuración por defecto es 000000 (CS0).
 - User Defined Codes (Códigos definidos por el usuario): introduzca un código definido por el usuario. Las opciones son hexadecimales y van de 00 a 3F. La configuración por defecto es 00. User Defined Codes (códigos definidos por el usuario) está disponible cuando se ha seleccionado User Defined (definido por el usuario) en DSCP codepoints (códigos de puntos DSCP).
 - ➤ ECN: seleccione el campo ECN. Las opciones son 00 (Not-ECT) [00 (no ECT)], 01 (ECT-1), 10 (ECT 0) y 11 (CE). La configuración por defecto es 00 (Not-ECT) [00 (no ECT)].

TOS

- **Nota:** TOS está disponible cuando **Enable Differentiated Services** (Permitir servicios diferenciados) no está activado.
 - Precedence (Precedencia): seleccione el valor de Precedence (Precedencia). Las opciones son:
 - 000 (Routine) [000 (rutina)] 001 (Priority) [001 (prioridad)] 010 (Immediate) [010 (inmediato)] 011 (Flash) 100 (Flash Override) [100 (anulación de flash)] 101 (CRITIC/ECP) [101 (CRÍTICO/ECP)] 110 (Internet Control) [110 (control de Internet)] 111 (Network Control) [111 (control de red)]

La configuración por defecto es 000 (Routine) [000 (rutina)].

- ➤ Throughput (Caudal de tráfico): permite seleccionar el nivel de caudal de tráfico. Las opciones son Normal y High (Alto). La configuración por defecto es Normal.
- Monetary Cost (Coste monetario): permite seleccionar el nivel del coste monetario. Las opciones son Normal y Low (Bajo). El valor por defecto es Normal.
- Delay (Retardo): permite seleccionar el nivel de retardo. Las opciones son Normal y Low (Bajo). La configuración por defecto es Normal.
- Reliability (Fiabilidad): permite seleccionar el nivel de fiabilidad. Las opciones son Normal y High (Alto). La configuración por defecto es Normal.
- Reserved Bit (Bit reservado): permite seleccionar el valor del bit reservado. Las opciones son 0 y 1. La configuración por defecto es 0.

Ping

El ping se usa para determinar si se puede acceder a algún dispositivo de la red.

Nota: El botón Ping no está disponible cuando está en curso una prueba RFC
 2544 o cuando una instrucción Ping o Trace Route (ruta de la traza) está ejecutándose (consulte Ping Configuration (Configuración de ping) en la página 461).

Pin	g						×	IPv4	
ſ	Results					1			
	#	Status	Replied From	Bytes Time (ms)	T			
					Pin	g			×
					F	Results			
						#	Status	Reply Details	:
								-	-11
								1	
					- 1				-
	Statio	etice							
	TX	(packets)	-						
	RX	(packets)							
	Lo	ist (%) nimum Davied Trip Time (n							
	Ma	aximum Round Trip Time (n	ns)			Stati	stics (packets)		
	Av	erage Round Trip Time (m	s)			RX	(packets)	-	
	_					Lo	st (%)	-	
l	0					Mi	nimum Round Trip Time	: (ms)	
-						Ma	aximum Round Trip Time	e (ms)	
			ID	v6		AV	erage Round Trip Time	(ms)	
			IF	v0		0		ОК	

Press TEST (PRUEBA), Stream Gen (Generación de flujo), IP y Ping.

- Results (Resultados): Consulte Ping Results (Resultados de ping) en la página 464 para obtener más información.
- ► **Statistics** (Estadísticas): Consulte *Estadísticas* en la página 472 para obtener más información.
- ➤ OK (aceptar): Press OK (Aceptar) para salir de la ventana Ping/Trace Route (Ruta de traza).

Ping

Configuration (configuración)

- Timeout (ms) (Tiempo de espera en ms): introduzca el tiempo máximo permitido entre un eco ICMP y la respuesta. Las opciones van de 200 ms a 10000 ms. La configuración por defecto es 4000 ms.
- Delay (ms) (Retardo en ms): disponible sólo para ping. Introduzca el retardo entre cada intento (PING). Las opciones van de 100 a 10000 ms. La configuración por defecto es 1000 ms.
- Data Size (Bytes) (Tamaño de los datos en bytes): disponible sólo para ping. Introduzca el tamaño del búfer que se enviará al dispositivo de red que se desee detectar. Las opciones van de 0 a 1472 bytes. El valor por defecto es 32 bytes.
- Time To Live (TTL) [Tiempo de vida (TTL)] para IPv4 HOP Limit (TTL) [Límite HOP (TTL)] para IPv6 Introduzca el número máximo de rutas de clase alta que puede atravesar el paquete. Las opciones van del 1 al 255. La configuración por defecto es 128.
- Flow Label (Etiqueta de flujo) (sólo IPv6): introduzca el número de Flow Label (Etiqueta de flujo) que se utilizará para identificar una serie de paquetes relacionados de un origen a un destino. Las opciones van del 0 al 1048575. La configuración por defecto es 0.

- Attempts (intentos) y Continuous (continuo): introduzca el número de intentos que se van a llevar a cabo para conectarse con el equipo de red o press Continuous (Continuo) para intentarlo de forma indefinida. Las opciones van del 1 al 100. La configuración por defecto es 4 y Continuous (Continuo) está desactivado.
- ➤ Type Of Service (TOS) [tipo de servicio (TOS)] para IPv4 Traffic Class (TOS) [Clase de tráfico (TOS)] para IPv6 Introduzca el tipo de servicio. Las opciones van de 00 a FF. La configuración por defecto es 00.
- Binary (binario): active Binary (Binario) para establecer el campo TOS en modo binario. De lo contrario, el campo TOS se hallará en modo hexadecimal. Esta configuración está desactivada por defecto.

Configuration (configuración)

- Timeout (ms) (Tiempo de espera en ms): introduzca el tiempo máximo permitido entre un eco ICMP y la respuesta en cada salto. Las opciones van de 200 ms a 10000 ms. La configuración por defecto es 4000 ms.
- Max Hop Count (Recuento máximo de saltos): introduzca el número máximo de dispositivos de red que puede atravesar el paquete. Las opciones van del 1 al 255. La configuración por defecto es 128.

Filter Selection (Selección de filtro)

Esta ventana emergente sólo está disponible en la ficha **Traffic Analyzer - Capture** (Analizador de tráfico - Captura).

Permite seleccionar el número de filtro que se usará para seleccionar las tramas que se guardarán en el búfer.

Ping

Filter Selection	
Select from available filte	ers:
C No. 1 - Enabled	🔿 No. 6 - Disabled
C No. 2 - Enabled	🔿 No. 7 - Disabled
C No. 3 - Disabled	🖸 No. 8 - Disabled
C No. 4 - Disabled	C No. 9 - Disabled
C No. 5 - Disabled	🔿 No. 10 - Disabled
 None To configure and enable: configuration page. 	filters, go to Filters
@	Close

Sólo pueden seleccionarse los filtros activados. Para configurar y activar los filtros, consulte *Traffic Filters (Filtros de tráfico)* en la página 170 o *Traffic Filter Configuration (Configuración de filtros de tráfico)* en la página 176.

None (Ninguno) indica que no hay ningún filtro seleccionado, lo que significa que se capturarán todas las tramas recibidas.

Truncation Calculator (Calculadora de truncamiento)

Esta ventana emergente sólo está disponible en la ficha **Traffic Analyzer - Capture** (Analizador de tráfico - Captura).

Permite determinar fácilmente en qué byte se truncará la trama que se capturará mediante la selección de los componentes de encabezado de trama deseados.

Truncation Calculator			
Header Layer IP Version Encapsulation	Layer2 (Ethernet) 💌	+	14
✓ VLAN Number of VLANs ✓ MPLS Number of Labels ✓ PBB-TE		+ + +	0 0 0
	Additional Payload (bytes)	+	0
	Total Number Of Bytes	-	14
0	ОК		Cancel

- Header Layer (Trama de encabezado): seleccione el nivel de capa de encabezado. Las opciones son Layer 2 (Ethernet) [Capa 2 (Ethernet)], Layer 3 (IP) [Capa 3 (IP)] y Layer 4 (TCP/UDP) [Capa 4 (TCP/UDP)].
- ➤ IP Version (Versión de IP): seleccione la versión de IP. Las opciones son IPv4 e IPv6.

Ventanas emergentes

Truncation Calculator (Calculadora de truncamiento)

- **Encapsulation** (Encapsulación):
 - ➤ VLAN: también puede seleccionar la casilla de verificación VLAN y seleccionar el número de VLAN (de 1 a 3 VLAN).
 - ► MPLS: también puede seleccionar la casilla de verificación MPLS y luego el número de etiquetas (etiquetas 1 o 2).
 - ➤ PBB-TE: como opción, seleccione la casilla de verificación PBB-TE.
- Additional Payload (bytes) (Carga útil adicional (bytes): asimismo, puede seleccionar el número de bytes de la carga útil adicionales (de 1 a 900 bytes).
- Total Number of Bytes (Número total de bytes): indica el número de bytes para los parámetros de trama seleccionados. Este valor se usará como longitud de trama truncada; consulte Frame Length (Longitud de trama) en la página 182.
Field Match Configuration (Configuración de la coincidencia de campos)

Esta ventana emergente sólo está disponible en la ficha **Traffic Analyzer - Capture** (Analizador de tráfico - Captura).

Permite definir los criterios del disparador que se usarán para iniciar automáticamente la captura cuando una trama recibida coincida con los criterios del disparador.

Fi	ield I	Match	Trigg	er						
	Filt	er Conf	ìgurati	on						
		(Not	Filter		Value	Mask)	Oper.	
		Ψ.		None	<u> </u>			V	AND	Y
	Γ	Y			Ŧ			Y	AND	~
	Γ	$\overline{\mathbf{v}}$	Г		7			v	AND	~
	Γ	Y	Г		v			Y		
[0								ок	

Filter Configuration (Configuración de filtro)

"(" y ")": los paréntesis de apertura y cierre pueden ser útiles para controlar la precedencia de operandos cuando se utilizan más de dos. Sólo se admite un nivel de paréntesis. Cuando no se utilizan paréntesis, un **AND** (Y) lógico tendrá precedencia sobre un **OR** (O) lógico.

Not (No): si se activa, se añade el operador lógico de negación (no igual) para el filtro de operandos definido a la derecha.

Filter (Filtro): permite seleccionar el filtro que se va a utilizar. La configuración por defecto es **None** (ninguno). Consulte *Filtro* en la página 171 para ver la lista de filtros.

Value (Valor): permite introducir el valor asociado al filtro seleccionado. Consulte *Overview (Resumen)* en la página 198 para obtener más información sobre posibles valores.

Mask (Máscara): permite aplicar una máscara al valor del filtro definido. Una máscara de bit de **1** indica que se compara el bit que corresponde al valor para la coincidencia. Una máscara de bit de **0** indica que el bit que corresponde al valor se ignora.

- Para valores binarios, introduzca el valor de la máscara con formato binario.
- Para valores decimales, introduzca el valor de la máscara con formato hexadecimal.
- Para el campo de dirección IP, introduzca la máscara con formato decimal.
- Para la dirección MAC, introduzca el valor de la máscara con formato hexadecimal.

Oper. (Operador): permite seleccionar el operador lógico [**AND** (Y) o **OR** (O)] entre dos operandos.

Triggered Frame Details (Detalles de trama disparada)

Esta ventana emergente sólo está disponible en la ficha **Traffic Analyzer - Capture** (Analizador de tráfico - Captura).

Este elemento emergente indica los detalles de la trama de disparador capturada. La trama disparada corresponde a la primera trama recibida que coincida con el filtro y la configuración del disparador (consulte *Disparador* en la página 183).

Tri	ggered Frame	Descriptor	
1	Frame Number		
	Item	Source	Destination
	MAC Address		
	IP Address		
	Port		
(0		Close

- ► Frame Number (Número de trama) indica la posición de trama disparada en el búfer.
- Las direcciones de origen y de destino MAC/IP/UDP/TCP de entramado se muestran en una tabla.

Data Capture Export (Exportación de captura de datos)

Esta ventana emergente sólo está disponible en la ficha **Traffic Analyzer - Capture** (Analizador de tráfico - Captura).

Permite exportar la captura de datos en un formato de archivo .pcap y ver el archivo mediante **Wireshark**.

Data Capture Export				
File Name				
\Capture0_2010082415	2949.pcap			Browse
└ View File After Genera	tion		Generate	& Save
	Progress			
		0%		
0			Cancel	Close

Save In (Guardar en): permite seleccionar la carpeta en la que guardar el archivo de captura.

Dicho archivo de captura se guarda por defecto en la carpeta siguiente:

d: |ToolBox|User Files| < Product Name > |Capture Data..

View Report After Generation (Ver informe después de la generación): permite mostrar el informe una vez generado a través de la aplicación Wireshark. La casilla de verificación View File After Generation (Ver archivo después de la generación) no está seleccionada por defecto.

► Generate & Save (Generar y guardar)

Permite generar y guardar los datos de captura. El nombre del archivo capturado se selecciona automáticamente y contiene la fecha y la hora de la captura. La captura de un archivo de más de 100 Mbytes se dividirá en varios archivos.

Al hacer clic en el botón **Cancel** (Cancelar), se detiene la generación de la captura. Se guardarán los datos capturados que ya estén procesados.

Nota: El proceso de exportación puede tardar varios minutos.

Data Capture Export (Exportación de captura de datos)

Una vez generado, el archivo de captura se abre automáticamente en Wireshark al seleccionar la casilla de verificación **View File After Generation** (Ver archivo después de la generación).

El informe del archivo de captura también puede abrirse manualmente en Wireshark de la forma habitual mediante el Explorador de Windows.

📶 Captu	re1_201	10082	417390	5.pcap	- Wire	esharl	k												_		×
<u>File E</u> di	t <u>V</u> iew	Go	Captur	e <u>A</u> nal	yze	<u>S</u> tatist	ics 1	Teleph	on <u>y</u>	<u>T</u> ools	<u>H</u> elp)									
	04 (¥ E	3	×	P	8	0	4	¢		7	⊉ 🔳		Ð,	Q	11		¥	•	
Filter:												•	Expression	Clear	App	y					
No	Time						So	urce					Destination				F	Protocol		Info	^
	1 0.0	00000	0				10	.10.	58.	241			10.10.5	8.24	1		E	ECHO		Req	
	2 0.0	0000	9				10	.10.	58.	241			10.10.5	8.241	1		E	CHO		Reg	
	3 0.0	0001	9				10	.10.	58.	241			10.10.5	8.241	1		E	CHO	1	Reg	
	4 0.0	0002	8				10	.10.	58.	241			10.10.5	8.241	1		E	CHO		Reg	
	5 0.0	00037	7				10	.10.	58.	241			10.10.5	8.241	1		E	CHO		Reg	
	6 0.0	0004	6				10	.10.	58.	241			10.10.5	8.241	1		E	CHO	1	Req	
	7 0.0	0005	6				10	.10.	58.	241			10.10.5	8.241	1		E	CHO		Req	
	8 0.0	0006	5				10	.10.	58.	241			10.10.5	8.241	1		E	CHO	1	Req	
	9 0.0	00074	4				10	.10.	58.	241			10.10.5	8.241	1		E	CHO		Req	
1	0 0.0	0008	3				10	.10.	58.	241			10.10.5	8.241	1		E	CHO	1	Req	
1	1 0.0	0009	3				10	.10.	58.	241			10.10.5	8.241	1		E	CHO		Req	
1	2 0.0	0010	2				10	.10.	58.	241			10.10.5	8.241	1		E	CHO	1	Req	
1	3 0.0	00111	1				10	.10.	58.	241			10.10.5	8.241	1		E	CHO	- I	Req	
1	4 0.0	00120	0				10	.10.	58.	241			10.10.5	8.241	1		E	CHO		Req	
1	5 0.0	00130	0				10	.10.	58.	241			10.10.5	8.241	1		E	CHO	1	Req	
1	6 0.0	00139	9				10	.10.	58.	241			10.10.5	8.241	1		E	CHO		Req	
1	7 0.0	0014	9				10	.10.	58.	241			10.10.5	8.241	1		F	CHO		Rea.	•
																				►	
🕀 Fram	e 1 (96 b	ytes (on wi	re,	96 b	ytes	cap	otur	ed)											^
🗄 Ethe	rnet	II, 3	Src: /	Avanta	asN_	08:3	a:f1	(00):03	:01:	08:3	Ba:f	1), Dst:	fe:f	e:fe	:fe:	fe:	fe (f	e:fe	e:fe	
🗄 Inte	rnet	Prot	ocol,	Src:	10.	10.5	8.24	1 (1	0.1	0.58	.241	.),	Dst: 10.1	.0.58	.241	(10	.10	. 58.2	41)		-1
٩																				Þ	
0000 1	fe fe	fe f	e fe	fe 00	03	01	08	3a f	1 08	3 00	45	00				Ε.				_	1
0010 (00 4e	00 0	00 00	00 80	11	b0	a9	0a 0	a 3a	a fi	0a	0a	. N							1	-
0020	3a f1	c0 2	20 00	07 00	3a	dc	8f	ef 4	4 00) 12	45	58		:	D	EX					
0030 4	16 4f	69 7	0 64	76 15	6 6	h3	ed	ed 4	6 01	F 8/	00	00	Foindy		F						

Índice

	509
% de CIR	400
% total	164

10G FTHFRNFT	
1310 nm	16
1550 nm	16
802.3 SNAP 82, 101, 110, 120, 124, 127,	221,
386	
802.3ah	. 473
850 nm	16

Α

A1	289
A2	289
Abandono	323
absoluto	429
Aceptar	. 62
Acoplado	350
Acoplar al inicio/permitir TX 144, 4	431
acrónimo	545
Activar la negociación automática	259
Activo	312
Actual Frequency (bps) (frecuencia real en b	ops)
249, 253	
actualizar lista	476
ADC	473
AIS	449
AIS-L	286
AIS-P	286
Alarma de frecuencia	396
alarmas 157, 1	190
alimentación de CA	. 47
alineación	158
Añadir	314

Añadir automáticamente
Añadir con unión IGMP automática
Añadir manualmente
Análisis de caudal de tráfico TCP413
Analizador de tramas139, 301
Ancho de banda 162, 164, 166, 175, 180, 216
Ancho de banda de RX 195
Ancho de banda de TX 195
aplicar a la configuración del puerto 280
aplicar a parte inferior 61
aplicar a parte superior61
archivo457
AS
Asimétrico 275
Asimétrico y simétrico275
atenuador 17, 24, 31, 32
Atrás71
Audio con error de PID 333
Automático 276, 575
automático 283
autorización de devolución de compra (RMA). 532
avanzar página 56
Average RX Rate (Velocidad promedio de RX). 401
ayuda

В

B1	283, 285, 289
B2	283, 285, 289
ВЗ	283, 285, 290
Back-to-Back (Transmisión recípro	oca) 90, 96,
358, 502	
battery (batería)	
BB Credit anunciado	264, 439
BB Credit disponible	
BB Credit estimado	
BBE	
BBER	425
BERT	
Binario 204, 230, 288, 293, 4	463, 566, 595

Índice

bit reservado	592
bloque	158, 191
BNC	x
Borrar	71, 317
botón	
Aceptar	62
Añadir	
Apply (Aplicar)	443
Atrás	71
ayuda	
Borrar	
Cancelar	
Cargar	
Close (cerrar)	53
Configuración	
Detener	
Editar	325
Enviar	
Establecer	
Favoritos	
Generar	
Guard	
IGMP	320
Iniciar	
Láser	
Next (siguiente)	71
Nuevo	
ping	228, 570, 576
Por defecto	
Report	
Restablecer	
Restablecer historial	45
Terminar	
Botón de inicio de sesión	133, 266
Broadcast (Difusión)	
Bucle invertido 17, 24,	31, 478, 480
bucle invertido	
Bucle invertido Smart	
B-VID	
B-VLAN	220, 561, 569
ID	220, 569
Prioridad	220, 569
	•

Prioridad de B-VLAN	. 561
Seleccionable para descarte 220,	569
BW (%)	. 311
bytes	. 466
Bytes de RX	. 195
Bytes de TX	. 195

С

C55,	419
C2	. 290
cable	. 541
Cable Ethernet cruzado	. 248
calibración	
certificado	. 522
intervalo	. 522
Canal de fibra	. 147
Cancelar	62
Cancelar toda la selección . 305, 315, 318,	323
Cantidad 188, 189,	283
cantidad	. 348
Capa 357, 362, 377, 501,	503
Capa 1	. 503
Capa 2,3	501
Capa 3357, 362, 377,	501
Capa de trama 1 de FC	. 132
Capa de trama 2 de FC	. 132
Capa de trama de Ethernet	. 107
Capa de trama de Ethernet 2	. 108
Capas superiores	. 165
Capturar	. 181
Cargar	457
cargar clave	. 443
Caudal de tráfico de RX	. 166
Ancho de banda	. 166
Utilización	. 166
Velocidad de tramas	. 166
Caudal de tráfico de RX de PBB-TE	. 164
Ancho de banda	. 164
Utilización	. 164
Velocidad de tramas	164
CE	ix, xi

centros de asistencia	534
ciclo de servicio	216
CIR 388 391 5	78 579
Class 1	,,0,5,5
	·X
clase 1 15	5, 23, 30
Clase 1Mx, 5, 15	i, 23, 30
Clase de tráfico 4	63, 595
Clase de tráfico (TOS/DS)	228
clave de opción de software	443
Close (cerrar)	50, 53
Códec de vídeo	579
codificación de línea	449
códigos definidos por el usuario	591
colisión	150
colisión oxosiva	150
colisión tardía	150
Completada	139
Compreheción de enceherado ID	165
	105
Comprobación de TCP	165
Comprobación de UDP	165
Conectado	384
Conectar	93
conector LC	15
conexión	
10/100/1000 Mbps 12	20 27
100/1000 Mbps	12 20
100/1000 Mbps	15, 20
1000Base-112	2, 20, 27
100Base-T 12	2, 20, 27
100Base-TX	12
10Base-T 12	2, 20, 27
conexión de señal	11
Configuración	71
configuración	443
Configuración de 802.3ah	479
Configuración de ADC	475
Configuración de caudal de tráfico TCE	408
411	100,
Configuración de ENIU	473
configuración de fichas	50
Configuración de filtro 171 1	
	77,000
	77,000
Mascara 174, 1	//, 600

Operador	177,	600
Valor174,	177,	600
Configuración de filtros de tráfico	(filtro	o de
tráfico avanzado)		176
Configuración de IP		270
Configuración de IPv6 81, 82, 101,	110,	119
Configuración de la conexión TCP		409
Configuración de la interfaz	258,	263
configuración de la interfaz	432,	439
configuración de la prueba69	, 70,	139
Configuración de MAC	269,	585
Configuración de MPLS	225,	587
Configuración de pérdida de tramas.		363
Configuración de perfil del servicio		578
Configuración de ping		461
Configuración de ruta de traza		468
Configuración de TCP		589
Configuración de trama	209,	231
Configuración de transmisión recípro	ca	358
Configuración de UDP		589
Configuración del entramado		580
Configuración del formato de trama.		584
configuración del informe		52
Configuración del reloj		140
Configuración del tamaño de trama		582
Configuración del temporizador		141
configuración global	431,	438
configurar todo como		371
Configuration Test (Prueba de configu	uracić	ón).
76, 91, 381, 400		-
Configuration Test Overview (Resum	nen d	le la
prueba de configuración)		393
Conjuntos de pruebas duales7	7, 85	, 97
Continuo 154, 155, 188, 189, 215, 2	284, 2	95,
463, 595		
continuo		214
Control de flujo 167, 261,	275,	280
Control de flujo búfer a búfer		267
Control remoto		454
Controlados	306,	313
Controles de prueba	, ,	45
convenciones, seguridad		3

copiar de la prueba de caudal de tráfico 371
Copiar de medición 501, 503, 505, 507
Copiar desde el servicio nº 577
copiar MAC a flujo 477
Copiar servicio
Correcto 137
Cortar y enviar
COS/EXP 225, 588
coste monetario 592
Criterios permitidos 500, 502, 504, 506
CS_CTL 236

D

D ID	235
D1	
D2	
D3	289
Data Capture Export (Exportació	on de captura de
datos)	602
Data Link (Enlace de datos) 204	, 209, 386, 580
date (fecha)	47, 149
Datos	578
de D4 a D12	289
Default Gateway Address Sta	tus (Estado de
dirección de la puerta	de enlace por
defecto)	575
defecto local	. 153, 157, 190
Defecto remoto 153	, 157, 190, 280
Desactivado	137
Desactivar unión automática	323
Desconectar	93
Desconexión inadvertida	481
descripción del miembro	460
descripción del módulo	440
description	440
Descubiertos	306
Desde la lista controlada	318
Desde mapa de alias	315
Destination (Destino) 222	, 345, 570, 585
destino	228
Destino de difusión	92

Destino de WWN 267
Desviación de frecuencia 249, 251, 253, 257,
450
desviación máxima511
desviación mínima511
desviación negativa máxima
desviación positiva máxima 251, 257
Detener
devoluciones de equipos532
DF_CTL
Diario lleno 146
Dirección
Dirección B-MAC
Dirección B-MAC de destino 219, 568
Dirección B-MAC de origen
Dirección de flujo
Dirección de la puerta de enlace por defecto
575
Dirección IP 81, 82, 101, 110, 119, 124, 127,
227, 228, 270, 345, 432, 462, 469,
570, 576
Dirección IP automática 81, 82, 89, 101, 110,
119, 124, 127, 270, 570
Dirección IP de destino309, 315, 317, 318, 322
Dirección IP de destino a 315, 318
Dirección IP de destino desde
Dirección IP de escucha 409
Dirección IP remota 409
Dirección IPv6 de destino576
Dirección IPv6 global573
Dirección IPv6 local de enlace572
Dirección MAC 222, 269, 475, 477, 585
Dirección MAC de destino 169, 480, 585
Dirección MAC de origen 222, 585
discordancia "0" 297
discordancia "1" 297
Disponible
distribución
DS591
DUPLEX 12, 14, 20, 27
Dúplex
Duración142, 149, 345

Duración d	de pruebas	secundarias	383
Duración d	del usuario		142

Ε

E1E2EBECECNedición de la línea de la secuencia de c	289 289 423 423 591 comandos
Editar	325, 457
EE. UU	428
EFS	423
EIR	388, 391
ejecutar	462, 469
Elementos de ficha convencionales CF	₹ 55
En curso	139, 265
enano	159
Encabezado	52
encabezado de línea	289
encabezado de ruta	290
encabezado de sección	289
Encabezado del informe	52
Encabezado FC	234
CS_CTL	236
D_ID	235
DF_CTL	239
F_CTL	237
OX_ID	239
PARAM	239
R_CTL	234
Restablecer a valores por defecto .	239
RX_ID	239
S_ID	236
SEQ_CNT	239
SEQ_ID	239
Тіро	236
Encabezados apilados	225, 587
Encapsulación	344
ENIU seleccionada	

Enlace	136,	262,	279,	287
Enlace de puerto				136
Entrada de intervalo manua	al		315,	318
Entrada manual			315,	318
Entramado		73,	386,	449
Enviar45,	168,	188,	189,	283
envío a EXFO				532
EOF				232
ERDI-PCD				283
ERDI-PPD			283,	287
ERDI-PSD			282,	287
Error de bit		295,	297,	515
Error de byte de sincronizad	ción .			332
Error de contador de contir	nuida	d		333
Error de PID				334
Error2 de PAT			332,	334
Error2 de PMT			333,	334
Errores				180
Errores RFC 2544			158,	191
ES				423
ESD				7
especificaciones del produc	:to			526
especificaciones técnicas				526
ESR				425
Establecer				46
Estadísticas		423,	467,	472
Estadísticas de 802.3ah				482
Estadísticas de caudal de tr	áfico	TCP.		413
Estadísticas de descubrimie	nto (DAM.		481
Estadísticas de Ethernet				160
Estadísticas de FC				194
Estadísticas de filtros de trá	fico (filtro	de tr	áfico
avanzado)				179
Estadísticas TCP				414
Estado				
				351
Cancelada		•••••		351
Completada			•••••	351
En curso				351
estado 55, 223, 228, 262, 2 586	279, 4	465, 4	171, 4	181,
LED gris500, 502, 504, 5	506, !	511, !	513, 5	514,

515	
LED rojo500, 502, 504, 506, 511, 513, 514	ŀ,
JED vordo 500 502 504 506 511 513	
514, 515	'
estado	
Expert Mode (Modo experto) 13	7
RFC 2544 139	9
Estado acoplado350	0
Estado cancelado	
RFC 2544 139	9
Estado completado	
RFC 2544 139	9
Estado de bucle invertido 475, 475	8
Estado de Fabric	5
En curso	5
Failed (Fallo)	5
Sesión cerrada	5
Sesión iniciada	5
Estado de la conexión TCP 410	0
Estado de la conexión TCP, sesión TCP	_
	0
Cerrada	0
Cerrando	0
En curso	0
Establecida 410	0
IP remota no encontrada	0
Waiting (En espera) 410	0
Estado de la dirección IPv6 global	4
Estado de la dirección MAC	6
estado de la ENIU	6
Estado de la prueba 130	b 2
	2
Cancelada	2
Completada	2
En curso	2
Estado de modo experto	~
	9
Correcto	9
Fracaso	9
Estado de Union	4
Estado del puerto	Э

En curso	55
Failed (Fallo)26	55
Sesión cerrada26	55
Sesión iniciada26	55
Estado global de prueba4	3
estado remoto4	7
Estático572, 573, 57	5
Ethernet 147, 34	-5
Ethernet (BERT)51	2
Ethernet II 82, 101, 110, 120, 124, 127, 271 386, 580	,
Ethernet no entramado)9
EtherSAM (Y.1564)8	34
EtherType	34
Etiqueta	37
Etiqueta de flujo en TX43	2
etiqueta de identificación52	27
Etiqueta de latencia19	92
etiqueta de secuencia20)1
etiqueta de señal de ruta (C2) 284, 290, 56	53
etiqueta, identificación52	27
event (evento)14	9
Evento crítico 48	31
Eventos de 802.3ah 48	35
exit	2
Expert Mode (Modo experto)13	;7
Expert Mode (Modo experto) (BERT) 50	8(
Expert Mode Status (Estado del modo expert 509	o)
Experto Mode (Modo experto) RFC 254449	98
Explorar subred)2
Externo 140, 45	51
extracción de un módulo	9

F

265, 309, 324

Fallo de detección paralela279fallo de detección paralela262Fallo de enlace481Farfulleo/gigante159Favoritos46, 48FC no entramado132FC RX190FC TX187FCCixFCS158, 191fecha de calibración441fiabilidad592
ticha
Análisis de caudal de tráfico TCP 413
Analizador de tramas 243
Back-to-Back (Transmisión recíproca) 358
Capas superiores165
Capturar 181
Configuración de 802.3ah 479
Configuración de ADC 475
Configuración de caudal de tráfico TCP408
Configuración de ENIU 473
Configuración de filtros de tráfico (filtro de
tráfico avanzado) 176
Configuración de la interfaz 258, 263
Configuración de pérdida de tramas 363
Configuración de ping
Configuración de ruta de traza
Configuración de trama
Configuración de transmisión recíproca358
Control de fluio 167
Control remoto
Estadísticas de 802.3ah 482
Estadísticas de Ethernet 160
Estadísticas de EC 194
Estadísticas de filtros de tráfico (filtro de
tráfico avanzado) 179
EtherSAM Configuration (Configuración de
EthorSAM Configuration (Configuration de
EthorSAM Posults (Posultados do EthorSAM)
Eventes de 802 3ab 495
Lventus de 002.3an 403

Expert Mode - Back-to-Back (Modo experto			
-	 Transmisió 	n recíproca)	(RFC
2	2544)		502
Expert Mo	de - Frame L	oss (Modo ex	perto -
· ·	Pérdida de tra	amas) (RFC 25	44)
!	504		
Expert Mo	ode - Latenc	y (Modo exp	oerto -
· ·	Latencia) (RFC	2544)	506
Expert Mo	de - Through	put (Modo ex	perto -
. (Caudal de trá	fico) (RFC 254	4)500
Expert Mo	de (Modo ex	perto) (BERT).	508
Expert M	ode Ethern	et (Modo e	experto
· .	Ethernet) (BEI	RT)	512
Expert M	ode Pattern	(Patrón de	modo
	experto) (BER	T)	514
Expert Mo	de Port (Puer	to de modo e	xperto)
((BERT)		510
Experto M	ode (Modo e	xperto) RFC 2	544
4	498		
FC RX			190
FC TX			187
Filtros de t	tráfico		170
Graph (Gr	áfico)		6, 375
IGMP			335
Informació	ón del flujo de	e IPTV	342
IP/UDP/TCI	۶		226
Latencia			368
Latencia d	e FC		192
MAC			221
MDI/TR 10	1 290		327
Module	Information	(informació	n del
I	nódulo)		440
Module	Information	(informació	n del
I	módulo) -	Software P	ackage
((paquete de s	oftware)	440
MPLS			224
Payload (carga útil)			
PBB-IE			
Perdida de tramas			
ping			
Ping - Resi	litados de la	ruta de traza.	470
Preterencias de la aplicación			

Preferencias de prueba Ethernet
Preferencias de prueba FC 437
Preferencias de prueba IPv6
Preferencias de prueba por defecto 430
Red
Resultados de caudal de tráfico TCP 413
Resultados de ping 464
Resumen de IPTV
Resumen de la alarma 145
resumen de la generación de flujo 198
Resumen de la prueba 136
Resumen del analizador de flujos 241
Ruta de la traza 468
RX de Ethernet 156
RX de neg. auto. avanzada 279
RX de patrón 296
RX eléctrica250
RX óptica 255
Sincronización del reloj 448
Software Options (opciones de software)
442
Supervisión del rendimiento (PM) 421
Test Logger (diario de pruebas) 148
Throughput (caudal de tráfico)
Throughput Configuration (Configuración
del caudal de tráfico)
Tiempo de interrupción del servicio (SDT)
415
TOS/DS avanzado590
Traffic Scan (Exploración de tráfico) 488
TX de Ethernet 153
TX de neg. auto. avanzada
TX de patrón292
TX eléctrica248
TX óptica252
WIS OH RX 288
WIS RX 285
WIS TX 281
Ficha de descubrimiento 302
Ficha de resumen 307
Ficha de secciones
ficha definida 61

fichas	9
Fichas avanzadas	5
fichas comunes	1
fichas de analizador de tráfico15	1
fichas de caudal de tráfico TCP 40	7
fichas de generación de flujo197, 24	1
Fichas de herramientas	5
Fichas de modo experto	7
fichas de patrón	1
fichas de puerto	7
fichas de resumen13	5
fichas de RFC 2544	9
Fichas de sistema	7
fichas de WIS	1
fichas IPTV	9
Field Match Configuration (Configuración de	la
coincidencia de campos)	9
Filtro	0
Filtros de tráfico	0
flecha	
abajo5	6
arriba50	6
avanzar página5	6
derecha	8
fin50	6
izquierda5	8
retroceder página5	6
Fluctuación	5
Fluctuación máxima	1
Fluctuación PCR	4
Flujo	3
Flujo de tráfico	3
forma de tráfico	4
Forma de tráfico de ráfagas	6
Forma de tráfico de rampa21	7
Formato	2
Formato de archivo5	2
formato de hora428	8
Formato de trama82, 101, 110, 120, 124, 127	
271, 386, 584	•
Fracaso	7
Frame Loss (Pérdida de tramas) (RFC 2544)504	4

Frame Loss Results (Resultados de la pérdida de tramas)
Frame Size (tamaño de trama) . 161, 349, 357, 362, 367, 373, 386, 500, 502, 504,
506
Framed Layer 1 (Capa de trama 1) 107, 132
Framed Layer 2 (Capa de trama 2) 108, 132
Frames Count (Recuento de tramas) 356,361, 366, 373
Frecuencia nominal 249, 253
Frequency (frecuencia)250, 251, 256, 257, 450, 453, 511
Nominal 249, 253
Real 249, 253
Fuera de secuencia 242, 243, 404
Funciones del equipo enlazado 280 Funciones locales

G

G.821	423
G.826 OOSM	423
G0,821 ISM	423
G1	290
garantía	
anulada	529
certificación	531
exclusiones	531
general	529
responsabilidad	530
generación de alarmas PHY	153
Generar	53
Gestión	322
gestión de la página	429
Global	146, 348
glosario	545
GMT	428
grabar	458
gráfico mostrado	376
granularidad de la prueba	364
Graph (Gráfico)	186, 375
Grupo de multidifusión	323

Guard		45,	457
Guardar y enviar	. 374,	377,	507

Η

Н	43, 55, 419
H.264/MPEG-4 Parte 10	333, 344
H1	
H2	
НЗ	
H4	
herramientas de secuencias de con	nandos.458
Hora de detención	141

I

IC	ix
ID149, 220	, 475, 567, 569
ID de interfaz acoplado	573
ID de ranura	
Identificación	344
IGMP	
Inactivo	158, 309, 324
Inactivos	
incompatible	
indicador de energía	40
información de usuario	454
Información del flujo	
Información del flujo de IPTV	
información del trabajo	52
information	
informe de prueba	51
informe del caso de prueba	54
informe del resumen	54
Iniciar	
iniciar aplicación	
Inicio de sesión	133, 264, 439
inserción de un módulo	9
Insertar	
Intento actual	357, 362, 367
Intentos	
Interfaces de canal de fibra	
interfaces de sincronización	

Índice

interfaz		460
interfaz eléctrica		540
Interfaz óptica		535
Interno	140,	451
intervalo		227
invertir		293
Inyección		168
Inyección de errores FC		189
Botón Encendido/Apagado		189
Cantidad		189
Continuo		189
Enviar		189
Тіро		189
Valor		189
inyección de errores PHY	154,	188
Botón Encendido/Apagado		188
Cantidad		188
Continuo		188
Enviar		188
Тіро		188
Valor		188
Inyectar pausa		168
IP		387
IP TOS		388
IP TOS/DS	228,	409
IP/UDP/TCP		226
IPTV		114
ISO		428
I-TAG	219,	568
Prioridad	219,	568
Seleccionable para descarte	219,	568
SID	219,	568

J

JO	 289
J1	 290

Κ

K1	 289
K2	 289

L

L > R	381, 397, 398, 401
LASER 5	, 14, 17, 22, 24, 29, 32
Láser	
láser	x, 5
láser activado	
Latencia	
Latencia de FC	
Latency (Latencia) (RFC	2544) 506
Layer 1,2,3 (Capa 1, 2, 3	3) 357, 362, 377, 501
LCD-P	
LED	
С	
Canal de fibra	
Diario lleno	
DUPLEX	
estado	
Ethernet	
Global	
Н	
LASER5	, 14, 17, 22, 24, 29, 32
LINK/ACT 12	, 14, 17, 20, 24, 27, 32
Otro	
Pattern (Patrón)	
Protocolo de capa s	uperior 147
Puerto	
puerto eléctrico	12, 20, 27
puerto óptico	
WIS	
Límite Hop	
límite HOP (TTL)	
limpieza	
panel frontal	
Link Down (Enlace roto)) 153, 157, 187, 190,
396, 512	
LINK/ACT12	, 14, 17, 20, 24, 27, 32
LOC	
Local	
Local a remoto . 355, 35	56, 357, 361, 362, 365,
366, 367, 370), 371, 373, 500, 502,
504, 506	

Local de enlace	574
location (ubicación)	
LOF	
logotipo seleccionado	
longitud de onda	
LOP-P	
LOS	252, 256, 396, 449, 510

Μ

M1
MAC
mantenimiento
información general521
panel frontal
mantenimiento y reparaciones
manual
Máscara 174, 177, 600
Máscara de prefijo 573
Máscara de subred 81, 82, 101, 110, 119, 124,
127, 227, 270, 433, 570
Max RX Rate (Velocidad máx. de RX) 402
Max RX Rate L -> R ((Velocidad máx. de RX L -
R)) 402
Max RX Rate R -> L ((Velocidad máx. de RX R -
L)) 402
máx. valor de tiempo de tramas 360
MDI
MDI MLR (ms) 310, 329
MDI MLR (pps) 310, 329
MDI/TR 101 290 327
medición de alarma 56
medición de error 56
medidas TR 101 290 300
Medios 346
mensaje
Mensaje de estado 356
Cancelada - pérdida de 1PPS local 372
Cancelada - pérdida de 1PPS local y remoto
372
Cancelada - perdida de 1PPS remoto 372
Cancelada - perdida de conexión remota

356 361 366 372
Cancelada por el usuario 356 361 366
cancelada por el usuario 372
Dirección MAC no resuelta 356 361 366
372
Enviando tramas de aprendizaje . 356, 361, 366, 372
Enviando tramas de prueba 356, 361, 366, 372
Link is down (Enlace roto) 356, 361, 366, 372
prueba no medible372
Test completed (Prueba completada) 356,
miembro
minimizar
Mode (modo)
modo de error
modo de finalización 448
Modo de medición
Modo de reloi
Modo de transceptor79, 87, 99, 106, 117, 123
modo de transmisión
modo de visualización de periodo de prueba
429
Modo directo115
Modo OAM
modo sin tráfico
Modo TCP409
Module Information (información del módulo)
440
módulo
extracción9
inserción9
Módulo remoto73
mostrar teclado 460
MPEG-2
MPEG-2 TS
MPEG-4 Parte 2 333, 344
MPLS 118, 166, 224, 387
Caudal de tráfico de RX166
COS/EXP225, 588

Índice

Etiqueta	225, 587
Recuento de tramas	
TTL	225, 588
Multidifusión	
multiplicador IP	227

Ν

N.º de patrón		293
N1		290
Negociación automática	262,	279
Negociando	262,	279
Negociar		278
Next (siguiente)		71
Ninguno - en curso		
RFC 2544		139
nivel de potencia en dBm		255
N ^o		470
n ^o	199,	202
Nº de canales		579
n ^o de errores aceptable	354,	360
Nº de filtro 170,	176,	179
Nº de flujo. 207, 218, 221, 224, 226,	230,	243
Nº de llamadas		578
n ^o de ráfagas		360
Nº de servicio	385,	400
Nº de servicios		397
n ^o de validaciones		354
nº en la tabla de resultados de ping		464
Nº en la tabla de resultados de ruta d 470	le tra	za
No entramado	107,	132
No unidifusión	160,	163
Nombre de archivo		52
Nombre de flujo 199, 202, 309, 315, 3 344	317, 3	322,
nombre de la ficha		60
Nombre de la prueba		139
Nombre del servicio	385,	400
nombre del sistema	475,	477
Nombre WWN		267
None (Ninguno)	275,	573

norma	423
n-ráfaga21	4, 215
n-rampa21	4, 215
n-trama	4, 215
Nuevo	5, 457
Number of Steps (Número de pasos):	217
número de serie	441

0

ocultar teclado	
00S	
Opciones de hardware	
Opciones de selección	
opciones de tiempo	
opciones disponibles	
Operador	177, 600
orden	57
Origen de WWN	
Otro	
OUI	
Overview (Resumen)	
OX_ID	

Ρ

P1 a P2355, 356, 357, 361, 362, 365, 3	66, 367,
P2 a P1355, 356, 357, 361, 362, 365, 3	866, 367,
370, 371, 373, 500, 502, 504	, 506
panel frontal, limpieza	521
Paquete de software	440
paquetes de software instalados	440
Paquetes recibidos	467, 472
Paquetes transmitidos	467, 472
PARAM	239
Parámetro de trama	233, 387
Tamaño	233
Unidad	233
Valor	233
parte inferior	60
parte superior	60
Paso	400

paso actual
Paso mostrado
Patrón de prueba
Patrón de usuario
Pattern (Patrón)
Pattern (Patrón) (BERT)
Pattern Loss (Pérdida de patrón) 296, 514
Pavload (carga útil) 204, 230
PBB-TE
Pendiente
Pérdida de sincronización de TS
Pérdida de tramas 90, 96, 241, 243, 363, 389,
397, 401, 404
Pérdida en %
Perfil
Performance Test (Prueba de rendimiento) 76,
91, 382, 403
periodo de prueba
periodo de ráfagas 216
Permitir
Permitir caudal de tráfico
permitir criterios de Ethernet
permitir criterios de patrón 514
permitir criterios de puerto 510
Permitir DHCP 124
Permitir funciones locales
Permitir latencia
Permitir modo de neg. auto. avanzada 274
Permitir modo experto 498, 508
permitir negociación automática
permitir OAM 474
Permitir pérdida de tramas 90, 96
permitir PLM-P 287
Permitir prueba 351
Permitir servicios diferenciados 590
permitir sincronización 109
Permitir transmisión recíproca
Permitir TX - activado/desactivado 201
permitir UNEQ-P 287
Permitir unión automática 322
Permitir VLAN 80, 88, 102, 120, 566
ping 228, 461, 570, 576, 593

Plano posterior	140, 451
PLM-P	
PM	421
Por defecto	62
Porcentaie de pérdida	467
Port (Puerto) (BERT)	510
precaución	
de riesgo material	
de riesgo personal	3
precedencia	592
precisión	354, 360
Preferencias de la aplicación	,
Preferencias de prueba Ethernet	
Preferencias de prueba FC	
Preferencias de prueba IPv6	434
Preferencias de prueba por defecto	430
preguntas frecuentes	526
presencia de entrada	255
Presencia de salida	252, 453
Prioridad 219 220 567	568, 569
Prioridad 1	332
Procedimiento de prueba	
Permitir	351
Permitir prueba	351
producto	
especificaciones	526
etiqueta de identificación	527
producto de software instalado	440
promedio de nº de intentos354 360	364 369
Proporción de pérdida de medios en	nns 331
Protocolo de capa superior	147 165
Prueba	73 146
PSP (protocolo de enlace)	263 439
nuerta de enlace	205, 455 433
Puerta de enlace por defecto 81 82 '	101 110
119 124 127 229 270 57	1
Puerto 73	146 409
Puerto de destino	309
Puerto TCP	277 278
Puerto LIDP 227	227, 220
Puerto único 96 10/	114 130
Puertos duales 38 96 104,	11/ 120
i dei tos duales	114, 150

Índice

Punto a punto	264
puntos de código DSCP	591

Q

Quanta ′	167
----------	-----

R

R > L	
R_CTL 234	
ráfaga 214, 215	
Ramp (Rampa)	
Ramp Cycle Count (Recuento de ciclo de rampa 217)
Ramp Traffic Policing Rate (Velocidad de	5
políticas de tráfico de rampa) 389	
RDI-L 282, 286	
RDI-P 282, 286	
Realización de pruebas de IPTV	
recalibración 522	
Recalibración de la unidad 522	
rechazada 476	
Recuento 56, 164	
recuento 149	
recuento de interrupción418	
Recuento de paquetes	
Recuento de pérdida de paquetes	
recuento de ráfagas 217	
Recuento de tramas 166, 175, 179, 216	
Recuento de tramas de pausa 169	
recuento máximo de saltos 469, 595	
recuento total de errores 159, 191	
Recuentos de tramas PBB-TE válidas 163	
No unidifusión 163	
Total 163	
Unidifusión 163	
recuperación tras la pérdida de la alimentaciór 517	1
Recuperado 140, 451	
Red 73, 204, 209, 221, 268, 386, 580	
Registro de fallos de neg. auto 277	
REI-L	

ruta	. 61
ruta de datos	149
Ruta de la traza	468
ruta de la traza	468
ruta de la traza,	
Nº de columna de la tabla	470
RX 356, 361, 366, 373, 448, 467,	472
RX de Ethernet	156
RX de neg. auto. avanzada	279
RX de patrón	296
RX eléctrica	250
RX óptica	255
RX_ID	239

S

S ID
S1
salida
Salida de referencia 452
SDT
secuencia de comandos69
SEF
Segundos 56
seguridad
advertencia3
convenciones 3
láser5
precaución3
selección de página 61
selección de puerto 434
selección predefinida54
Seleccionable para descarte219, 220, 567, 568,
569
Seleccionar intervalo 305, 315, 318, 323
Seleccionar todo 305, 315, 318, 323
SEQ_CNT 239
SEQ_ID
Service Configuration Test (Prueba de
configuración de servicio)76, 91, 381,
383, 400

Service Disruption (Interrupción del servicio)...

419

Service	Perfor	mance	Test	(Pru	ieba	de
	rendim 383, 40	iento de : 13	servicio).76	, 91, 3	382,
Services	(Servicio	os)				385
Servicio						381
servicio	al cliente	e				532
servicio	posventa	a				527
SES						424
Sesión c	errada					265
Sesión ir	niciada					265
SESR						425
SFP				5,	441,	525
SID					219,	568
Símbolo					158,	191
símbolo	s, seguri	dad				3
Simétric	o					275
sin tráfio	:o					514
Sincroni	zación d	el reloj				448
sitio we	ວ de EXF	0				526
sobrescr	ibir	contenid	o d	e	favo	oritos
	seleccio	onado				49
SOF						231
solicitud						478
Soluciór	de prol	olemas				525
soporte	técnico.					527
Source (Origen)		2, 227,	345,	570,	585
SPTS						300
Start Tin	ne (Hora	de inicio)	136,	141,	345
Stateles	3 Auto (A 573	Automáti	co sin e	stado	o)	572,
Step Tin	ne (Tiem	po de pa	so):		217,	383
Supervis	ión del ı	rendimier	nto (PM)		421

Т

Tamaño	205, 210, 233, 582
Tamaño de la ventana	
tamaño de los datos	
Tamaño de trama PBB-TE	
% total	
Recuento	

Índice

Total	164
Tamaño de ventana inicial	411
Tamaño de ventana máximo 411,	412
Tamaño del búfer virtual en bytes	330
Tamaño del paquete en bytes	346
tamaño grande 159,	191
tamaño pequeño 159,	191
тср	387
TCP Throughput (Caudal de tráfico TCP)	125
teclado	63
temperatura de almacenamiento	521
Terminar	71
Throughput (caudal de tráfico) 90, 96,	162,
175, 180, 353, 413, 592	
Ancho de banda 175,	180
Utilización175,	180
Velocidad de tramas 175,	180
Throughput (Caudal de tráfico) (RFC 2544)500
Throughput Configuration (Configuració	n de
caudal de tráfico)	353
tiempo 47, 149, 466,	472
tiempo de espera462, 469, 476, 478, 594	, 595
Tiempo de ida y vuelta en ms	414
Tiempo de interrupción del servicio (SDT)	415
Tiempo de pausa del paquete	168
Tiempo de presencia	345
tiempo de vida 462,	594
tiempo mínimo de prueba 355, 360, 365,	369
Tiempo permitido 175,	179
tiempo sin errores	417
tiempo sin trafico	41/
Tiempo transcurrido	345
11po61, 153, 154, 187, 188, 189, 236, 252, 295, 567, 582	294,
Tipo de aplicación	139
RFC 2544 84	1, 95
TCP Throughput (Caudal de tráfico TCI	י)125
Tipo de ENIU	473
Tipo de flujo de transporte	344
Tipo de flujo de vídeo	344
Tipo de interfaz 139,	448
Tipo de servicio 463,	595

Título	52
Título del informe	52
ToolBox	9
ToolBox CE	9
Topología	130
Topología descubierta	264
Fabric	264
Punto a punto	264
TOS	592
TOS/DS avanzado228,	590
Total 160, 163,	164
Total Available TX Rate (Velocidad de TX	total
disponible):	200
total de eventos	148
Total Enabled TX Rate (Velocidad de TX	total
activada):	200
Total TX Rate (Velocidad total de TX)	384
TR 101 290	311
Traffic Policing (Políticas de tráfico)	391
Traffic Scan (Exploración de tráfico)	488
Tramas de pausa	169
Tramas de RX	195
Tramas de TX	195
Tramas totales retransmitidas	414
Tramas totales transmitidas	414
transporte 204, 210,	581
transporte erróneo	158
traza J0	288
Traza J1 284,	288
Triggered Frame Details (Detalles de ti	rama
disparada)	601
Truncation Calculator (Calculadora	de
truncamiento)	597
TTL 225, 229, 466,	588
TX356, 361, 366, 373, 467,	472
TX a RX355, 356, 357, 361, 362, 365, 366,	367,
370, 373, 500, 502, 504, 506	
TX de Ethernet	153
TX de neg. auto. avanzada	273
TX de patrón	292
TX eléctrica	248
TX óptica	252

U

UAS		425
UDP		387
Umbral MDI		331
Umbral TR 101 290		334
UNEQ-P	282,	287
Unidad		169
unidad de desviación	251,	257
unidad, recalibración		522
Unidifusión	160,	163
Unido	309,	324
Unión		322
Unión automática		324
Unión en proceso		309
Unión IGMP automática		316
UTC		428
Utilización 162, 164, 166,	175,	180
Utilización del ancho de banda en %		345

V

válida 476
Valor 56, 149, 154, 155, 174, 177, 188, 189,
199, 202, 233, 283, 293, 295, 346,
600
valores de VID especiales561
VC-1
Velocidad 260, 263, 275, 280
Velocidad de RX 405
Velocidad de tramas 162, 164, 166, 175, 180
Velocidad de TX 204, 216
Velocidad en Mbps
Velocidad IP en Mbps
Velocidad máx. de RX
velocidad máxima 370
velocidad máxima - TX a RX 355, 365
ventana principal
ver informe después de la generación. 53, 603
Veredicto
Veredicto de modo experto 137

Veredicto del servicio	400
Versión de IP	124
versiones	440
VID	561
Vídeo	579
Vídeo con error de PID	333
Vista de cuadrícula	70
Vista en árbol	70
VLAN	567
Configuración de VLAN	269
Configuración VLAN	566
Permitir	223
Permitir VLAN	566
Prioridad	567
Prioridad de VLAN	561
VLAN apiladas	566
VLAN apiladas	566
Voz	578

W

WIS	73,	146
WIS OH RX		288
WIS RX		285
WIS TX		281

Х

Х							34	1, 42
XFP	5,	15,	22,	23,	29,	30,	441,	525

Ζ

Z3	290
Ζ4	290
zona horaria	428

N/P:	1062368
------	---------

	www.EXFO.com info@exfo.com
400 Godin Avenue	Quebec G1M 2K2 CANADÁ Tel.: 1 418 683-0211 · Fax: 1 418 683-2170
3701 Plano Parkway, Suite 160	Plano TX, 75075 EE. UU. Tel.: 1 972 907-1505 · Fax: 1 972 836-0164
Omega Enterprise Park, Electron Way	Chandlers Ford, Hampshire S053 4SE INGLATERRA Tel.: +44 2380 246810 · Fax: +44 2380 246801
100 Beach Road, #22-01/03 Shaw Tower	SINGAPUR 189702 Tel.: +65 6333 8241 · Fax: +65 6333 8242
Room 2711, Trade Center, No. 4028 Jintian Road, Futian District	Shenzhen 518035 R. P. CHINA Tel.: +86 (755) 8203 2300 · Fax: +86 (755) 8203 2306
Beijing Global Trade Center, Tower C, Room 1207, 36 North Third Ring Road East, Dongcheng District	Beijing 100013 R. P. CHINA Tel.: +86 (10) 5825 7755 · Fax: +86 (10) 5825 7722
0 270 Billerica Road	Chelmsford MA, 01824 EE. UU. Tel.: 1 978 367-5600 · Fax: 1 978 367-5700
	400 Godin Avenue 3701 Plano Parkway, Suite 160 Omega Enterprise Park, Electron Way 100 Beach Road, #22-01/03 Shaw Tower Room 2711, Trade Center, No. 4028 Jintian Road, Futian District Beijing Global Trade Center, Tower C, Room 1207, 36 North Third Ring Road East, Dongcheng District © 270 Billerica Road

NÚMERO GRATUITO

(EE. UU. y Canadá)

1 800 663-3936

© 2012 EXFO Inc. Todos los derechos reservados. Impreso en Canadá (2012-05)

User Guide

SONET/SDH Application

FTB-8100 Series for FTB-500

www.EXFO.com Telecom Test and Measurement Copyright © 2007–2011 EXFO Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, be it electronically, mechanically, or by any other means such as photocopying, recording or otherwise, without the prior written permission of EXFO Inc. (EXFO).

Information provided by EXFO is believed to be accurate and reliable. However, no responsibility is assumed by EXFO for its use nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent rights of EXFO.

EXFO's Commerce And Government Entities (CAGE) code under the North Atlantic Treaty Organization (NATO) is 0L8C3.

The information contained in this publication is subject to change without notice.

Trademarks

EXFO's trademarks have been identified as such. However, the presence or absence of such identification does not affect the legal status of any trademark.

Units of Measurement

Units of measurement in this publication conform to SI standards and practices.

September 12, 2011 Version number: 6.0.0

Contents

 Introducing the FTB-8100 Series Transport Blazer	1 4 5
 2 Safety Information	-
 3 Getting Started	7 8
4 Physical Interfaces and LEDs Modules Port Availability on FTB-8100 Series Module OTN/OC-N/STM-N Interface Connections Electrical SONET/DSn/SDH/PDH Interface Connection	 11 11 11
Clock Interface Connections Ethernet 10/100/1000Base-T Interface Connection Ethernet ADD/DROP Gig-E Interface Connection Status LED	 13 13 17 19 21 23 24 25
5 Introducing and Using the Graphical User Interface Starting the FTB-8100 Series Transport Blazer Application Main Window Global Test Status and Controls Favorites Test Report Generation Usual Tab Elements Tab Configuration Keyboard Usage	 27 29 35 40 42 46 49 53
6 Creating and Starting a Test Case Supported Paths/Mappings Introducing the Test Setup Typical Test Cases	59 59 62

Contents

7	Smart Mode	111
	SmartMode Interface Description	112
	Using SmartMode for Alarm/Error Monitoring	115
	Creating and Starting a Test Case Using SmartMode	122
	Legend	123
8	Summary Tabs	125
	Test Summary	125
	Alarm Summary	132
	Test Logger	135
9	Port Tabs	137
	Port TX (Electrical Interfaces)	138
	Port RX (Electrical Interfaces)	142
	Port TX (Optical Interfaces)	147
	Port RX (Optical Interfaces)	150
10) OTN Tabs	153
	FEC TX	
	FEC RX	156
	OTU TX	157
	OTU OH TX	160
	ΟΤυ ΤΤΙ ΤΧ	162
	OTU RX	163
	OTU OH RX	166
	OTU TTI RX	168
	ODU TCM TX	170
	ODU TCM TTI TX	173
	ODU TCM RX	175
	ODU TCM TTI RX	178
	ODU TX	180
	ODU OH TX	182
	ODU TTI/FTFL TX	186
	ODU RX	189
	ODU OH RX	191
	ODU TTI/FTFL RX	
	OPU TX	197
	OPU OH TX	200
		205
	GMP	209

11 SONET Tabs	211
Section TX (SONET)	213
Section RX (SONET)	
Section OH TX/RX (SONET)	
Line TX (SONET)	
Line RX (SONET)	
Line OH TX/RX (SONET)	
APS/Advanced Line OH TX/RX (SONET)	
HOP TX (SONET)	
HOP RX (SONET)	251
HOP OH TX/RX (SONET)	
Path Signal Label (C2)	
LOP TX (SONET)	
LOP RX (SONET)	
LOP OH TX/RX (SONET)	
12 DSn Tabs	
DS0/64K TX	270
DS0/64K RX	273
D\$1/1.5M TX	
DS1/1.5M RX	
FDL TX	
FDL RX	
FDL PRM TX	
	200
FDL PRM Content RX	
FDL PRM Content RX DS3/45M TX	
FDL PRM Content RX DS3/45M TX DS3/45M RX	
FDL PRM Content RX DS3/45M TX DS3/45M RX DS3 FEAC TX	

Contents

Regenerator Section TX (SDH)305Regenerator Section RX (SDH)311Regenerator Section OH TX/RX (SDH)313Multiplex Section TX (SDH)315Multiplex Section RX (SDH)320Multiplex Section OH TX/RX (SDH)320Multiplex Section OH TX/RX (SDH)326Multiplex Section APS/Advanced OH TX/RX (SDH)328HOP TX (SDH)328HOP TX (SDH)341HOP OH TX/RX (SDH)344LOP TX (SDH)353LOP OH TX/RX (SDH)353LOP OH TX/RX (SDH)356LOP TX (SDH)358EX (SDH, TU-3 path)358
Regenerator Section RX (SDH)311Regenerator Section OH TX/RX (SDH)313Multiplex Section TX (SDH)315Multiplex Section RX (SDH)320Multiplex Section OH TX/RX (SDH)326Multiplex Section OH TX/RX (SDH)326Multiplex Section APS/Advanced OH TX/RX (SDH)328HOP TX (SDH)335HOP RX (SDH)341HOP OH TX/RX (SDH)344LOP TX (SDH)353LOP OH TX/RX (SDH)353LOP OH TX/RX (SDH)356LOP TX (SDH)356LOP TX (SDH)358
Regenerator Section OH TX/RX (SDH)313Multiplex Section TX (SDH)315Multiplex Section RX (SDH)320Multiplex Section OH TX/RX (SDH)326Multiplex Section APS/Advanced OH TX/RX (SDH)328HOP TX (SDH)335HOP RX (SDH)341HOP OH TX/RX (SDH)344LOP RX (SDH)353LOP RX (SDH)353LOP OH TX/RX (SDH)353LOP OH TX/RX (SDH)356LOP TX (SDH)358LOP TX (SDH)358
Multiplex Section TX (SDH)315Multiplex Section RX (SDH)320Multiplex Section OH TX/RX (SDH)326Multiplex Section APS/Advanced OH TX/RX (SDH)328HOP TX (SDH)335HOP RX (SDH)341HOP OH TX/RX (SDH)344LOP TX (SDH)347LOP RX (SDH)353LOP OH TX/RX (SDH)356LOP OH TX/RX (SDH)356LOP TX (SDH)356LOP TX (SDH, TU-3 path)358
Multiplex Section RX (SDH)320Multiplex Section OH TX/RX (SDH)326Multiplex Section APS/Advanced OH TX/RX (SDH)328HOP TX (SDH)335HOP RX (SDH)341HOP OH TX/RX (SDH)344LOP TX (SDH)347LOP RX (SDH)353LOP OH TX/RX (SDH)356LOP TX (SDH)356LOP TX (SDH, TU-3 path)358
Multiplex Section OH TX/RX (SDH)326Multiplex Section APS/Advanced OH TX/RX (SDH)328HOP TX (SDH)335HOP RX (SDH)341HOP OH TX/RX (SDH)344LOP TX (SDH)347LOP RX (SDH)353LOP OH TX/RX (SDH)356LOP TX (SDH)356LOP TX (SDH, TU-3 path)358
Multiplex Section APS/Advanced OH TX/RX (SDH) 328 HOP TX (SDH) 335 HOP RX (SDH) 341 HOP OH TX/RX (SDH) 344 LOP TX (SDH) 347 LOP TX (SDH) 347 LOP RX (SDH) 347 LOP RX (SDH) 353 LOP OH TX/RX (SDH) 356 LOP TX (SDH) 356 LOP TX (SDH, TU-3 path) 358
HOP TX (SDH) 335 HOP RX (SDH) 341 HOP OH TX/RX (SDH) 344 LOP TX (SDH) 347 LOP TX (SDH) 347 LOP RX (SDH) 353 LOP OH TX/RX (SDH) 356 LOP TX (SDH, TU-3 path) 358
HOP RX (SDH) 341 HOP OH TX/RX (SDH) 344 LOP TX (SDH) 347 LOP RX (SDH) 353 LOP OH TX/RX (SDH) 356 LOP TX (SDH, TU-3 path) 358
HOP OH TX/RX (SDH) 344 LOP TX (SDH) 347 LOP RX (SDH) 353 LOP OH TX/RX (SDH) 356 LOP TX (SDH, TU-3 path) 358
LOP TX (SDH)
LOP RX (SDH)
LOP OH TX/RX (SDH)
LOP TX (SDH, TU-3 path)
LOP RX (SDH, TU-3 path)
LOP OH TX/RX (SDH, TU-3 path)
14 PDH Tabs
F0/6//K TX 370
E0/64K RX 373
E0/04/K INC
F1/2M RX 378
F2/8M TX 381
F2/8M RX 383
F3/34M TX 385
E3/34M RX
E4/140M TX
E4/140M RX
15 Ethornot Taba 202
15 Ethemet 1abs
Configuration
Error/Alarm 1X
Error/Alarm KX
Statistics IX
Statistics KX
16 BERT Tabs
Pattern TX405
Pattern RX409

17 Advanced Tabs	411
Service Disruption Time (SDT)	411
Service Disruption Time (SDT) - Monitor	415
Service Disruption Time (SDT) - Results	421
Round Trip Delay (RTD)	425
18 Next-Generation Tabs	429
GFP Overview TX	431
GFP Frame TX	432
GFP Channel TX	435
GFP Channel Stats TX	439
GFP OH TX	440
GFP Client TX	
GFP Overview RX	447
GFP Frames RX	449
GFP Channel RX	451
GFP Channel Stats RX	454
GFP OH RX	455
GFP Client RX	457
VCAT TX - Overview	459
VCAT TX - Diff Delay	461
VCAT RX - Overview	463
VCAT RX - Diff Delay	466
LCAS - Source	468
LCAS Sink	481
19 Common Tabs	491
HOP/LOP Pointer Adjust TX (SONET/SDH)	492
HOP/LOP Pointer Adjust RX (SONET/SDH)	495
тсм тх	497
TCM RX	500
Performance Monitoring (PM)	504
Client Offset TX	513
Client Offset RX	515
20 System Tab	519
Clock Synchronization	520
Application Preferences	528
Default Test Preferences	530
Module Information	544
Software Options	546
Remote Control	549

_

Contents

21 Tools Tab	
Script Tab	
22 Automatic Power Failure Recovery	555
23 Maintenance	557
Recalibrating the Unit Recycling and Disposal (Applies to European Union Only)	558 559
24 Troubleshooting	
Solving Common Problems	
Contacting the Technical Support Group	
Transportation	
25 Warranty	
General Information	
Liability	
Exclusions	566
Certification	566
Service and Repairs EXFO Service Centers Worldwide	
A Specifications	569
Electrical Interfaces for ETB-8105/15/20/30	569
Ontical Interfaces	570
Synchronization Interfaces for FTB-8105/15/20/30	
Synchronisation Interfaces for FTB-8140	
Ethernet Add/Drop Interfaces for FTB-8105/15/20/30	
Ethernet Interfaces	
General Specifications	575

Contents

В	Glossary	577
	SONET/DSn/SDH/PDH Nomenclature	577
	Signal Rates	577
	SONET/SDH High and LowOrder Path Nomenclature	578
	SONET/SDH Alarms and Errors Nomenclature	579
	Acronym List	581
	G.709 Optical Transport Network (OTN)	601
	SONET Numbering Convention	616
	SDH Numbering Convention	618
	SONET - Section Overhead (SOH)	622
	SONET - Line Overhead (LOH)	624
	SONET - Path Overhead (POH)	627
	SONET - VT Path Overhead	630
	SDH - Regenerator Section Overhead (RSOH)	634
	SDH - Multiplex Section Overhead (MSOH)	636
	SDH - Higher-Order Path Overhead (HP-POH)	638
	SDH - Lower-Order Path Overhead	641
	10G Ethernet	644
	Next-Gen - Generic Framing Procedure (GFP)	647
	Next-Gen - Virtual Concatenation (VCAT)	660
	Next-Gen - Link-Capacity Adjustment Scheme (LCAS)	673
Ind	dex	685

_

Certification Information

Federal Communications Commission (FCC) and Industry Canada (IC) Information

Electronic test and measurement equipment is exempt from FCC Part 15 compliance in the United States and from IC ICES 003 compliance in Canada. However, EXFO Inc. (EXFO) makes reasonable efforts to ensure compliance to the applicable standards.

The limits set by these standards are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the user guide, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

European Union (CE) Information

Electronic test and measurement equipment is subject to the EMC Directive in the European Union. The EN61326 standard prescribes both emission and immunity requirements for laboratory, measurement, and control equipment. This unit has been tested and found to comply with the limits for a Class A digital device. Please refer to the *CE Declaration of Conformity* on page xii.

For continued compliance to the requirements of the EMC Directive:

- **1.** For the **BNC/AUX** port(s) use double-shielded coaxial cable, type 734A or equivalent.
- **2.** For the **REF OUT** port use double shielded cable, type LMR-240 ULTRAFLEX or equivalent, with a maximum length of 3m for FTB-8105/15/20/30 and 1m for FTB-8140.
- **Note:** If the equipment described herein bears the CE symbol, the said equipment complies with the applicable European Union Directive and Standards mentioned in the Declaration of Conformity.

Laser

For all models at the exception of the FTB-8140:

This product complies with 21 CFR 1040.10 and with EN 60825-1.

This product may employ a Class 1 or Class 1M laser SFP or XFP. The laser classification is reproduced on the SFP/XFP.

For the FTB-8140:

Class 1 laser product.

This product complies with IEC/EN 60825-1 and 21 CFR 1040.10 except for deviations pursuant to Laser Notice No. 50, dated July 26, 2001.

CE Declaration of Conformity

<image/> <text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text>		
Application of Council Directive(s): 2006/95/EC - The Low Voltage Directive 2004/108/EC - The EMC Directive 2006/66/EC - The EMC Directive 93/86/EC - Ce Marking And their amendments Manufacturer's Name: EXE O Inc. Manufacturer's Address: 200 Golfn Avenue Quebec, Quebec Equipment Type/Environment: Exe O Godfn Avenue Quebec, Quebec Trade Name/Model No.: Test & Measurement / Industrial Trade Name/Model No.: The 105/8115/8120/8120/8/130/8	EXFO	CE DECLARATION OF CONFORMITY
Manufacturer's Name: Manufacturer's Address: Manufacturer's Address: Add Godin Avenue Quebec, Quebec Canada, G1M 2K2 Equipment Type/Environment: Trade Name/Model No.: Equipment Type/Environment: Trade Name/Model No.: Equipment Type/Environment: Transport Blazer Series (FTB-8105/8115/8120/8120NG/8130/8130NG/8 ND IQS-8105/8115/8120/8120NG/8130/8130NG/8 Standard(s) to which Conformity is Declared: EN 61010-1:2001 Edition 2.0 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements. EN 61326-1:2006 Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements EN 60825-1:2007 Edition 2.0 Safety of laser products – Part 1: Equipment classification and requirements EN 55022: 2006 + A1: 2007 Information technology equipment — Radio disturbance characteristics — Limits and methods of measurement I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standau Manufacturer Signature: Full Name: StepDen buff: Eng Manufacturer Signature: Full Name: StepDen buff: Eng Manufacturer Signature: Full Name: StepDen buff: Eng Manufacturer Signature: Full Name: StepDen buff: Eng Manufacturer StepDen buff: Eng Manufacturer Signature: Full Name: StepDen buff: Eng Manufacturer StepDen buff: Eng Manufacturer Manufacturer StepDen buf	Application of Council Dire	tive(s): 2006/95/EC - The Low Voltage Directive 2004/108/EC - The EMC Directive 2006/66/EC - The Battery Directive 93/68/EEC - CE Marking
Equipment Type/Environment: Trade Name/Model No.: Trade Name/Model No.: Trade Name/Model No.: Trade Name/Model No.: Transport Blazer Series / FTB-8105/8115/8120/8120NG/8130/8130NG/8 AND IQS-8105/8115/8120/8120NG/8130/8130NG/8 Standard(s) to which Conformity is Declared: EN 61010-1:2001 Edition 2.0 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements. EN 61326-1:2006 Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements EN 60825-1:2007 Edition 2.0 Safety of laser products – Part 1: Equipment classification and requirements EN 55022: 2006 + A1: 2007 Information technology equipment — Radio disturbance characteristics — Limits and methods of measurement I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standau I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standau I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standau I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standau Hummer: Stepten Rubul E. Em Full Name: Stepten Rubul E. Em Manufacturer Stepten Rubul Rubul Rubul Manufacturer Stepten Rubul Ru	Manufacturer's Name: Manufacturer's Address:	EXFO Inc. 400 Godin Avenue Quebec, Quebec
IQS-8105/8115/8120/8120NG/8130/8130NG/8 Standard(s) to which Conformity is Declared: EN 61010-1:2001 Edition 2.0 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements. EN 61326-1:2006 Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements EN 60825-1:2007 Edition 2.0 Safety of laser products – Part 1: Equipment classification and requirements EN 55022: 2006 + A1: 2007 Information technology equipment — Radio disturbance characteristics — Limits and methods of measurement I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standard Manufacturer Signature: Full Name: Steppen Research and	Equipment Type/Environm Trade Name/Model No.:	Canada, G1M 2K2 nt: Test & Measurement / Industrial Transport Blazer Series / FTB-8105/8115/8120/8120NG/8130/8130NG/8140 AND
Standard(s) to which Conformity is Declared: EN 61010-1:2001 Edition 2.0 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements. EN 61326-1:2006 Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements EN 60825-1:2007 Edition 2.0 Safety of laser products – Part 1: Equipment classification and requirements EN 55022: 2006 + A1: 2007 Information technology equipment — Radio disturbance characteristics — Limits and methods of measurement I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standard Manufacturer Signature: Euly Name: Evel Name: Stephen Budfer, Eng. Evel Name: Stephen Budfer, Eng. Full Name: Stephen Budfer, Eng. Full Name: Stephen Budfer, Eng.		IQS-8105/8115/8120/8120NG/8130/8130NG/8140
Use - EMC Requirements EN 60825-1:2007 Edition 2.0 Safety of laser products – Part 1: Equipment classification and requirements EN 55022: 2006 + A1: 2007 Information technology equipment — Radio disturbance characteristics — Limits and methods of measurement I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standa. Manufacturer Signature: Full Name: Stephen Bull E. Eng Position: Vige-President desearch and	N 61010-1:2001 Edition 2.0 N 61326-1:2006	Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements. Electrical Equipment for Measurement, Control and Laboratory
EN 55022: 2006 + A1: 2007 Information technology equipment — Radio disturbance characteristics — Limits and methods of measurement I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standau Manufacturer Signature: Full Name: Stephen Builder Eng Full Name: Stephen Builder Eng Position: Vide President Messearch and	N 60825-1:2007 Edition 2.0	Jse - EMC Requirements Safety of laser products – Part 1: Equipment classification and requirements
I, the undersigned, hereby declare that the equipment specified above conforms to the above Directives and Standa Manufacturer Signature: Full Name: Stephen Built E. Eng Position: Vioe-President Kesearch and	N 55022: 2006 + A1: 2007	nformation technology equipment — Radio disturbance characteristics — Limits and methods of measurement
Manufacturer Signature: Full Name: Stephen Bull E. Eng. Sur Manufacturer Position: Vice-President Research and	the undersigned, hereby declare that	he equipment specified above conforms to the above Directives and Standards.
Full Name: Stephen Bull E. Eng Position: Vige-President Research and	Manufacturer Signature:	\mathcal{O}_{μ}
Development	Full Name: Stephen Bull E. Eng Position: Vice-President Res Development	parch and
Address: 400 Godin Avenue, Quebec (Quebec), Canada G1M 2K2	Address: 400 Godin Avenue, C Canada G1M 2K2	Jebec (Quebec),
Date: February 1, 2009	Date: February 1, 2009	
FYFA		
---	---	--
	CE DECLARATION OF CONFORMITY	
Application of Council Dire	ective(s): 2006/95/EC - The Low Voltage Directive 2004/108/EC - The EMC Directive 2006/66/EC - The Battery Directive 93/68/EEC - CE Marking	
Manufacturer's Name: Manufacturer's Address:	And their amendments EXFO Inc. 400 Godin Avenue Quebec, Quebec Canada, G1M 2K2	
Equipment Type/Environn Trade Name/Model No.:	nent: Test & Measurement / Industrial Next-Generation Multiservice Test Modules / FTB-8120NGE/130NGE	
	AND IQS-8120NGE/8130NGE Power Blazer	
Standard(s) to which Conformit	<u>y is Declared:</u> Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use – Part 1: General Requirements.	
EN 61326-1:2006	Electrical Equipment for Measurement, Control and Laboratory Use - EMC Requirements	
EN 60825-1:2007 Edition 2.0	Safety of laser products – Part 1: Equipment classification and requirements	
EN 55022: 2006 + A1: 2007	Information technology equipment — Radio disturbance characteristics — Limits and methods of measurement	
I, the undersigned, hereby declare the	t the equipment specified above conforms to the above Directives and Standards.	
Manufacturer Signature:	Bulg	
Full Name: Stephen Bull, E Eng Position: Vice-President Re	search and	
Address: Development 400 Godin Avenue, Canada, G1M 2K2	Quebec (Quebec),	
Date. February 1, 2009		

Introducing the FTB-8100 Series Transport Blazer

Fully integrated test solution supporting next-generation SONET/SDH, optical transport network (OTN), Ethernet, and Fibre Channel test functions.

This user guide covers the FTB-8100 Series of modules including the FTB-8105, FTB-8115, FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130NG, FTB-8130NGE, and FTB-8140.

This user guide only covers the "SONET/SDH Application" which covers DSn/PDH, next-generation SONET/SDH, and OTN test fuctions. Refer to the "Ethernet and Fibre Channel Application" user guide for more information on Ethernet and Fibre Channel test functions.

SONET/SDH and OTN Service Turn-up and Troubleshooting

The FTB-8100 Series Transport Blazer modules offer a wide range of SONET/SDH and OTN test functions, allowing users to perform tests ranging from simple bit error rate (BER) testing to advanced characterization and troubleshooting procedures.

Next-Generation SONET/SDH Testing

The FTB-8120NG, and FTB-8130NG, FTB-8120NGE, and FTB-8130NGE modules support Next-Generation SONET/SDH capabilities in addition to providing SONET/SDH test functions.

Available Next-Generation SONET/SDH test functionality include generic framing procedure (GFP), virtual concatenation (VCAT) and link capacity adjustment scheme (LCAS).

1

SmartMode: Real-Time Signal Structure Discovery and Monitoring

The Transport Blazer supports a unique feature called SmartMode, which automatically discovers the signal structure of the OC-n/STM-n line including mixed mappings and virtual concatenation (VCAT) members. In addition to this in-depth multichannel visibility, SmartMode performs real-time monitoring of all discovered high-order paths and user selected low-order paths simultaneously, providing users with the industry's most powerful SONET/SDH multichannel monitoring and troubleshooting solution. SmartMode is not supported on the FTB-8140.

Multiplatform Support and Versatility

The FTB-8105/15/20/30 modules share a unique architecture that allows them to be supported and interchangeable on both the FTB-400/500 Universal Test System and the FTB-200 Compact Platform. This cross-platform support provides users with added flexibility by enabling them to select the appropriate platform that suits their testing needs. EXFO is the first and only test solution provider to offer this versatility, delivering single to multi-application test solutions with the same hardware module, which in turn dramatically reduces capital expenditures. The FTB-8140 is only supported on the FTB-500.

Key Features

- DS0/E0 to OC-192/STM-64/OTU-2; 10 Mbit/s to 10 Gbit/s LAN/WAN as well as 1x, 2x, 4x, and 10x Fibre Channel testing (Ethernet and Fibre Channel testing is only available with the FTB-8120NGE, and FTB-8130NGE modules)
- OC-768/STM-256 testing with STS-1/AU-3 granularity available on the FTB-8140
- Supports SONET, SDH, DSn, PDH and Next-Generation SONET/SDH and OTN testing
- OTN forward error correction (FEC) and optical channel data unit (ODU) multiplex testing capabilities as per ITU-T G.709
- Offers ODU0 (1.25 Gbit/s) container with Gigabit Ethernet and SONET/SDH client signals for qualifying transport and datacom services over OTN
- Supports circuit (CBR) and packet (Ethernet) ODUflex testing capabilities for optical transport network (OTN) bandwidth optimization
- Unframed optical signal testing at 10.7 Gbps, 11.0491 Gbps, 11.0957 Gbps, 11.270 Gbps, and 11.317 Gbps rates
- Overclocked OTU2 rates: OTU1e (11.049 Gbps), OTU2e (11.096 Gbps), OTU1f (11.270 Gbps), and OTU2f (11.317 Gbps)
- ► EoOTN testing using internally generated 10 GigE LAN and mapping onto OTU1e and OTU2e rates (FTB-8130NG and FTB-8130NGE)
- ► Ethernet-over-SONET/SDH (EoS) testing for GFP, VCAT and LCAS
- Comprehensive Fibre Channel test capabilities, including framed and unframed BERT, buffer-to-buffer credit estimation, and round-trip latency measurements
- ► Fully integrated solution for assessing the performance of Ethernet transport networks, including RFC 2544 and BER test functionalities

Introducing the FTB-8100 Series Transport Blazer

Module-Related Information

- SmartMode signal structure discovery for rates of up to 10 Gbps, with simultaneous monitoring of all discovered STS/AU and user selected VT/TUs channels. Not supported on the FTB-8140.
- Intuitive, feature-rich graphical user interface (GUI) with available automated test scripting and available multi-user remote management capabilities
- Supported on FTB-200 (except for the FTB-8140) and FTB-500 platforms, optimizing capital expenditures

Module-Related Information

This user guide describes the functionality of the Transport Blazer on the FTB-500.

- ▶ FTB-8100 Series indicates that the statement applies to all modules: FTB-8105, FTB-8115, FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130, FTB-8130NG, FTB-8130NGE, and FTB-8140.
- ▶ FTB-8105/15/20/30 indicate that the statement applies to the following modules: FTB-8105, FTB-8115, FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130, FTB-8130NG, and FTB-8130NGE.
- ▶ FTB-8115/20/30 indicate that the statement applies to the following modules: FTB-8115, FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130NG, and FTB-8130NGE.
- ➤ FTB-8105, FTB-8115, FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130, FTB-8130NG, FTB-8130NGE, and FTB-8140 indicate that the statement applies to the specified module(s) only.

Conventions

Conventions

Before using the product described in this manual, you should understand the following conventions:

WARNING

Indicates a potentially hazardous situation which, if not avoided, could result in *death or serious injury*. Do not proceed unless you understand and meet the required conditions.

CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in *minor or moderate injury*. Do not proceed unless you understand and meet the required conditions.

CAUTION

Indicates a potentially hazardous situation which, if not avoided, may result in *component damage*. Do not proceed unless you understand and meet the required conditions.

IMPORTANT

Refers to information about this product you should not overlook.

Laser Safety Warnings

WARNING

When the LASER LED is on or flashing, the FTB-8100 Series is transmitting an optical signal.

WARNING

Do not install or terminate fibres while a laser source is active. Never look directly into a live fibre, and ensure that your eyes are protected at all times.

WARNING

This product may employ a Class 1M SFP or XFP. Check pluggable transceiver label for laser classification. Applies to FTB-8115, FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130, FTB-8130NG, and FTB-8130NGE modules only.

INVISIBLE LASER RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS CLASS 1M LASER PRODUCT

WARNING

Use of optical instruments with this product will increase eye hazard.

Installation Instruction Warnings

CAUTION

This unit is designed for indoor use only.

CAUTION

For FTB-8105/15/20/30: Except for the Dual Bantam connector and the RJ-48C port, all telecom (electrical) interfaces are SELV (Safety Extra Low Voltage) circuitry intended for intra-building use only.

To reduce the risk of fire, use only No. 26 AWG or larger telecommunication line cord.

For FTB-8140: The AUX (BNC) interface employs SELV (Safety Extra Low Voltage) circuitry intended for intra-building use only.

CAUTION

No user serviceable parts are contained inside. Contact the manufacturer regarding service of this equipment.

IMPORTANT

All wiring and installation must be in accordance with local building and electrical codes acceptable to the authorities in the countries where the equipment is installed and used.

CAUTION

Electrostatic Discharge (ESD) Sensitive Equipment:

Plug-in modules can be damaged by static electrical discharge. To minimize the risk of damage, dissipate static electricity by touching a grounded unpainted metal object

- **>** before removing, inserting, or handling the module.
- **>** before connecting or disconnecting cables to/from the module.
- ► before inserting or removing SFP/XFPs to/from the module.

3 Getting Started

If the FTB-8100 Series Transport Blazer has been purchased at the same time as the FTB-500, the FTB-8100 Series module is pre-installed with the appropriate ToolBox software version.

ToolBox Installation

ToolBox is the baseline software and thus needs to be installed on the FTB-500 before using the FTB-8100 Series module.

Note: Refer to the FTB-500 platform user guide for more information on ToolBox installation procedure.

Inserting and Removing Test Modules

CAUTION

Never insert or remove a module while the FTB-500 is turned on. This will result in immediate and irreparable damage to both the module and unit.

WARNING

When the laser safety light () is flashing on the FTB-500, at least one of your modules is emitting an optical signal. Please check all modules, as it might not be the one you are currently using.

Note: Refer to the FTB-500 platform user guide for more information on how to insert a module into the FTB-500 or to remove a module from the FTB-500. For FTB-8140, use respectively the retaining screw number 2, 3, or 4 (from bottom to top) depending if the module is inserted in slots 0 to 5, 1 to 6, or 2 to 7.

Turning the Unit On

Turn on the FTB-500. Refer to the FTB-500 platform user guide for more information.

Physical Interfaces and LEDs

This section describes the connectors (ports) and LEDs available on each module.

Modules

4

FTB-8105 Module

SONET/SDH analyzer up to 155 Mbps.

FTB-8115 Module

SONET/SDH analyzer up to 2.5 Gbps.

FTB-8120/FTB-8120NG/FTB-8120NGE Module

SONET/SDH/OTN analyzer up to 2.7 Gbps. The **FTB-8120NGE** also offers 1 Gbps Ethernet and up to 4x Fibre Channel testing; refer to the "Ethernet and Fibre Channel Application" user guide for more information.

FTB-8130/FTB-8130NG/FTB-8130NGE Module

SONET/SDH/OTN analyzer up to 11.1 Gbps. The **FTB-8130NGE** also offers 10 Gbps Ethernet and up to 10x Fibre Channel; refer to the "Ethernet and Fibre Channel Application" user guide for more information.

with OC-192/STM-64/OTU2/OTU1e/OTU2e/OTU1f/OTU2f configuration

Modules

FTB-8140

SONET/SDH/OTN 40/43 Gbps analyzer.

Two models are available:

- ► FTB-8140-NRZ: SONET/SDH/OTN test module with 40/43 Gbit/s, 1550 nm, NRZ 2 km transponder.
- ► FTB-8140-DPSK: SONET/SDH/OTN test module with 40/43 Gbit/s, tunable DPSK transponder.

Port Availability on FTB-8100 Series Module

The following table shows the list of available ports as well as a description and signals supported for each module. For Ethernet and Fibre Channel ports, refer to the "Ethernet and Fibre Channel Application" user guide.

Port labelled	Description	Supported signal(s)	Module
155M-2.5G	Optical IN/OUT port small form factor pluggable (SFP)	OC-3/STM-1, OC-12/STM-4, OC-48/STM-16	FTB-8115
155M-2.7G	Optical IN/OUT port small form factor pluggable (SFP)	OC-3/STM-1, OC-12/STM-4, OC-48/STM-16, OTU1	FTB-8120 FTB-8120NG FTB-8130 FTB-8130NG
100M-4.25G	Optical IN/OUT port small form factor pluggable (SFP)	OC-3/STM-1, OC-12/STM-4, OC-48/STM-16, OTU1, Ethernet 100Mbps, Ethernet 1000Mbps, FC 1x, FC 2x, FC 4x	FTB-8120NGE FTB-8130NGE
10G-11.3G	Optical IN/OUT port 10G small form factor pluggable (XFP)	OC-192/STM-64, OTU2, OTU2e, OTU1e, OTU1f, OTU2f, Ethernet 10Gig (FTB-8130NGE), FC 10x (FTB-8130NGE)	FTB-8130 FTB-8130NG FTB-8130NGE
40G/43G	Optical IN/OUT	OC-768/STM-256, OTU3	FTB-8140
2M/8M/34M/ 45M/52M/ 140M/155M, or 2M-155M	Electrical IN/OUT port BNC	E1/2M, E2/8M, E3/34M, DS3/45M, STS-1e/STM-0e/52M, E4/140M, STS-3e/STM-1e/155M	FTB-8105/15/ 20/30
1.5M/2M	Electrical IN/OUT port Bantam	DS1/1.5M, E1/2M	FTB-8100 Series
1.5M/2M	Electrical port RJ-48C	DS1/1.5M, E1/2M	FTB-8100 Series
AUX	Electrical port BNC	DS1/1.5M/E1/2M/2 MHz signal for external clock synchronization, or DS1/DS3 signal for Dual RX test.	FTB-8100 Series

Physical Interfaces and LEDs

Port Availability on FTB-8100 Series Module

Port labelled	Description	Supported signal(s)	Module
REF OUT	Reference output port	See Clock Interface Connections	FTB-8130
	SMA	on page 22 for more information.	FTB-8130NG
			FTB-8130NGE
			FTB-8140
Ethernet	Electrical Ethernet	10/100/1000 Mbps (electrical)	FTB-8120NG
10/100/1000M	port RJ-45		FTB-8130NG
			FTB-8120NGE
			FTB-8130NGE
Gig-E /	Optical IN/OUT	1000 Mbps (optical)	FTB-8120NG
ETHERNET	Ethernet port small		FTB-8130NG
ADD/DROP	form pluggable (SFP)		FTB-8120NGE
			FTB-8130NGE

OTN/OC-N/STM-N Interface Connections

For FTB-8115/FTB-8120/FTB-8120NG/FTB-8120NGE/FTB-8130/FTB-8130NG/ FTB-8130NGE, plug the supplied SFP/XFP module into the respective slot on the module. Only use EXFO qualified SFP/XFPs. Using non-qualified SFP/XFPs can affect the Performance and accuracy of the optical port.

Description	Wavelength	Reach	Part Number
Multirate (155/622 Mbps, 2.5/2.7 Gbps/FC 1x/2x) optical SFP transceiver module with LC connector	1310 nm	short (15 Km)	FTB-8190
	1310 nm	intermediate (40 Km)	FTB-8191
	1550 nm	intermediate (40 Km)	FTB-8193
	1550 nm	long (80 Km)	FTB-8192
Multirate (10/10.7 Gbps) optical XFP transceiver module with LC connector	1310 nm	Short (10 Km)	FTB-81900
	1550 nm	Intermediate (40 Km)	FTB-81901
	1550 nm	Long (80 Km)	FTB-81902
Multirate (10/11.3 Gbps) optical XFP transceiver module with LC connector	1310 nm	Short (10 Km)	FTB-81903

Note: Do not replace a SFP/XFP while the test is running to avoid distorting statistics. First stop the test case, replace the SFP/XFP and then restart the test.

Carefully connect optical fibre cables to the SFP/XFP's (FTB-8115, FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130NG, and FTB-8130NGE) or transponder (FTB-8140) IN and OUT ports. To ensure good signal quality, make sure that the optical fibre connector is fully inserted into the optical connector port.

CAUTION

To prevent exceeding the maximum input power level please use an attenuator when a loopback configuration is used.

- ► LASER red LED: The LASER LED is on when the FTB-8100 Series is emitting an optical laser signal.
- ► **RX** green LED: The **RX** LED is on when the FTB-8100 Series is receiving an optical laser signal.

Electrical SONET/DSn/SDH/PDH Interface Connection

- ➤ 2M-155M port: The FTB-8105/15/20/30 provides two BNC connectors, labeled 2M-155M IN and OUT, for E1/2M, E2/8M, E3/34M, DS3/45M, STS-1e/STM-0e/52M, E4/140M, STS-3e/STM-1e/155M testing capability. Connector type is BNC for coaxial 75-ohm cable connection.
- ► **1.5M/2M** Bantam port: The FTB-8105/15/20/30 provides an IN/OUT Bantam connectors for DS1/1.5M and E1/2M testing capability.
- ► **1.5M/2M** RJ-48C port: The FTB-8105/15/20/30 provides an IN/OUT RJ-48C connectors for DS1/1.5M and E1/2M testing capability.
- **Note:** Dual RX test case uses the BNC labelled AUX as the second RX port.

Connect the signal to be tested to the corresponding port.

Clock Interface Connections

- ➤ AUX port: The FTB-8100 Series provides one connector, labeled AUX, that can be used either for DS1 (1.5M)/E1 (2M)/2 MHz external clock synchronization signal or as the second RX port for Dual RX (DS1 or DS3) testing (FTB-8105/15/20/30). This port is unidirectional and can be used either for input or output. Connector type is BNC for coaxial 75-ohm cable connection. An adapter cable (BNC to Bantam) is required for Bantam connection (not supplied).
- ➤ REF OUT port: The FTB-8130/FTB-8130NG/FTB-8130NGE/FTB-8140 provides one connector, labeled REF OUT, that can be used for the following clock signals. Connector type is SMA.

Clock		Output frequency for						
divider	OC-192/ STM-64	ΟΤU2	OTU1e	OTU2e	OTU1f	OTU2f		
16	622.08 MHz	669.33 MHz	690.57 MHz	693.48 MHz	704.38 MHz	707.35 MHz		
32	311.04 MHz	334.66 MHz	345.29 MHz	346.74 MHz	352.19 MHz	353.68 MHz		
64	155.52 MHz	167.33 MHz	172.64 MHz	173.37 MHz	176.10 MHz	176.84 MHz		

For OC-192/STM-64/OTU2/OTU1e/OTU2e/OTU1f/OTU2f

For OC-768/STM-256/OTU3

Output frequency for OC-768/STM-256	Output frequency for OTU3		
2488.3 MHz	2688.7 MHz		

Ethernet 10/100/1000Base-T Interface Connection

ETHERNET 10/100/1000M port: The FTB-8120NG/FTB-8130NG/ FTB-8120NGE/FTB-8130NGE provides an Ethernet port for electrical 10/100/1000 Mbps Ethernet connection allowing Ethernet testing through GFP.

Connect the signal to be tested to the ETHERNET 10/100/1000M RJ-45 port.

LED	Status	Description
LINK/ACT	On	Ethernet link up.
	Off	Ethernet link down.
	Flash	TX/RX activity.
DUPLEX	On	Full Duplex mode.
	Flash	Collisions are detected.

Ethernet ADD/DROP Gig-E Interface Connection

ETHERNET ADD/DROP port: The FTB-8120NG/FTB-8130NG/

FTB-8120NGE/FTB-8130NGE provides a 1Gig-E port for optical 1000Base-X Ethernet connection allowing GFP and Ethernet testing.

Plug the supplied SFP modules into the ETHERNET ADD/DROP slot.

Only use EXFO qualified SFPs. Using non-qualified SFPs can affect the Performance and accuracy of the optical port.

Supported SFPs

Description	Wavelength	Reach	Part Number
GigE/FC/2FC optical SFP	850 nm	MMF < 500 m	FTB-8590
connector	1310 nm	10 Km	FTB-8591
	1550 nm	90 Km	FTB-8592
Multirate (155/622 Mbps, 2.5/2.7 Gbps/FC 1x/2x) optical SFP transceiver module with LC connector	1310 nm	short (15 Km)	FTB-8190
	1310 nm	intermediate (40 Km)	FTB-8191
	1550 nm	intermediate (40 Km)	FTB-8193
	1550 nm	long (80 Km)	FTB-8192

- ► The **LASER** LED lights up indicating that the Gig-E port is emitting an optical signal.
- > The **RX** LED lights up indicating that the Gig-E port is receiving data.

Status LED

Indicates the status of the FTB-8100 Series module. The **STATUS** LED is green when the module is active and operates normally. The **STATUS** LED is yellow when the module is in the booting process. The **STATUS** LED is red to indicate a failure of the module.

Introducing and Using the Graphical User Interface

Starting the FTB-8100 Series Transport Blazer Application

To Start the FTB-8100 Series Application:

- 1. Once your FTB-8100 Series module is installed, turn on the FTB-500.
- In the ToolBox main window, under Modules, press FTB-8105, FTB-8115, FTB-8120, FTB-8120NG, FTB-8130, FTB-8130NG, FTB-8120NGE, FTB-8130NGE, or FTB-8140 once to select the module.

T EXFO ToolBox		
Modules A	Applications 😵 Tools EXFO ToolBox	
Modules	Main Menu	
Type Slot	Status Description	
0 (0-1)	FTB-8130NG Ready Transport Blazer FTB-8130NG (10.7Gb/s) Sitv456530	
	T EXFO ToolBox	- 2 🛛
	Modules Applications 🌮 Tools	EXFO ToolBox
	Modules	Main Menu
	Type Slot Status Description	Optical Power Meter
	FTB-8130NGE 0 (0-1) Ready Transport Blazer FTB-8130NGE (10.7Gb/s) S/N:456530	and VFL
		Fiber Inspection Probe
		Setup
Module Applications		System Information
	Module Applications Module Information	
	NetworkAnalyzer Start Application	Help
	🕲 🚺 🚺 🛄 🖓 Local	1/23/2009 3:21 PM

3. In the **Module Applications** bar, press **SONET/SDH Analyzer** or **Network Analyzer** (FTB-8120NGE/FTB-8130NGE) to start the application. Alternatively, press the **Start Application** button to start the module application or the **Network Analyzer**.

5

Introducing and Using the Graphical User Interface

Starting the FTB-8100 Series Transport Blazer Application

4. This step applies to the FTB-8120NGE/FTB-8130NGE module only. The Network Analyzer allows to either run the SONET/SDH or the Packet Analyzer. Both analyzers cannot run simultaneously. Press SONET/SDH Analyzer to start the module for SONET/SDH/OTN test.

Applications About	Network Analyzer (DEMO)
Available Applications	Application Status Packet Analyzer (DEMO) (Running)
Packet Analyzer	

Note: Refer to the Ethernet and Fibre Channel Application user guide for more information on Packet Analyzer.

The exit button (X) closes the **Network Analyzer**, **SONET/SDH Analyzer**, and/or **Packet Analyzer** applications. If a test is created, one of the following confirmation messages is displayed, based on the standalone feature status (enabled or not). Refer to the FTB-500 user guide for more information on the standalone feature.

- The following message is displayed when exiting the GUI while a test is created and standalone is disabled.
 Are you sure you want to exit the Network Anlyzer, SONET/SDH Analyzer, and Packet Analyzer? Any unsaved information will be lost.
- The following message is displayed when exiting the GUI while a test is created and standalone is enabled.

Exiting the application will maintain the module alive as the Standalone mode is enabled. Are you sure you want to exit?

Main Window

Main Window

Main Window

Tabs

The GUI application contains the following four main application tabs that contain other tabs.

► TEST Tab

The **TEST** tab gives access to the test creation, configuration, and results.

SmartMode is part of the **TEST** tab and allows to automatically identify the structure of the selected SONET/SDH signal rate that is connected to the **Transport Blazer** module. Refer to *Smart Mode* on page 111 for more information. Not available on the FTB-8140.

Setup is part of the **TEST** tab and allows setting up the test. Refer to page 62 for more information.

Once the test is created, other tabs are enabled allowing configuration of test parameters and viewing of the test status and results.

TEST Sys	stem Tools	About		[3] - EXFO SON	ET/SDH Analyzer		_ ? ×
SmartMode	Setup Summary	Port	0TU2 0	DU2 GFP	10G Ethernet	BERT	
Test [1]/Summar	γ —						
Test H C Global G Log Full C Configuration BERT (Coupled): ortu2 ODU2 GFP 10G Ethernet PRBS 2*31-1	Port H C Rz LOS Pa Pa Pa Frequency Fr Fr Off OTN H C OPI ODU OPI OPI OPI ODU OPI OPI OPI Link Fau Fau Fau Error OPI Fau OPI	eq (dBm) eq (dBm) ifset (pps) H C U • •		HOP LOP GFP Link	DSn/PDH H C DS1/1.5M DS3/45M E1/2M Pattern H C No Traffic D Pattern Loss B Bit Error D	H E2/8M E3/34M E4/140M Main Count Rate 	C Other H C SDT • •
Total Events	ie 🔺 Data Path			Event	Duration	Count	Rate
Alarm Test							
	Start Report	New	Load Sav	e Favorites	Laser	2	

Introducing and Using the Graphical User Interface

Main Window

In this user guide, the tabs are grouped as shown below:

- ► Summary Tabs on page 125
- ► Port Tabs on page 137
- ► OTN Tabs on page 153
- ► SONET Tabs on page 211
- ► DSn Tabs on page 269
- ► *SDH Tabs* on page 303
- ► PDH Tabs on page 369
- ► Ethernet Tabs on page 393
- ► BERT Tabs on page 405
- ► Advanced Tabs on page 411
- > Next-Generation Tabs on page 429
- ► Common Tabs on page 491
- **System** tab; refer to page 519 for more information.
- **Tools** tab; refer to page 551 for more information.
- About tab; gives information on EXFO company, contact, and product software release version.

Application Title

Displays the software application title which is **[x] - EXFO SONET/SDH Analyzer**. Where **x** is the slot ID in which the module is inserted.

A module description appears in front of the **[x]** slot ID when defined in ToolBox. Refer to **Tools**, **Remote Control Configuration**, and **Module Description** field from the FTB-500 user guide for more information.

For Visual Guardian Lite, the IP address of the FTB-500 is inserted after the **[x]** slot ID.

For example: Module #1 - [2] - 10.1.200.25 - EXFO SONET/SDH Analyzer

Minimize

The minimize button (_) allows minimization of a remote **GUI** application (**Visual Guardian Lite**).

Introducing and Using the Graphical User Interface

Main Window

Help

The help button (?) displays the help information on the current window. A window pops up to select the area of the application where help is required. Press **OK** and the help information is immediately displayed.

Help	×
Select a topic	
Test Setup	
C Test Control Bar	
C Test Folder	
C Main Window	
	OK Cancel

It is also possible to navigate through the help information once the help window is open.

Exit

For FTB-8105, FTB-8115, FTB-8120, FTB-8120NG, FTB-8130, FTB-8130NG, and FTB-8140: The exit button (X) closes the current application. If a test is created, one of the following confirmation messages is displayed, based on the standalone feature status (enabled or not). Refer to the FTB-500 user guide for more information on the standalone feature.

 The following message is displayed when exiting the GUI while a test is created and standalone is disabled.

Are you sure you want to exit the FTB-8100 Series Transport Blazer? Any unsaved information will be lost.

► The following message is displayed when exiting the GUI while a test is created and standalone is enabled.

Exiting the application will maintain the module alive as the Standalone mode is enabled. Are you sure you want to exit?

For FTB-8120NGE, and FTB-8130NGE: The exit button (X) switches from the current application to the **Network Analyzer** application. If the test is running, a user confirmation is required to stop the test before switching the application. The swiching puts the application in idle mode meaning that the test case configuration is kept and will be recovered when returning to that application.
Global Test Status

The global test status button displays the alarm, pass/fail verdict, and test timer. Clicking on this button maximizes the view of these status. The maximized view is useful to facilitate distant viewing of these status.

To minimize the view, either click on the global test status button or click anywhere on the maximized status area.

History and current status are reported for all tests at the exception of Multi-Channel SDT test mode which reports the pass/fail verdict when enabled.

- ➤ H (History): Indicates if alarms/errors occurred in the past. A grey background indicates that the test did not run yet, a green background indicates that no alarm/error has occurred, while a red background indicates that at least one alarm/error has occurred.
- Current status: Indicates the current alarm/error status of the test. A grey background indicates that the test is not running (--), a green background indicates that there is no alarm/error active (NO ALARM), while a red background indicates that at least one alarm/error condition is active (ALARM).
- **Note:** The history and current alarm/error status are monitored once the test is started.
 - ➤ Verdict: Reports the SDT test verdict status when enabled. Only available with Multi-Channel SDT test mode.
 - ► PASS is displayed with a green background when all SDT result values are smaller or equal to the configured SDT threshold.
 - ► FAIL is displayed with a red background when any SDT result value is bigger than the configured SDT threshold.
 - "--" is displayed with a gray background when either the SDT threshold is not enabled or the test has not run yet.
 - The test timer indicates the time elapsed since the beginning of the test. The test timer format is "day hour:minute:second".
 - ➤ The test timer icon indicates that the timer configuration is enabled. Refer to *Timer Configuration* on page 130 for more information.

Test Controls

Button	Description
▶ Start	Starts the test. Start is available when the test is created and not running.
Stop	Stops the test. ^a
H. Reset	Resets the history (H) alarm and error LEDs. ^a
S Reset	Resets counters (seconds, count, and rate), test timer and both history (H) and current (C) LEDs for the entire test case. Also resets the logger. ^a
Report	Generates a report of the current test. See <i>Test Report Generation</i> on page 42 for more information. ^b
Para New	Clears the current test. A user's confirmation is required before clearing the test. $^{\rm b}$
Load	Loads a previously saved configuration. Select an existing file and press Open to confirm. The default directory is d:\ToolBox\User Files\SonetSdhAnalyzerG2\Configuration. The configuration file extension is cfg . ^b
	An error message is displayed and the configuration is not loaded when the file is corrupted, the module is not properly installed, the hardware or software options are not compatible, invalid configuration (FTB-8105/15/20/30), or when the resources or power are not sufficient. Refer to <i>Solving Common Problems</i> on page 561 for more information.
Save	Saves the current test configuration. Select an existing file, or type a new name in the File name field, and press Save . The default directory is d:\ToolBox\User Files\SonetSdhAnalyzerG2\Configuration. ^b
Send	Generates pattern bit error according to the amount selected on the Pattern TX tab. Refer to <i>Pattern Error Injection</i> on page 408. ^a
▲ ^{0ff} Laser	Indicates that the laser control is off. Pressing this button will activate the laser immediately by emitting an optical laser signal. This button is only available for optical interfaces. The laser is On by default when the test is created unless otherwise set from the <i>Default Test Preferences</i> on page 530.

Introducing and Using the Graphical User Interface

Global Test Status and Controls

Button	Description
Laser	Indicates that the laser control is on. Pressing this button will turn off the laser. This button is only available for optical interfaces. The laser is On by default when the test is created unless otherwise set from the <i>Default Test Preferences</i> on page 530. The laser control button is not affected when turning off the laser by generating a LOS for example.
Favorites	Provides access to 10 default or customer defined test case configurations. See <i>Favorites</i> on page 40 for more information. ^b
Auto Detect	Allows the detection of the Line Coding , Framing , and Test Pattern of the selected DS1 or DS3 input signal once the test is created. Upon detection of specific alarms, the detection may not be possible, press Retry to invoke the detection again. ^b

a. Only available when the test is running.

b. Only available when the test is not running (Stop).

Remote Status

Indicates whether the remote control feature is enabled/disabled and indicates the number of connections established with the FTB-8100 Series when enabled.

2	Indicates that the remote control feature is disabled. Refer to the FTB-500 user guide for more information on how to enable it.
2	Indicates that a single connection is established with the FTB-8100 Series. The connection can be either local (on the FTB-500) or remote (on a remote PC using Visual Guardian Lite).
	Indicates that at least two connections are established with the FTB-8100 Series. Connections can be a combination of one local (on the FTB-500) and at least one remote connection (on a remote PC using Visual Guardian Lite), two or more remote connections.

Date and Time

Indicates the date (YYYY-MM-DD) and time (HH:MM:SS).

Refer to *Time Options* on page 528 for more information on time format and time zone.

Battery Level/AC Power

Indicates the battery level of the FTB-500 when batteries are installed, or indicates the presence of an AC power source when there is no battery installed.

Note: The FTB-8100 Series module requires an AC power source to operate.

Favorites

Favorites

Favorites gives access to 10 factory test case configurations. Favorites is available when no test is running.

Press _{Favorites}.

avorites List			_
E1-BERT (BNC)			
E3-BERT			
STM-4-AU-4-4c-BERT			
STM-16-AU-4-16c-BERT			
STM-64-AU-4-64c-BERT			
DS1-BERT			
DS3-BERT			
OC-12-STS-12c-BERT			
OC-48-STS-48c-BERT			
OC-192-STS-192c-BERT			
)verwrite Selected Favorite Content - Favorite Name			_
E1-BERT (BNC)			_
		Save	

Favorites List

Allows to select a test case configuration. The test case configuration selected by default is the first one in the list.

- **Note:** Test cases not supported by the current FTB-8100 Series model and its options will not be created.
- **Note:** Favorites may or may not be compatible from one version of software to another. They also may or may not be compatible from one module to another depending on the hardware and software option installed.

Favorites

Overwrite Selected Favorite Content

The factory test case configurations can be modified as well as their default names.

- Favorite Name: Allows changing the name of the test case configuration file. A maximum of 32 characters are allowed in the name.
- Save: Saves the current test case configuration using the specified favorite name.

Load

Loads the selected test case configuration. Loading a favorite configuration automatically clears the current test case.

Factory Default

Resets and regenerates the favorites list based on the module model and its enabled options.

Note: A Default Favorites list is created the first time a specific module is used, based on its module type and options. A favorites list is generated for each module type used (FTB-8105, FTB-8115, FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130, FTB-8130NG, FTB-8130NGE, and FTB-8140). The favorites list for a specific module type is common for all modules of the same type on the FTB-500. The favorites list is not updated even when either a new software option is installed or another module having different options is used. For these reasons, the **Factory Default** button allows to recreate the favorites list based on the current module and its options.

Test Report Generation

Press **Report** from the *Global Test Status and Controls* to generate a report for the current test. The report contains all the information about the test including the job information, system information, interface setup, test summary, test configuration, results, etc.

- **Note:** The Report button is not available while the test is running or the SmartMode alarm scan is running.
- **Note:** Nothing prevents the configuration and alarm/error injection setup while the test has been stopped; thus, the report should be saved before changing any test parameters to avoid discrepancy between the configuration and results.

Information

Report Generator	×
Information Sections	
Job Information	
Job ID	Contractor
1	
Customer	Operator Name
Comment	
Report Settings	
Report Title	Report Header
Report Title	EXFO Electro-Optical Engineering Inc.
Selected Logo	
C:\Program Files\EXFO\Toolbox\User Files\Reports	\Images\Exfo.jpg Browse
Report Format	
html	
View Report After Generation	Default Generate Close

➤ Job Information: These parameters are used to identify the source of the report and are not mandatory. Enter the following job information if required: Job ID, Contractor, Customer, Operator Name, and Comment. Up to 256 characters are allowed for each parameter.

Introducing and Using the Graphical User Interface

Report Settings: These parameters are used to identify the report and are not mandatory. Enter the following report information if needed: Report Title, Report Header, Selected Logo, and Report Format.

Press Browse to select a different logo, then press Open.

Report Format: Select the report file format. Choices are **html**, **csv**, **pdf**, and **txt**. The **CSV** format (comma separated file format) generates a report with comma delimiter for English OS and semicolon for other OS languages. The default setting is **html**.

- ➤ View Report After Generation: Allows displaying the report once it is generated. However, the report can only be displayed when the Windows application supporting the selected Report Format is installed. The View Report After Generation check box is not selected by default.
- **Note:** Once generated, the report file can manually be opened typically using Windows Explorer. The default directory is d:\ToolBox\User Files\SonetSdhAnalyzerG2\Reports.
- **Note:** If the html report contains special characters, please make sure that the encoding in your Web browser is set to Western European ISO. To set the encoding to Western European ISO, right press the report from Internet Explorer, select Encoding, and select Western European ISO.
 - **> Default** button: Press **Default** to restore the default report settings.

Introducing and Using the Graphical User Interface

Test Report Generation

➤ Generate button: Allows generating and saving the report. Select an existing file, or type a new name in the File name field and press OK. The default directory is d:\ToolBox\User Files\SonetSdhAnalyzerG2\Reports.

The report file can be saved on the following locations:

Local memory (FTB-500): The file is saved locally on the FTB-500 memory.

Network drive: The file is saved on a network drive.

USB drive or Compact Flash: The file is saved on a removable drive.

Sections Tab

Report Generator
Information Sections
Pre-defined selection
Summary Report Select All Deselect All
Optical [1]/Port TX
Optical [1]/Port RX
T Optical [1]/STM-16/RS-MS TX
Optical [1]/STM-16/RS-MS RX
⊕ Optical [1]/STM-16/AU-4 [4,4,0]/HOP RX
⊕ - Optical [1]/STM-16/AU-4 [4,4,0]/TU-12 [3,7,3]/LOP TX
⊕ Optical [1]/STM-16/AU-4 [4,4,0]/TU-12 [3,7,3]/LOP RX
⊕
Optical [1]/STM-16/AU-4 [4,4,0]/TU-12 [3,7,3]/DS1/Pattern/Pattern TX
1 ±
View Report After Generation Default Generate Close

- Pre-defined selection: Allows selecting the type of report, and the window underneath allows selecting what will be part of the report. The default setting is Summary Report. Choices are:
 - Summary Report selects the Summary report section only.

SmartMode Report: Selects the SmartMode report section only. SmartMode is not available on the FTB-8140. The Graphical Overview under SmartMode provides a graphical view of the SmartMode information. Graphical Overview is only available when the Report Format from the Information tab is set to html or pdf. The following picture shows an example of the SmartMode Graphical Overview.

Smart M	Smart Mode Graphical Overview								0C-192					
					oc-	-192						Port	Section/Line	
		1		-					1			Alarm Analysis	Error Analysis -	н.с.
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	Generation	9 9 B1	• • • •
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	LOS		🔍 🌒 REI-L
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	Power Level (dBm)	Alarm Analysis —	
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	-3.3	нс	нс
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	Frequency (bps)	B B SEE	AIS-L
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	9953278848	• • •	• • • • • • •
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	Last Smart Scan	Synchronization Sta	atus Message
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	2008-03-11 08:20:56	Quality Unknown (0000)
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1		J0 Trace	
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1			
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1		1	
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1 [1,1]	VT1.5 [1,1]	
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	нс нс	H C	нс
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	B3 • REI-P	BIP-2	REI-V
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	Alarm Analysis	Alarm Analysis	
STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	STS-1	нс нс	нс	нс
VT1.	5	VT1.5		VT1.5	VT	1.5	VT1.	5	VT1.5	1	/Т1.5	AIS-P ERDI-PSD	AIS-V	ERDI-VSD
VT1.	5	VT1.5		VT1.5	VT	1.5	VT1.	5	VT1.5	1	/T1.5	RDI-P RDI-PCD	 RDI-V 	 ERDI-VPD ERDI-VCD
VT 1		VT1 E		VT1 E	VT	-1 E	VT1 1	-	VT1 E		(T1 E	IOM SPDI-P	RFI-V	
V11.	5	V11.5	_	VI 1.5	*1	1.5	*11.	, 	111.5			Path Signal Label (C2)	Path Signal Label (/5)
VT1.	5	VT1.5		VT1.5	VT	1.5	VT1.	5	VT1.5	\ \	/π1.5	Floating VT mode	Test signal, ITU-T	O. 181 specific mapping
												J1 Trace	Extended Signal La	bel
													Reserved	
												Last Alarm Scan Date	J2 Trace	
												2008-03-11 08:21:05		
												Last Trib Scan Date	Last Alere Co	
												2008-03-11 08:21:00	Last Alarm Scan Da	te 05
													2000 03-1100.21.	00

Test Case Report selects all the report sections.

Note: Once the report type is selected, each section can be selected to customize the report.

The **Select All** and **Deselect All** buttons are used to respectively select or deselect all the report sections.

Usual Tab Elements

Once the test is created, different tabs are available allowing test configuration and monitoring. The following section describes usual elements appearing on those tabs.

Erro	r An	alysis				Alan	m An	alysis	
н	С		Seconds	Count	Rate	н	С		Seconds
	۲	B2					0	AIS-L	-
		REI-L						RDI-L	
Sect	ion	Section OH	Section PM	Line Line	OH APS/Adv I	ine O	н	Line PM	

Status LEDs

- ➤ H (History) LED: Indicates that alarms/errors occurred in the past. A grey LED indicates that the test did not run yet, a green LED indicates that no alarm/error has occurred, while a red LED indicates that at least one alarm/error has occurred in the test.
- ➤ C (Current) LED: Gives the current status of the alarm/error. A grey LED indicates that the test is not running, a green LED indicates that there is no alarm/error, while a red LED indicates that at least one alarm/error condition has occurred in the last second.

Note: The H and C LEDs are updated every second.

Alarm/Error Measurements

Note: Alarms/Errors are only monitored once the test is started.

- Seconds: Gives the total number of the seconds in which one or more alarm/error occurred.
- ➤ Count: Gives the number of occurrences of a specific error. The count is displayed using integer value; exponential value (1.00000E10) is used when the count is bigger than the field display capacity.
- ► **Rate**: Calculates and displays the error rate. The rate is expressed using the exponential format with two decimal digits (example: 1.23E-04).
- Percentage values are expressed using one decimal digit. (example: 9.9%).
- ➤ Alphanumeric values display the extended ASCII character set including the *ITU T.50 Characters* on page 57. For Trace Messages using 64-bytes format, the last 2 bytes, Carriage Return and Line Feed, will be displayed within brackets (<cr> and <lf>).

Arrow Buttons

Button	Description
*	Top arrow: Moves to the top of the list.
\$	Page up arrow: Moves one page up.
	Up arrow: Moves one row up.
•	Down arrow: Moves one row down.
*	Page down arrow: Moves one page down.
T	End arrow: Moves to the end of the list.

Table Sorting

Tables offer sorting capabilities on one or more columns.

An arrow next to the column label name, indicates the sorting column field and the sorting order. Pressing again on the selected sort column label will change the sort order.

Pressing another column label allows to sort using a different field.

	Test Logger	[
Table Sort	ID 🔺 Date/Time 🔺	Data Path	Event	Duration Count	Rate

Left and Right Scroll Buttons

Left and right scroll buttons are used to respectively move left and right allowing to see more tabs. The left and right scroll buttons are not always displayed; they are only displayed when required.

TEST	System	Tools	About		SONET/SI)H Analyzer		_ ?	×	
SmartM	ode Setup	Summary	Port	Sec-Line	HOP LOP	Pattern St	DT / RTD	Page #6		 Left and
Optical	1]/OC-48/Sec-L	ine TX							6	Right scroll
Alarm o Type LOF Error II Manu. Type B1 Auton Type B1	ineration	nount ate .5E-05 Con	kinuous	On/Off Send On/Off	Do Trace Format Message	ce				buttons
Section	Section OH	Line Line	OH Line	Advanced]					
Optical	1]/OC-48/Sec-	line RX							6	
Error A	nalysis	Seconda	Count	Date	Alarm Analysis	Seconde				
	B1				I C SEF					
J0 Trac	e				I I I I I I I I I I I I I I I I I I I					
Recei	ed Message	Exp EXP EXP	pected Messag (FO SONET/SI	e DH)	● ● TIM-S					
I⊽ En	able TIM-S	Exp 16	pected Format Bytes	•						
Section	Section OH	Section PM	Line	ine OH Line Ad	vanced Line PM	J				
H [Start Report	New	Load Save	Favorite Laser	.	2	007-04-16 12:0	07:50	

Tab Configuration

Tab Configuration

Once the test is created, other tabs next to the Test tabs are enabled allowing configuration of test parameters and viewing of the test status and results.

A tab configuration button is available at the top-right part of each tab.

TEST System	Tools About		SONET/SDH Analyze	r	_ ? ×	
SmartMode Setup	Summary Port	Sec-Line HOP	LOP Pattern	SDT / RTD	Page #6 🖌 🕨	
Optical [1]/OC-48/Sec-Line	хт хт				<u> </u>	
Alarm Generation Type			10 Trace Format			
LOF		On/Off 🕥		3		
Error Injection Manual			Message			
Type Amou	nt	Cont				
Automated		Send				
Type Rate		0-10%	j Litable frace			
	US Continuous					
Section Section OH	Line OH Line Ad	vanced				
Optical [1]/OC-48/Sec-Line	RX				<u>```</u>	
H C S	ieconds Count	Rate H	rm Analysis C Seco	nds		<u>!</u> .
🛛 🕲 🕲 B1			SEF			lab
- JO Trace	European Massage		lof			Configuration
	EXFO SONET/SDH		• • тім-s			buttons
	.					
Enable TIM-S	Expected Format					
	16 Bytes					
Section Section OH	Section PM Line Line	OH Line Advanced				
H Sta	rt Report New	Doad Save Fav	prite Laser	8 .		

Tab Configuration

This tab configuration window allows configuration of all tabs on any page except for the **SmartMode**, **Test Setup**, and **Summary** tabs. The tab configuration allows also to jump directly to the desired page by selecting it from the *Defined Tabs* list and then pressing **OK**.

Selected Tab

- Tab Name indicates the name of the tab containing the two tabs (top and bottom page). Pressing this field allows changing the tab name. Tab name can be up to 35 characters long including the "/" and spaces.
- **Top Page** indicates the tab displayed at the top of the tab.
- **Bottom Page** indicates the tab displayed at the bottom of the tab.

Tab Configuration

Defined Tabs

Allows the selection of a tab.

Up and down arrows are used to respectively move the selected page up or down in the list.

Insert button allows the insertion of a new tab after the selected tab (the one highlighted) A maximum of 30 tabs can be displayed.

Delete button allows the deletion of the selected tab.

Page Selection

- ► **Type**: Allows the selection of a tab that will be assigned to the selected tab when pressing either **Apply to top page** or **Apply to bottom page**.
- ➤ Path: Indicates the test signal structure (layers/nodes of the test case) corresponding to the selected tab. Refer to Supported Paths/Mappings on page 59 for more information on test layers/nodes.
- ➤ Apply To Top Page: Applies the selected tab as top of page for the selected tab.
- Apply To Bottom Page: Applies the selected tab as bottom of page for the selected tab.
- Note: The available tabs listed are a function of the test path activated. Empty Tab displays a blank tab (Tabs that are not populated are left blank). SmartMode, Test Setup, and Summary tabs cannot be duplicated, deleted, or renamed.

Help Button (?)

Displays the help information related to the tab configuration. It is also possible to navigate through the remainder of the help information.

Default Button

Return to the default page configuration layout.

OK Button

Accepts the page layout changes and jumps to the selected page (Defined tabs).

Cancel Button

Cancels the changes and returns to the page from where the tab configuration was launched.

Keyboard Usage

Keyboard Usage

The GUI pops up different keyboards to modify data. Following are the usual keyboard keys:

- ► Left arrow: Moves the cursor one position to the left.
- ► Right arrow: Moves the cursor one position to the right.
- **Del**: Deletes the value at the cursor position.
- **Back**: Deletes the value preceding the cursor position.
- ➤ Help: Displays the help information related to the keyboard usage. It is also possible to navigate through the help information.
- ► OK and Enter: Completes data entry.
- > Cancel: Closes the keyboard and discards the keyboard entry.
- ► Binary keyboard: Allows entering 0 and 1 values.

User Pattern Input Dialog	
Enter the user pattern	
00000000 0000000 0000000 0	0000000
0 1 Del Back	Validation Information Minimum: 00000000 00000000 00000000 00000000 Maximum: 11111111111111111111111111111111111

Introducing and Using the Graphical User Interface

Keyboard Usage

- > Numerical keyboards: Allows entering integer/decimal values.
 - ► For integer unsigned or signed values.

► For rate values: Allows entering the rate values (0 through 9, and exponent).

Automa	ated Eri	or Rate	e Amount Ir	nput Dialog			
Enter th	ne rate						
1.0E-04	1						
1	2	3	1.0E-02	1.0E-06	Del	Back	Validation Information Minimum: 1.0E-09
4	5	6	1.0E-03	1.0E-07	+	>	Maximum: 1.0E-02
7	8	9	1.0E-04	1.0E-08			
	0		1.0E-05	1.0E-09			
				E-			OK Cancel

► Time Keyboard: Allows entering a time value.

Date keyboard: Allows selecting a date by pressing the date on the calendar. Use the left and right arrow to switch from one month to another or press the month area for quick month selection. Press the year area for quick year selection.

1	Fe	brua	ary,	. 20	07	Þ
Sun	Mon	Tue	Wed	Thu	Fri	Sat
28	29		31	1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	1	2	3
4	5	б	7		9	10
	Tod	lay:	2/	13/:	200'	7

 Hexadecimal keyboards: Allows entering hexadecimal values (0 through 9 and A through F)

Introducing and Using the Graphical User Interface

Keyboard Usage

➤ Full keyboard: Allows entering numbers, letters and some other characters. The **Back**, **Del**, **Shift** and space bar keys have the same functionality as a regular PC keyboard.

Trace message keyboard Allows entering alphanumerical characters (ITU T.50) required for TTI, FTFL, J0, J1, and J2 Trace fields. Press the Ctrl Char button to access these characters.

Expected Message	Input D	ialog										
Enter the expected r	nessage											
EXFO SONET/SDH ^N	L											
• 1 Nu	3	4	5	1 ₅₂	7	8	9	0	I _{S1}	-	← Backspace	Validation Information Maximum: 15 chars.
Tab 🕂 Þc	ET.B	E NQ	D _{C2}	D _{C4}	E _M	N _{AK}	нт	sι	DLE	ts _C	r _{\$3} r _{\$4}	
순 Caps 🔹 So	4 DC3	ε ₀ τ	A _{CK}	₿ _{EL}	BS	Lp	ΥŢ	Fp	;	•	← Enter	E': 45
☆ Shift ●	s _{ug}	C _{AN}	T _X	s _{YN} s	τ _×	5 ₀	c _R	,		/ 1	중 Shift 🔹 🔹	Padding Null
← →			(Spac	e)		0	trl Cha	r. o	¥	1	Delete	OK Cancel

Introducing and Using the Graphical User Interface

Keyboard Usage

		ITU T.50 C	Characters	i	
b7 to b1	Character	Description	b7 to b1	Character	Description
000 0000	NUL	Null	001 0000	DLE	Data Link Escape
000 0001	SOH	Start Of Heading	001 0001	DC1	Device Control 1
000 0010	STX	Start of Text	001 0010	DC2	Device Control 2
000 0011	ETX	End of Text	001 0011	DC3	Device Control 3
000 0100	EOT	End Of Transmission	001 0100	DC4	Device Control 4
000 0101	ENQ	Enquiry	001 0101	NAK	Negative Acknowledge
000 0110	ACK	Acknowledge	001 0110	SYN	Synchronous idle
000 0111	BEL	Bell	001 0111	ETB	End of Transmission Block
000 1000	BS	Backspace	001 1000	CAN	Cancel
000 1001	HT	Horizontal Tabulation	001 1001	EM	End of Medium
000 1010	LF	Line Feed	001 1010	SUB	Substitute character
000 1011	VT	Vertical Tabulation	001 1011	ESC	Escape
000 1100	FF	Form Feed	001 1100	IS4	Information Separator 4
000 1101	CR	Carriage Return	001 1101	IS3	Information Separator 3
000 1110	SO	Shift-Out	001 1110	IS2	Information Separator 2
000 1111	SI	Shift-In	001 1111	IS1	Information Separator 1

Creating and Starting a Test Case

A test case can be created using one of the following methods:

- SmartMode allows signal discovery and alarm/error monitoring. The test can be created according to the detected signal structure.
 SmartMode is only available for SONET/SDH signals (Not supported on the FTB-8140). See *Creating and Starting a Test Case Using SmartMode* on page 122.
- ► **Test Setup** allows the creation of the test case by travelling through the signal structure. See *Introducing the Test Setup* on page 62.
- ➤ Favorites allows setting up the test case by selecting a predefined test configuration. Refer to *Favorites* on page 40.
- Load Configuration allows setting up the test case by loading a previously saved configuration. Refer to Load from the Global Test Status and Controls on page 35.
- Script allows running a script that creates the test case. Refer to Script Tab on page 551.
- **Note:** Once the test case is created, press the **Start** button to start the test. Refer to Global Test Status and Controls on page 35 for more information on test management.

Supported Paths/Mappings

The supported test paths/mappings are presented in the following charts and depend on modules and enabled options. Optical interfaces are not supported on the FTB-8105.

6

Supported Paths/Mappings

OTN/SONET/DSn Interface Path/Mapping

** Next Generation is no available with ODU0 mapping.

OTN/SDH/PDH Interface Path/Mapping

** Next Generation is no available with ODU0 mapping.

Introducing the Test Setup

The **Test Setup** window allows the creation of the test case by navigating through the signal structure. In the case where the GUI is not in the setup window, select the **Setup** tab from the *TEST Tab* (refer to 30).

	TEST System Tools About [3] - EXFO SONET/SDH Analyzer SmartMode Setup	_ ? ×	
	SmartMode Setup Setup Test	Test Config Test Name TEST Clock Mode Internal Test Mode Normal Coupled Coupled Test coupled	— Configuration section
	Test Setup: Modify the test properties or Load a configuration.	Through Through SONET/SDH Intrusive Back Nect Finish	— Test Setup
Data Path — Selector	H	Delete 2006-12-03 10-46:27	Controls

- **Tree** tab allows seeing the configuration test structure (data path).
- Grid tab is used for timeslot selection or test case direction (decoupled test mode).
- ➤ Data Path Selector is used for the selection of each node (for example: port, signal, tributary, VCG, GFP, Pattern) of the test case.
- Configuration section allows parameters configuration for each node of the test.

Test Name represents the name of the test. The default setting is TEST.

► Test Setup Controls:

- Back returns to the previous configuration step allowing to see, change or delete what had been selected.
- Next switches to the next configuration step. The Next button is only available when selection(s) from the Data Path Selector and/or the Grid tab has been made.
- **Delete** deletes the current path node.
- ► Finish/Setup:

Finish completes the configuration and creates the test case. Default parameters will be used for the remaining wizard steps. Thus, pressing **Finish** will automatically add a pattern at the end of the test case structure if not already selected.

Setup is displayed instead of **Finish** once the test is created allowing to return in setup mode. **Setup** is not available when the test is started (running).

The test path is created through the configuration of each layer that must be crossed by the signal under test. The test path contains the following nodes:

For example:

Test	Connector	Signal	Payload/Traffic
Normal - Coupled	Optical	OC-192, Normal, STS-1 Timeslot 1, VT1.5 Timeslot 1, DS1	Pattern

Creating and Starting a Test Case

Introducing the Test Setup

- ➤ The **Test** node is the root of the test case. It allows the configuration of the test name, clock mode and test mode.
- ➤ The Connector node allows the selection and configuration of the physical port.
- The Signal node allows the selection and configuration of the signal. Additional signal nodes are created for each step of the mapped signal level.
- ➤ The **Payload/Traffic** node completes the test path by selecting the pattern or an external traffic such as Ethernet interface with Packet Blazer.

Typical Test Cases

The remaining of this chapter describes how to create the following typical DSn/PDH, SONET/SDH, OTN, Next Generation, and Ethernet over OTN test cases. The availability of test cases depend on the module and activated options.

- Creating an Electrical DSn/PDH Test Case in Normal Mode (FTB-8105/15/20/30) on page 66
- Creating an Electrical DS1 or DS3 Test Case in Dual RX Mode (FTB-8105/15/20/30) on page 71
- Creating an Electrical DS1 Test Case in NI/CSU Emulation Mode (FTB-8105/15/20/30) on page 75
- ▶ Creating an Electrical SONET/SDH Test Case on page 79
- ► Creating an Optical SONET/SDH Test Case (FTB-8115/20/30) on page 83
- ▶ Creating an Optical SONET/SDH Test Case on an FTB-8140 on page 87
- Creating an Optical SONET/SDH/OTN Multi-Channel SDT Test Case (FTB-8120/8130/8140) on page 91
- ► Creating an OTN (OTU1 and OTU2) Test Case on page 92
- ► Creating an OTN (OTU3) Test Case on page 97
- Creating a Next Generation Test Case including VCAT/LCAS and GFP on page 103
- Creating an OTN Overclocked (OTU1e/OTU2e/OTU1f/OTU2f) Test Case (FTB-8130, FTB-8130NG, and FTB-8130NGE) on page 108.

Creating an Electrical DSn/PDH Test Case in Normal Mode (FTB-8105/15/20/30)

The following procedures describe the creation of an electrical DSn/PDH test case in **Normal** mode.

To create an Electrical DSn/PDH Test in Normal mode:

- **1.** Test configuration:
 - **1a.** Select the source **Clock Mode** that will be used for the test. Refer to *Clock Configuration* on page 129 for more information.
 - **1b.** Select **Normal** as the **Test Mode**. Refer to Test Configuration *on page 126* for more information.

Test Config	
Test Name	
TEST	
Clock Mode	
Internal	~
Test Mode	
Normal	~
Coupled	
Through	
OTN Intrusive	
SONET/SDH Intrusive	

- **1c.** Select the **Coupled** check box to set the same settings for both the TX and RX signals or clear the **Coupled** check box to configure the TX and RX signal individually (decoupled).
- 1d. Select the Through check box to loop the RX signal to the TX port. The Clock Mode is automatically set to Recovered when the Through check box is selected.
- **1e.** Leave the **SONET/SDH Intrusive** and **OTN Intrusive** check boxes cleared.
- 1f. Press Next.

Bantam

Typical Test Cases

RJ-48C

- **2.** Interface connector selection:
 - **2a.** From the data path selector, press the desired electrical interface connector.

BNC for DS3, E4, E3, E2, and E1. **Bantam** for DS1and E1. **RJ-48c** for DS1 and E1.

2b. For **Decoupled** test mode, both TX and RX ports have to be selected and configured:

> First select the interface type for TX from the data path selector then proceed with the

RX TX
RX TX

rest of the test setup steps to set the test parameters for the TX interface. At the end, do not press **Finish** yet. Press **Back** to return to the RX/TX selection screen and select the interface type for RX from the data path selector then proceed with the rest of the test setup steps to set the test parameters for the RX interface.

2c. Press Next.

3. Interface selection and configuration:

STS-1e

STS-3e

STM-0e

STM-1e

DS3

E1

E2

E3

E4

- 3a. Press the desired interface: DS3, DS1, E4, E3, E2, or E1.
- 3b. Select the Framing, Line Coding, TX LBO (DSn interface only), and RX Termination Mode. Term, Mon, and Bridge (DS1/E1 only) termination mode are available. For more information, refer to TX - DSn Tabs on page 269 or PDH Tabs on page 369 for the framing, Port TX (Electrical Interfaces) on page 138 for Line Coding and

LBO, to RX - *DSn Tabs* on page 269 or *PDH Tabs* on page 369 for Termination Mode.

- *3c.* For DS1, select the **Enable FDL** check box to allow facility data link testing.
- *3d.* For DS1/E1, select the **Enable DS0/E0** check box to allow DS0 or E0 testing.
- **3e.** For DS3 interface, select the **Enable FEAC** check box to allow far end alarm and control testing.
- 3f. Press Next or Finish.

Creating and Starting a Test Case

Typical Test Cases

- **4.** Select the test path/mapping (For DS3, E4, E3, and E2).
 - 4a. From the data path selector, press the desired mapping then press the timeslot from the Grid tab. Choices depend on the selected interface. See Supported Paths/Mappings on page 59 for more information.

	DS2 [1]	DS2 [2]	DS2 [3]	DS2 [4]	DS2 [5]	DS2 [6]	D52	[7]
DS1 [1]	1	1	1	1	1	1	1	
DS1 [2]	2	2	2	2	2	2	2	
DS1 [3]	3	3	3	3	3	3	3	
DS1 [4]	4	4	4	4	4	4	4	
Pat	h Setup: Select a	mapping and its	position or a pa	yload.			Tree	Grid
	DS	51		E1		Patterr	n	

4b. Select the **Framing**. For more information, refer to DSn Tabs *on page 269* or PDH Tabs *on page 369*.

E1 [1,1] Config	DS1 [1,1] Config
Framing PCM30	Framing ESF
Enable E0	Enable FDL
	Enable DS0

- 4c. For DS1, select the Enable FDL check
 box to allow facility data link testing. For
 Dual RX test, FDL is only available for the primary DS1 TX/RX port.
- *4d.* For DS1/E1, select the **Enable DS0/E0** check box to allow DS0 or E0 testing.
- 4e. For Pattern, go to step 5.
- 4f. Press Next or Finish.
- **4g.** Repeat step 4 as required to complete the path/mapping. See *Supported Paths/Mappings* on page 59 for more information.
- **5.** Pattern Configuration:
 - *5a.* Set the pattern parameters. Refer to *Pattern TX* on page 405 and *Pattern RX* on page 409 for more information.

Pattern Config		
Configuration Test Pattern PRBS 2^23-1	•	
☐ Invert ☐ Live Traffic		

- **6.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switch to the **Alarm** summary tab.
- 7. For additional configuration parameters and results, refer to *Summary Tabs* on page 125, *Port Tabs* on page 137, *DSn Tabs* on page 269, *PDH Tabs* on page 369, *BERT Tabs* on page 405, *Advanced Tabs* on page 411, and *Common Tabs* on page 491.
- **8.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.
Creating an Electrical DS1 or DS3 Test Case in Dual RX Mode (FTB-8105/15/20/30)

The following procedures describe the creation of an electrical DS1 or DS3 test case in **Dual RX** mode.

To create an Electrical DS1 or DS3 Test in Dual RX mode:

- **1.** Test configuration:
 - **1a.** Select the source **Clock Mode** that will be used for the test. Refer to *Clock Configuration* on page 129 for more information.
 - **1b.** Select **Dual RX** (DS1 or DS3 signals) as the **Test Mode**. Refer to Test Configuration *on page 126* for more information.

Test Config	
Test Name	
Clock Mode	
Test Mode	<u> </u>
Dual RX	<u> </u>
Through	
CTN Intrusive	
SONET/SDH Intrusive	

The **Coupled** check box is automatically

selected for Dual RX mode meaning that the settings for both the TX and RX signals are the same.

- 1c. Press Next.
- **2.** Interface connector selection:
 - **2a.** From the data path selector, press the desired electrical interface connector.

BNC for DS3, Bantam or RJ-48c for DS1.

2b. Press Next.

- **3.** Interface configuration:
 - Select the Framing, Line Coding, TX LBO, and RX Termination Mode. Term, Mon, and Bridge (DS1 only) termination modes are available. For more information, refer to TX - DSn Tabs on page 269 or PDH Tabs on page 369 for the framing, Port TX (Electrical Interfaces) on page 138 for Line Coding and LBO, or RX DSn Tabs on page 269.
 - **3b.** Select the **Termination Mode** for both RX ports. **Dual RX** test case uses the BNC labelled **AUX** for the second RX port.
 - *3c.* For DS1, select the **Enable FDL** check box to allow facility data link testing.
 - *3d.* For DS1/E1, select the **Enable DS0/E0** check box to allow DS0 or E0 testing.
 - *3e.* For DS3 interface, select the **Enable FEAC** check box to allow far end alarm and control testing.
 - 3f. Press Next or Finish.

DS1 Config	DS3 Config
Framing	Framing
ESF	C-Bit Parity
Enable FDL	Enable FEAC
	Line Coding
Enable DS0	B3ZS 💌
Line Coding	
B8Z5	ТХ
	LBO
тх ———	0 to 225 feet range
LBO	
0.0 dBdsx	RX
	Termination Mode
RX	Term
Termination Mo	de
Term	~

Creating and Starting a Test Case

Typical Test Cases

- **4.** For DS3, select the test path/mapping.
 - 4a. From the data path selector, press the desired mapping then press the timeslot from the Grid tab. Choices depend on the selected interface. See Supported Paths/Mappings on page 59 for more information.

	DS2 [1]	DS2 [2]	DS2 [3]	DS2 [4]	DS2 [5]	DS2 [6]	DS2 [7]
DS1 [1]	1	1	1	1	1	1	1
DS1 [2]	2	2	2	2	2	2	2
DS1 [3]	3	3	3	3	3	3	3
DS1 [4]	4	4	4	4	4	4	4
Pat	h Setup: Select a	mapping and its	position or a pa	yload.			Tree Grid
	DS	1		E1		Patterr	1

4b. Select the **Framing**. For more information, refer to DSn Tabs *on page 269*.

E1 [1,1] Config	DS1 [1,1] Config
Framing PCM30	Framing ESF
Enable E0	Enable FDL
	Enable DS0

- *4c.* For DS1, select the **Enable FDL** check box to allow facility data link testing. FDL is only available for the main DS1 TX/RX port.
- **4d.** For DS1, select the **Enable DS0/E0** check box to allow DS0 or E0 testing.
- 4e. For Pattern, go to step 5.
- 4f. Press Next or Finish.
- **4g.** Repeat step 4 as required to complete the path/mapping. See *Supported Paths/Mappings* on page 59 for more information.
- **5.** Pattern Configuration:
 - *5a.* Set the pattern parameters. Refer to *Pattern TX* on page 405 and *Pattern RX* on page 409 for more information.

Pattern Config		
Configuration Test Pattern]
PRB5 2^23-1	•	
Invert		
🔲 Live Traffic		

- **6.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switch to the **Alarm** summary tab.
- 7. For additional configuration parameters and results, refer to *Summary Tabs* on page 125, *Port Tabs* on page 137, *DSn Tabs* on page 269, *PDH Tabs* on page 369, *BERT Tabs* on page 405, *Advanced Tabs* on page 411, and *Common Tabs* on page 491.
- **8.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

Creating an Electrical DS1 Test Case in NI/CSU Emulation Mode (FTB-8105/15/20/30)

The following procedures describe the creation of an electrical DS1 test case in **NI/CSU Emulation** mode.

To create an Electrical DS1 Test in NI/CSU Emulation mode:

- **1.** Test configuration:
 - 1a. Select NI/CSU Emulation as the Test Mode: Normal. Refer to Test Configuration on page 126 for more information. The Coupled check box must be selected to allow NI/CSU Emulation mode selection.

The **Clock Mode** is automatically set to **Recovered**. Refer to *Clock Configuration* on page 129 for more information.

Test Config
Test Name
TEST
Clock Mode
Recovered
Test Mode
NI/CSU Emulation 👻
Coupled
Through
CTN Intrusive
SONET/SDH Intrusive

- 1b. Press Next.
- **2.** Interface connector selection:
 - 2a. From the data path selector, press the desired electrical interface connector: Bantam or RJ-48c.
 - 2b. Press Next.

- **3.** Interface configuration:
 - 3a. From the Interface tab, select the Framing, Line Coding, and TX LBO.

The **RX Termination Mode** is set to **Term**.

For more information, refer to *DS1/1.5M TX* on page 275 for the framing, *Port TX (Electrical Interfaces)* on page 138 for Line Coding and LBO, and to *DS1/1.5M RX* on page 278 for Termination Mode.

Enable FDL check box is automatically selected to allow facility data link testing.

3b. From the Loopback tab, select the loopback control Mode: Manual or Auto-Response.

3c. For Manual:

Select the **Type** of loopback code that will be applied: **None, Line,** or **Payload**. **Payload** is only available with SF and ESF framings.

The **Loopback Active** LED indicates the presence of an active loopback.

3d. For Auto-Response:

Select the **Type** of loopback code on which the module will respond: **In-Band** or **Out-of-Band**. **Out-of-Band** is only available when the interface framing is set to **ESF**.

DS1 Config	
Framing	
ESF	-
🔽 Enable FDL	
Line Coding	
B8ZS	-
хт ———	
LBO	
0.0 dBdsx	-
RX	
Termination Mode	
Term	-
Interface Loopback	

DS1 Config	DS1 Config
Mode	Mode
Auto-Response	Manual
Туре	Туре
Out-of-Band	None 💌
Loop Code	
ISDN Line (NT2)	LoopbackActive
Loop-Up	
001011101111111	
Loop-Down	
0010010011111111	
Force Release	
LoopbackActive	
Interface Loopback	Interface Loopback

In-Band loop code	Loop-UP Code	Loop-Down Code	
CSU	10000	100	
NIU FAC1	1100	1110	
NIU FAC2	11000	11100	
NIU FAC3	100000	100	
Loop Code1 to 10	Refer to DSn Loop Codes on page 543 for more information.		
User Defined	Loop-Up and Loop-Down range is from 000 to 11111111111111111 . The default DS1 loop codes correspond to the DS1 In-Band loop codes (Loop-Up= 10000 , and Loop-Down= 100).		

Select the Loop Code:

Out-of-Band loop code	Loop-UP Code	Loop-Down Code
Line	00001110 11111111	00111000 11111111
Payload	00010100 11111111	00110010 11111111
Reserved For Network Use	00010010 11111111	00100100 11111111
ISDN Line (NT2)	00101110 11111111	00100100 11111111
CI/CSU Line(NT1)	00100000 11111111	00100100 11111111

The **Loop-UP** and **Loop-Down** values are automatically updated to the **In-Band** or **Out-of-Band** selection (**Type**). However these fields are editable when the **Loop Code** is set to **User Defined**.

The **Force Release** button allows to release a loopback condition initiated from the network. Only available when a loopback is active.

The **Loopback Active** LED indicates the presence of an active loopback.

3e. Press Next or Finish.

4. Press Finish to complete the test setup.

The DS1 Loopback function is now operational; no need to start the test. However, the test may be started to monitor the condition of the DS1 line connection to that test equipment.

- **5.** For additional configuration parameters and results, refer to *Summary Tabs* on page 125, *Port Tabs* on page 137, and *DSn Tabs* on page 269.
- **6.** For additional configuration parameters and results, refer to the following chapters: Summary, Port, and DSn tabs.
- **7.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

Creating an Electrical SONET/SDH Test Case

To create an Electrical SONET/SDH Test on an FTB-8105/15/20/30:

- **1.** Test configuration:
 - **1a.** Select the source **Clock Mode** that will be used for the test. Refer to *Clock Configuration* on page 129 for more information.
 - **1b.** Select **Normal** as the **Test Mode**. Refer to Test Configuration *on page 126* for more information.

Test Config	
Test Name TEST	
Clock Mode	
Internal	~
Test Mode	
Normal	~
Coupled	
Through	
OTN Intrusive	
SONET/SDH Intrusive	

- **1c.** Select the **Coupled** check box to set the same settings for both the TX and RX signals or clear the **Coupled** check box to configure the TX and RX signal individually (decoupled).
- 1d. Select the Through check box to loop the RX signal to the TX port. The Clock Mode is automatically set to Recovered when the Through check box is selected.
- **1e.** Leave the **SONET/SDH Intrusive** and **OTN Intrusive** check boxes cleared.
- 1f. Press Next.

Creating and Starting a Test Case

Typical Test Cases

- **2.** Interface connector selection:
 - 2a. From the data path selector, press the BNC electrical interface connector.
 BNC Bantam
 RJ-48C
 - **2b.** For **Decoupled** test mode, both TX and RX ports have to be selected and configured:

First select the interface type for TX from the data path selector then proceed with the

RX	тх

rest of the test setup steps to set the test parameters for the TX interface. At the end, do not press **Finish** yet. Press **Back** to return to the RX/TX selection screen and select the interface type for RX from the data path selector then proceed with the rest of the test setup steps to set the test parameters for the RX interface.

- 2c. Press Next.
- **3.** Interface selection and configuration:
 - 3a. Press the desired interface: STS-3e, STS-1e, STM-1e, or STM-0e.
 - 3b. Select the Line Coding, TX LBO, and RX
 Termination Mode (Term or Mon). For more information, refer Port TX (Electrical Interfaces) on page 138 for Line Coding and LBO, to RX DSn Tabs on page 269 or PDH Tabs on page 369 for Termination Mode.

STS-3e Config	
Line Coding	
CMI	~
тх ———	
LBO	
0 to 225 feet range	~
RX	
Termination Mode	
Term	~

3c. Press Next.

Creating and Starting a Test Case

Typical Test Cases

- **4.** Select the test path/mapping.
 - 4a. From the data path selector, press the desired path/mapping. Choices depend on the selected interface. See Supported Paths/Mappings on page 59 for more information.

1 2 3 Path Setup: Select a HOP size and position. Tree Grid STS-1 STS-3c

- **4b.** Press a timeslot from the **Grid** tab when applicable.
- **4c.** For STS/STM and VT/AU mapping level, select the **Enable TCM** check box if needed.
- *4d.* For DSn/PDH mapping level, select the **Framing**. For more information, refer to *DSn Tabs* or *PDH Tabs*.

	DS1 [1,1] Conf	ìg
E1 [1,1] Config	Framing	D53 Config
Framing PCM30	ESF	Framing C-Bit Parity
Enable E0	Enable DS0	Enable FEAC

STS-1 [1,1] Config

Enable TCM

For DS3, select the Enable FEAC

check box to allow far end alarm and control testing.

For DS1, select the **Enable FDL** check box to allow facility data link testing.

For DS1/E1, select the **Enable DS0/E0** check box to allow DS0 or E0 testing.

- 4e. For Pattern, go to step 5.
- 4f. Press Next or Finish.
- **4g.** Repeat step 4 as required to complete the path/mapping. See *Supported Paths/Mappings* on page 59 for more information.

- **5.** Pattern Configuration:
 - *5a.* Set the pattern parameters. Refer to *Pattern TX* on page 405 and *Pattern RX* on page 409 for more information.

- **6.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switch to the **Alarm** summary tab.
- 7. For additional configuration parameters and results, refer to *Summary Tabs* on page 125, *Port Tabs* on page 137, *SONET Tabs* on page 211, *DSn Tabs* on page 269, *SDH Tabs* on page 303, *PDH Tabs* on page 369, *BERT Tabs* on page 405, *Advanced Tabs* on page 411, and *Common Tabs* on page 491.
- **8.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

Creating an Optical SONET/SDH Test Case (FTB-8115/20/30)

The following procedure describes a normal optical SONET/SDH the test case on the FTB-8115/20/30 modules.

- ► For Next generation test case, see *Creating a Next Generation Test Case including VCAT/LCAS and GFP* on page 103.
- ▶ For FTB-8140, see Creating an Optical SONET/SDH Test Case on an FTB-8140 on page 87.

To create an Optical SONET/SDH Test on an FTB-8115/20/30 module:

- **1.** Test configuration:
 - 1a. Select the source Clock Mode that will be used for the test. Refer to Clock Configuration on page 129 for more information.
 - **1b.** Select **Normal** as the **Test Mode**. Refer to Test Configuration *on page 126* for more information.

- **1c.** Select the **Coupled** check box to set the same settings for both the TX and RX signals or clear the **Coupled** check box to configure the TX and RX signal individually (decoupled).
- 1d. Select the Through check box to loop the RX signal to the TX port. The Clock Mode is automatically set to Recovered when the Through check box is selected.
- 1e. Select the SONET/SDH Intrusive check box to loop the RX signal to the TX port with TX overwrite capabilities. SONET/SDH Intrusive is not available on FTB-8115.
- **1f.** Leave the **OTN Intrusive** check box cleared. **OTN Intrusive** is not available on FTB-8115.
- 1g. Press Next.

- **2.** Interface connector selection:
 - 2a. From the data path selector, press the Optical interface connector. Optical is automatically selected when SONET/SDH Intrusive check box is selected.
 - 2b. For OC-192/STM-64 select Framed or Unframed. Framed is automatically selected in Through or decoupled mode. For all other optical interfaces, select Framed.

2c. For **Decoupled** test mode, both TX and RX ports have to be selected and configured:

First select the interface type for TX from the data path selector then proceed with the

rest of the test setup steps to set the test parameters for the TX interface. At the end, do not press **Finish** yet. Press **Back** to return to the RX/TX selection screen and select the interface type for RX from the data path selector then proceed with the rest of the test setup steps to set the test parameters for the RX interface.

- 2d. Press Next.
- 3. Interface selection:
 - 3a. Press the desired interface: OC-3, OC-12, OC-48, OC-192, STM-1, STM-4, STM-16, STM-64. Choices depend on the rates available on the FTB-8115/20/30 module.
 - *3b.* Press Next. For OC-192/STM64 interface with Unframed mode, go to step 5.

Creating and Starting a Test Case

Typical Test Cases

4. Select the testPath/Mapping.

- *4a.* From the Data Path Selector, select Normal.
- **4b.** From the data path selector, press the desired path/ mapping. Choices depend on the selected interface. See *Supported Paths/Mappings* on page 59 for more in

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96
97	98	99	100	101	102	103	104	105	106	107	108
109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132
133	134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155	156
157	158	159	160	161	162	163	164	165	166	167	168
169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192
Path Setu	p: Select a	a HOP size	e and posit	tion or Cha	inge the p	ath type b	y selecting	g a VCG.		Tree	Grid
S	TS-1		STS-3c	STS-12c STS-48c S					STS-19	2c	
Norma	Normal LOP VCG-1 HOP VCG-1										

page 59 for more information.

- **4c.** Press a timeslot from the **Grid** tab when applicable.
- **4d.** For STS/STM and VT/AU mapping level, select the **Enable TCM** check box if needed.

STS-1 [1,1] Config	
Enable TCM	

4e. For DSn/PDH mapping level, select the **Framing**. For more information, refer to *DSn Tabs* or *PDH Tabs*.

	D51 [1,1] Config			
E1 [1,1] Config	Framing	DS3 Config		
Framing PCM30	ESF	Framing C-Bit Parity		
Enable E0	Enable DS0	Enable FEAC		

For DS3, select the **Enable FEAC**

check box to allow far end alarm and control testing.

For DS1, select the **Enable FDL** check box to allow facility data link testing.

For DS1/E1, select the **Enable DS0/E0** check box to allow DS0 or E0 testing.

- **4f.** For GFP, select the **UPI** (User Payload Identifier), **EXI** (Extension Header Identifier), and **CID** (Channel IDentifier) parameters. GFP is available in Coupled test mode only. Refer to *GFP Frame TX* on page 432 for UPI and EXI, and to *GFP Channel TX* on page 435 for CID.
- *4g.* For **External Ethernet**, which is available with GFP, select the interface and its rate. Refer to *GFP Client TX* on page 444 for more information. Go to step 8.
- 4h. For Pattern, go to step 5.
- 4i. Press Next or Finish.
- *4j.* Repeat step 4 as required to complete the path/mapping. See *Supported Paths/Mappings* on page 59 for more information.
- 5. Pattern Configuration:
 - 5a. Set the pattern parameters. Refer to Pattern TX on page 405 and Pattern RX on page 409 for more information.
- **6.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switch to the **Alarm** summary tab.
- 7. For additional configuration parameters and results, refer to *Summary Tabs* on page 125, *Port Tabs* on page 137, *SONET Tabs* on page 211, *DSn Tabs* on page 269, *SDH Tabs* on page 303, *PDH Tabs* on page 369, *BERT Tabs* on page 405, *Advanced Tabs* on page 411, and *Common Tabs* on page 491. For **Unframed** mode, only **Summary**, **Port**, and **BERT** tabs are available.
- **8.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

Pattern Config	
Configuration	Pattern Config
Test Pattern	Coupled TX/RX
PRB5 2^23-1	Configuration TX
Invert	C Overwrite
Live Traffic	Test Pattern
	T Invert
	Configuration RX
	Test Pattern
	PRB5 2^23-1
	☐ Invert
	Live Traffic

External Ethernet Config

~

~

Interface Electrical

Rate 1000BaseT Full-Duples

Creating an Optical SONET/SDH Test Case on an FTB-8140

To create an Optical SONET/SDH Test on an FTB-8140:

- **1.** Test configuration:
 - **1a.** Select the source **Clock Mode** that will be used for the test. Refer to *Clock Configuration* on page 129 for more information.
 - **1b.** Select **Normal** as the **Test Mode**. Refer toTest Configuration *on page 126* for more information.

Test Config	
Test Name	
TEST	
Clock Mode	
Internal	~
Test Mode	
Normal	~
Coupled	
Through	
OTN Intrusive	
SONET/SDH Intrusive	

- **1c.** Select the **Coupled** check box to set the same settings for both the TX and RX signals or clear the **Coupled** check box to configure the TX and RX signal individually (decoupled).
- 1d. Select the Through check box to loop the RX signal to the TX port. The Clock Mode is automatically set to Recovered when the Through check box is selected.
- **1e.** Select the **SONET/SDH Intrusive** check box to loop the RX signal to the TX port with TX overwrite capabilities.
- 1f. Leave the OTN Intrusive check box cleared.
- 1g. Press Next.

- **2.** Interface connector selection:
 - 2a. The Optical port is automatically selected. Select Framed or Unframed. Framed is automatically selected in Through or decoupled mode. For the FTB-8140-DPSK model, select the wavelength and invert the polarity if required (refer to Wavelength (nm) on page 148).

Optical [1,TX/RX] Config					
Framing					
Framed	~				
Wavelength (nm)					
1550.12					

2b. For **Decoupled** test mode, both TX and RX ports have to be selected and configured:

> First select the interface type for TX from the data path selector then proceed with the

Port Setup: Select a connector type.		Tree Grid
RX	ТХ	

rest of the test setup steps to set the test parameters for the TX interface. At the end, do not press **Finish** yet. Press **Back** to return to the RX/TX selection screen and select the interface type for RX from the data path selector then proceed with the rest of the test setup steps to set the test parameters for the RX interface.

- 2c. Press Next.
- 3. Interface selection.
 - 3a. Press the desired interface: OC-768, or STM-256.
 - **3b.** Press Next. When Unframed is selected, press Next and go to step 5.

- 4. Select the test Path/Mapping
 - **4a.** From the data path selector, press the desired path/ mapping. Choices depend on the selected interface. See *Supported Paths/Mappings* on page 59 for more information.
 - 4b. For STS-1, STS-3c, STS-12c, AU-3, AU-4, and AU-4-4c mapping, first select the timeslot group from the Grid tab.

To return to the timeslot group selection, press the **Full Grid** tab, then select a new group.

Select the timeslot from the **Details** tab.

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96
97	98	99	100	101	102	103	104	105	106	107	108
109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132
133	134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155	156
157	158	159	160	161	162	163	164	165	166	167	168
169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192
Path Setu	p: Select	a HOP siz	e and pos	sition.					Det	ails Tree	Full Grid
ST	S-1	STS	6-3c	STS	-12c	STS	48c	STS	192c	STS-	768c

- 4c. For STS-48c, STS-192c, AU-4-16c, and AU-4-64c, select the timeslot from the Grid tab.
- 4d. For STS-768c, and AU-4-256c mapping, the timeslot is automatically selected in the Grid tab.

Pati	h Setup: Select	a HOP size and po	sition.		 Tree Gri
50				721	
-225				673	
721]				625	
				577	
2				529	
385-5				481	
529]				433	
				385	
-				337	
193-				289	
37]				241	
				193	
				145	
[1-1]				97	
15]				49	
				1	

- 4e. Press Next or Finish.
- **5.** Pattern Configuration:
 - **5a.** Set the pattern parameters. Refer to *Pattern TX* on page 405 and *Pattern RX* on page 409 for more information.
- **6.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switch to the **Alarm** summary tab.

- 7. For additional configuration parameters and results, refer to *Summary Tabs* on page 125, *Port Tabs* on page 137, *SONET Tabs* on page 211, *SDH Tabs* on page 303, *BERT Tabs* on page 405, *Advanced Tabs* on page 411, and *Common Tabs* on page 491. For **Unframed** mode, only **Summary**, **Port**, and **BERT** tabs are available.
- **8.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

Creating an Optical SONET/SDH/OTN Multi-Channel SDT Test Case (FTB-8120/8130/8140)

The following procedure describes an optical SONET/SDH/OTN Multi-Channel test case on the FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130, FTB-8130NG, FTB-8130NGE, and FTB-8140 modules.

To create an Optical SONET/SDH/OTN Multi-Channel Test:

- **1.** Test configuration:
 - 1a. Select Multi-Channel SDT as the Test Mode. Refer to Test Configuration on page 126 for more information.

Test Config	
Test Name	
TIEST	
Clock Mode	_
Recovered	~
Test Mode	
Multi-Channel SDT	-
Coupled	
I Through	

- 1b. Press Next.
- **1c.** The **Optical** port is automatically selected. Press **Next**.
- 2. Interface selection:
 - 2a. Press the desired interface: OC-3, OC-12, OC-48, OC-192, OC-768, STM-1, STM-4, STM-16, STM-64, STM-256, OTU1, OTU2, OTU3. Choices depend on the rates available on the module.
- **3.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switches to the **SDT Monitor** tab.
- **4.** For additional configuration parameters and results, refer to *Summary Tabs* on page 125 and *Service Disruption Time (SDT) Results* on page 421.
- **5.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

Creating an OTN (OTU1 and OTU2) Test Case

The following procedure describes OTU1 and OTU2 test cases.

- ➤ For OTU1e and OTU2e, see Creating an OTN Overclocked (OTU1e/OTU2e/OTU1f/OTU2f) Test Case (FTB-8130, FTB-8130NG, and FTB-8130NGE) on page 108.
- ► For OTU3, see *Creating an OTN (OTU3) Test Case* on page 97.

To create an OTN Test on an FTB-8120, FTB-8120NG, FTB-8120NGE, FTB-8130, FTB-8130NG, or FTB-8130NGE module:

- 1. Test configuration:
 - **1a.** Select the source **Clock Mode** that will be used for the test. Refer to *Clock Configuration* on page 129 for more information.
 - **1b.** Select **Normal** as the **Test Mode**. Refer to Test Configuration *on page 126* for more information.

Test Config	
Test Name	
TEST	
Clock Mode	
Internal	~
Test Mode	
Normal	~
Coupled	
Through	
OTN Intrusive	
SONET/SDH Intrusive	

- **1c.** Select the **Coupled** check box to set the same settings for both the TX and RX signals or clear the **Coupled** check box to configure the TX and RX signal individually (decoupled).
- 1d. Select the Through check box to loop the RX signal to the TX port. The Clock Mode is automatically set to Recovered when the Through check box is selected.
- **1e.** Select the **OTN Intrusive** check box to loop the RX signal to the TX port with TX overwrite capabilities. Available when the **Coupled** check box is selected.
- **1f.** Leave the **SONET/SDH Intrusive** check box cleared.
- 1g. Press Next.

Optical [1,TX/RX] Config

Framino

Framed

- **2.** Interface connector selection:
 - **2a.** From the data path selector, press the **Dptical** interface connector. **Optical** is automatically selected
 - when **OTN Intrusive** check box is selected.
 - **2b.** For OTU2 select **Framed** or **Unframed**. **Framed** is automatically selected in **Through** or decoupled mode. For OTU1, select **Framed**.
 - **2c.** For **Decoupled** test mode, both TX and RX ports have to be selected and configured:

First select the interface type for TX from the data path selector then proceed with the

RX	тх		
Port Setup: Select a connector type.		Tree	Grid

rest of the test setup steps to set the test parameters for the TX interface. At the end, do not press **Finish** yet. Press **Back** to return to the RX/TX selection screen and select the interface type for RX from the data path selector then proceed with the rest of the test setup steps to set the test parameters for the RX interface.

2d. Press Next.

- **3.** OTU Interface selection and configuration.
 - *3a.* Press **OTU1** or **OTU2**. Choices depend on the rates available on the Transport Blazer module.
 - *3b.* For OTU2 interface with **Unframed** mode, press **Next** and go to step 6.
 - *3c.* Select the **Enable FEC** and **Enable Scrambler** check boxes if needed. Refer to *FEC TX* on page 154 and *OTU TX* on page 157 for more information.
 - 3d. Press Next.
- **4.** Select ODU TCM (**TCM1** to **TCM6**) layers as required.
 - 4a. Press Next or Finish.
- 5. Select the test Path/Mapping:
 - **5a.** From the data path selector, select the desired path/ mapping. Choices depend on the selected interface. See Supported Paths/Mappings on page 59 for more information.

OPU2 Tributary Slot 1	OPU2 Tributary Sk	ot 2 OPU2	Tributary Slot 3	OPU2 Trib	utary Slot 4
1	2		3		4
th Setup: Select or an i	nterface rate or a mappin	ng and its positi	on or a payload.	l	Tree

OTU2 Config	
✓ Enable FEC	
Enable Scrambler	

ODU2e Config

☐ ТСМ1
☐ ТСМ2

Г ТСМ3 Г ТСМ4 Г ТСМ5 Г ТСМ5

5b. For ODU1 and ODU0, select a tributary slot, choices are:

For ODU1 in ODU2: 1 of 4 OPU2 tributary slots For ODU0 in ODU2: 1 of 8 OPU2 tributary slots For ODU0 in ODU1: 1 of 2 OPU1 tributary slots.

Select ODU TCM (**TCM1** to **TCM6**) layers as required. The **Tributary Port** associated to the selected tributary slot is displayed.

- 5c. For ODUflex, select the OPU2 tributary slots (1 to 8), enable ODUflex TCM (TCM1 to TCM6) layers as required, and select the Tributary Port number (1 to 8) that will be associated to the selected tributary slots. The current bandwith and the number of selected tributary slots are displayed.
- 5d. For OC-x and STM-x, press Next.
- **5e.** For STS/VT/AU/TU mapping level, select the timeslot and enable **TCM** when required.
- 5f. For GFP, the UPI and the EXI parameters are preset and not configurable. GFP is available in Coupled test mode only. Refer to GFP Frame TX on page 432 for more information.
- *5g.* For **10G Ethernet**, **Gb Ethernet**, or **Ethernet** in GFP, set the Ethernet parameters. Refer to *Configuration* on page 393 for more information.
- 5h. Press Next or Finish.

ODU1 TCM Configuration
TCM1
Т тсм2
TCM3
ТСМ4
E TOUR
I I CMD
TCM6
ODU1 Configuration
Fixed Structure
Tributary Port
1 💌

ODUflex TCM Configuration
🗖 ТСМ1
Г ТСМ2
Г ТСМЗ
Г ТСМ4
Г ТСМ5
Г ТСМ6
ODUflexConfiguration
Fixed Structure
Tributary Port
1 💌
Current Bandwith: 1.24929 Gbps Number of Tributary Slots: 1

GFP Config
UPI
Framed 64B/66B Ethernet
DI
Null
CID
0
10G Ethernet Config
Frame Size (Bytes)
64
TX Rate (%)
100.0
Course MAC Address

10G Ethernet Config
Frame Size (Bytes)
64
TX Rate (%)
100.0
Source MAC Address
00:03:01:08:36:DD
Destination MACAddress
FE:FE:FE:FE:FE
VLAN
ID
Туре
Priority
v

- **6.** Pattern Configuration:
 - **6a.** Set the pattern parameters. Refer to *Pattern TX* on page 405 and *Pattern RX* on page 409 for more information.

- **7.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switch to the **Alarm** summary tab.
- **8.** For additional configuration parameters and results, refer to *Summary Tabs* on page 125, *Port Tabs* on page 137, *OTN Tabs* on page 153, *SONET Tabs* on page 211, *SDH Tabs* on page 303, *BERT Tabs* on page 405, *Advanced Tabs* on page 411, and *Common Tabs* on page 491. For **Unframed** mode, only **Summary**, **Port**, and **BERT** tabs are available.
- **9.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

Creating and Starting a Test Case Typical Test Cases

Creating an OTN (OTU3) Test Case

To create an OTN Test on an FTB-8140 module:

- **1.** Test configuration:
 - 1a. Select the source Clock Mode that will be used for the test. Refer to Clock Configuration on page 129 for more information.
 - **1b.** Select **Normal** as the **Test Mode**. Refer toTest Configuration *on page 126* for more information.
 - **1c.** Select the **Coupled** check box to set the same settings for both the TX and RX signals or clear the **Coupled** check box to configure the TX and RX signal individually (decoupled).
 - 1d. Select the Through check box to loop the RX signal to the TX port. The Clock Mode is automatically set to Recovered when the Through check box is selected.
 - **1e.** Select the **OTN Intrusive** check box to loop the RX signal to the TX port with TX overwrite capabilities. Available when the **Coupled** check box is selected.
 - 1f. Leave the SONET/SDH Intrusive check box cleared.
 - 1g. Press Next.

2. Interface connector selection:

The **Optical** port is automatically selected.

2a. Select Framed or Unframed. Framed is automatically selected in Through or decoupled mode.
For the FTB-8140-DPSK model, select the wavelength and invert the polarity if required (refer to *Wavelength (nm)* on page 148).

Optical [1,TX/RX] Conf	ig
Framing	
Framed	~
Wavelength (nm)	
1550.12	
Invert Polarity	

2b. For Decoupled test

mode, both TX and RX ports have to be selected and configured:

First select the interface type for TX from the data path selector then proceed with the

RX	тх	
Port Setup: Select a connector type.		Tree Grid

rest of the test setup steps to set the test parameters for the TX interface. At the end, do not press **Finish** yet. Press **Back** to return to the RX/TX selection screen and select the interface type for RX from the data path selector then proceed with the rest of the test setup steps to set the test parameters for the RX interface.

2c. Press Next.

- **3.** Interface selection and configuration.
 - 3a. Press the OTU-3 interface.

OTU2 Config	
✓ Enable FEC	
Enable Scrambler	

- **3b.** When **Unframed** is selected, press **Next** and go to step 5.
- *3c.* Select the **Enable FEC** and **Enable Scrambler** check boxes if needed (refer to *FEC TX* on page 154 and *OTU TX* on page 157).
- 3d. Press Next.

Creating and Starting a Test Case

Typical Test Cases

- **4.** TCM Configuration:
 - **4a.** Select ODU TCM (**TCM1** to **TCM6**) layers as required
 - 4b. Press Next or Finish.
- 5. Select the test Path/Mapping:
 - 5a. From the data path selector, select the desired path/ mapping. See Supported Paths/Mappings on page 59 for more information.
 - **5b.** For ODU2, select ODU TCM (**TCM1** to **TCM6**) layers as required.

Select a group of four OPU3 tributary slots. Choices are 1 to 16:

When the **Fixed Structure** check box is selected, the selection of a tributary slot will automatically select four tributary slots (from the same column) which constitute the foreground traffic. Choices are (1,5,9,13), (2, 6, 10, 14), (3, 7, 11,15), and (4, 8, 13, 16). Note that

the Tributary Port number is automatically assigned.

When the **Fixed Structure** check box is cleared, select the four tributary slots individually, and select the **Tributary Port** number (1, 2, 3, or 4) that will be associated to the selected tributary slots.

ODU3 Config
ODU3 TCM Configuration
TCM1
TCM2
🗖 ТСМЗ
TCM4
Г ТСМ5
E TONG

ODU2 [1,5,9,13] Config
ODU2 TCM Configuration
TCM1
Г ТСМ2
Г ТСМЗ
Г ТСМ4
Г ТСМ5
Г ТСМ6
ODU2 Configuration
Fixed Structure
Tributary Port
1

5c. For ODU1 and ODU0, select a tributary slot, choices are:

For ODU1 in ODU3: 1 of 16 OPU3 tributary slots For ODU1 in ODU2: 1 of 4 OPU2 tributary slots For ODU0 in ODU3: 1 of 32 OPU3 tributary slots For ODU0 in ODU2: 1 of 8 OPU2 tributary slots For ODU0 in ODU1: 1 of 2 OPU1 tributary slots.

Select ODU TCM (**TCM1** to **TCM6**) layers as required. The **Tributary Port** associated to the selected tributary slot is displayed.

- 5d. For ODUflex, select the OPU3 tributary slots (1 to 32), enable ODUflex TCM (TCM1 to TCM6) layers as required, and select the Tributary Port number (1 to 32) that will be associated to the selected tributary slots. The current bandwith and the number of selected tributary slots are displayed.
- 5e. For OC-x and STM-x, press Next.

ODU1 TCM Configuration
Г ТСМ1
Г ТСМ2
🗖 ТСМЗ
Г ТСМ4
Г ТСМ5
Г ТСМ6
ODU1 Configuration
Fixed Structure
Tributary Port
1

Creating and Starting a Test Case

Typical Test Cases

 5f. For STS-1, STS-3c, STS-12c, STS-48c, STS-192c, AU-3, AU-4, AU-4-4c, AU-4-16c, AU-4-64c mapping, select the timeslot from the Grid tab.

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96
97	98	99	100	101	102	103	104	105	106	107	108
109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132
133	134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155	156
157	158	159	160	161	162	163	164	165	166	167	168
169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192
Path Setu	p: Select	a HOP siz	e and pos	sition.					Det	ails Tree	Full Grid
ST	STS-1 STS-3c			STS	-12c	STS	-48c	STS-	192c	STS-	768c

However, for STS-1, STS-3c, STS-12c, AU-3, AU-4, and AU-4-4c in OC-768/STM-256 mapping level, first select the timeslot group from the Grid tab.

To return to the timeslot group selection, press the **Full Grid** tab,

then select a new group.

5g. For GFP, the **UPI** and the **EXI** parameters are preset and not configurable. GFP is available in Coupled test mode only. Refer to *GFP Frame TX* on page 432 for more information.

[1-192]

[193-384]

[385-576]

[577-768]

STS-1

Path Setup: Select a HOP size and position.

STS-3c

STS-12c

STS-48c

GFP Config	
UPI	
Framed 64B/66B Ethernet	•
EXI	
Null	•
CID	
0	

STS-192c

Tree Grid

STS-768c

- *5h.* For **10G Ethernet**, **Gb Ethernet**, and **Ethernet** in GFP, set the Ethernet parameters. Refer to *Configuration* on page 393 for more information.
- 5i. Press Next or Finish.
- **6.** Pattern Configuration:
 - **6a.** Set the pattern parameters. Refer to *Pattern TX* on page 405 and *Pattern RX* on page 409 for more information.

10G Ethernet Config
Frame Size (Bytes)
64
TX Rate (%)
100.0
Source MAC Address
00:03:01:08:36:DD
Destination MACAddress
FE:FE:FE:FE:FE
VLAN
ID
Туре
Priority
7

Pattern Config							
Configuration Test Pattern							
PRB5 2^23-1	•						
Invert							
Live Traffic							

- **7.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switch to the **Alarm** summary tab.
- **8.** For additional configuration parameters and results, refer to *Summary Tabs* on page 125, *Port Tabs* on page 137, *OTN Tabs* on page 153, *SONET Tabs* on page 211, *SDH Tabs* on page 303, *BERT Tabs* on page 405, *Advanced Tabs* on page 411, and *Common Tabs* on page 491. For **Unframed** mode, only **Summary**, **Port**, and **BERT** tabs are available.
- **9.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

Creating a Next Generation Test Case including VCAT/LCAS and GFP

The following procedure describes a Next Generation test case, including VCAT/LCAS and GFP.

To create a Next Generation Test Case on an FTB-8120NG, FTB-8120NGE, FTB-8130NG, or FTB-8130NGE module:

- **1.** Test configuration:
 - 1a. Select the source Clock Mode that will be used for the test. Refer to Clock Configuration on page 129 for more information.
 - **1b.** Select Normal as the Test Mode. Refer to Test Configuration *on page 126* for more information.

Test Config	
	_
Test Name	_
TEST	
Clock Mode	
Internal	1
Test Mode	
Normal	1
Coupled	
Through	
OTN Intrusive	
SONET/SDH Intrusive	

- **1c.** Leave the **Coupled** check box selected.
- 1d. Select the Through check box to loop the RX signal to the TX port. The Clock Mode is automatically set to Recovered when the Through check box is selected.
- **1e.** Select the **SONET/SDH Intrusive** check box to loop the RX signal to the TX port with TX overwrite capabilities. Available when the **Coupled** check box is selected.
- **1f.** Leave the **OTN Intrusive** check box cleared.
- 1g. Press Next.
- 2. Interface connector selection:
 - **2a.** From the data path selector, press the
 Optical
 BNC
 Bantam
 RJ-48C

Optical interface connector. **Optical** is automatically selected when **SONET/SDH Intrusive** check box is selected.

2b. For OC-192/STM-64 leave the **Framing** selection to **Framed**.

Optical [1,TX/RX] Config
Framing
Framed

- 3. Interface selection.
 - 3a. Press the desired interface: OC-3, OC-12, OC-48, OC-192, STM-1, STM-4, STM-16, STM-64, OTU1, or OTU2. However, for the OTU1 and OTU2 interfaces, OC-N/STM-N must be part of the test path (refer to *Creating an OTN (OTU1 and OTU2) Test Case*). Choices depend on the rates available on the module.
 - 3b. Press Next.
- 4. Select the test Path/Mapping.
 - 4a. From the data path selector, select
 LOP VCG-1 or
 HOP VCG-1.
 - **4b.** Press the desired path/ mapping. See *Supported Paths/Mappings* on page 59 for more information.

For LOP VCG-1, **STS-1** is

1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16	17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70	71	72
73	74	75	76	77	78	79	80	81	82	83	84
85	86	87	88	89	90	91	92	93	94	95	96
97	98	99	100	101	102	103	104	105	106	107	108
109	110	111	112	113	114	115	116	117	118	119	120
121	122	123	124	125	126	127	128	129	130	131	132
133	134	135	136	137	138	139	140	141	142	143	144
145	146	147	148	149	150	151	152	153	154	155	156
157	158	159	160	161	162	163	164	165	166	167	168
169	170	171	172	173	174	175	176	177	178	179	180
181	182	183	184	185	186	187	188	189	190	191	192
Path Setu	p: Select	a HOP size	and posit	ion.						Tree	Grid
					ST	S-1					
Normal LOP VCG-1 HOP VCG-1											

automatically

selected for SONET and choices are AU-3 and AU-4 for SDH.

For HOP VCG-1, choices are **STS-1-Xv** and **STS-3c-Xv** for SONET, **VC-3-Xv** and **VC-4-Xv** for SDH.

4c. VCG configuration:

Enable LCAS: Allows enabling LCAS configuration. This setting is disabled by default.

Add Member(s) at Start: Allows enabling by default all the new members that will be selected for this VCG group. The activation can be done individually for the Source and Sink. This default setting can further be overwritten

LOP VCG-1 Config						
Enable LCAS						
Add Member(s) at Start						
Source (Default)						
Sink (Default)						
Remote DUT						
Non-LCAS						
Group Size						
= Mbps						

individually for each member that will be added to the group (See *Auto Add at Startup* on page 106). All members enabled will be automatically added (applied) when the test is started. This setting is disabled by default unless otherwise set from the *LCAS Auto-Add at Startup* on page 542.

Remote DUT: **Non-LCAS** Specifies that the remote device connected to the FTB-8115/20/30 is LCAS (when disabled) or Non-LCAS (when enabled).

Group Size indicates the type and size of the VCG members as well as the bandwidth used by the VCG group.

- **4d.** For LOP VCG-1, press a first STS-1/AU timeslot, press Next, select the VT/TU mapping, press every LOP timeslot that need to become VCG member of the selected STS-1/AU timeslot.
- **4e.** For **HOP VCG-1**, press a first timeslot that need to become a VCG member.

4f. Configure the following VCG parameters:

Set the **SQ** and **ExSQ** number (when **LCAS** is not enabled) or set the **Auto Add at Startup** (when **LCAS** is enabled) for each timeslot selected.

SQ: The **SQ** number of each member can be changed when **LCAS** is not enabled. Press a specific member SQ number and enter the new number. Possible values are from **0** to **63**.

STS-1-Xv	[1,1] Config
sq	
0	
ExS	
0	
Add Memb	per(s) at Start
Source	(Default)
Sink (D	efault)
Group Siz	e
STS-1-3v	= 145.152 Mbps

ExSQ: The **ExSQ** number of each member can be changed when **LCAS** is not enabled. Press a specific member **ExSQ** number and enter the new number. Possible values are from **0** to **63**.

Auto Add at Startup: Enables the selected member to be automatically added (applied) when the test is started. The activation can be done individually for the Source and Sink. Only available when **LCAS** is enabled. This setting is disabled by default unless otherwise set from either the **Add Member(s) at Start** on page 105 or *LCAS Auto-Add at Startup* on page 542.

Group Size indicates the type and size of the VCG members as well as the bandwidth used by the VCG group.

4g. To add another timeslot to the VCG group:

For **LOP VCG-1**, press **Back**, select another STS-1/AU timeslot, press **Next** then press and configure (see step 4f) every LOP timeslot that need to become VCG member of the selected STS-1/AU timeslot

For **HOP VCG-1**, select another timeslot and configure its parameters as described in the step 4f.

- **4h.** Repeat step 4g to add more timeslot to the LOP/HOP VCG group.
- 4i. Press Next or Finish.
- 5. Select the payload: GFP or Pattern.
 - 5a. For GFP, select the UPI, EXI, and CID parameters. GFP is available in Coupled test mode only. Refer to *GFP Frame TX* on page 432 for UPI and EXI, and to *GFP Channel TX* on page 435 for CID. Press Next or Finish.
 - *5b.* For **Pattern**, go to step 7.
- 6. Select the GFP payload: Pattern or External Ethernet.
 - **6a.** For **External Ethernet**, which is available with GFP, select the interface and its rate. Refer to *GFP Client TX* on page 444 for more information. Go to step 8.
 - 6b. For Pattern, go to step 7.
- **7.** Pattern Configuration:
 - **7a.** Set the pattern parameters. Refer to *Pattern TX* on page 405 and *Pattern RX* on page 409 for more information.
- **8.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switch to the **Alarm** summary tab.
- **9.** For additional configuration parameters and results, refer to *Summary Tabs* on page 125, *Port Tabs* on page 137, *OTN Tabs* on page 153, *SONET Tabs* on page 211, *SDH Tabs* on page 303, *BERT Tabs* on page 405, *Advanced Tabs* on page 411, and *Common Tabs* on page 491.
- **10.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

Pattern Config	
Pattern Config	
Pattern Config Configuration Test Pattern	

~

~

External Ethernet Config

Interface Electrical

T Invert

Live Traffic

Rate 1000BaseT Full-Duplex

Creating an OTN Overclocked (OTU1e/OTU2e/OTU1f/OTU2f) Test Case (FTB-8130, FTB-8130NG, and FTB-8130NGE)

To create an OTN overclocked test on an FTB-8130, FTB-8130NG, or FTB-8130NGE module:

- **1.** Test configuration:
 - **1a.** Select the source **Clock Mode** that will be used for the test. Refer to *Clock Configuration* on page 129 for more information.
 - **1b.** Select **Normal** as the **Test Mode**. Refer to Test Configuration *on page 126* for more information.

Test Config	
Test Name	
TEST	
Clock Mode	
Internal	~
Test Mode	
Normal	~
Coupled	
Through	
OTN Intrusive	
SONET/SDH Intrusive	

- **1c.** Make sure the **Coupled** check box is selected.
- 1d. Select the Through check box to loop the RX signal to the TX port. The Clock Mode is automatically set to Recovered when the Through check box is selected.
- **1e.** Select the **OTN Intrusive** check box to loop the RX signal to the TX port with TX overwrite capabilities.
- 1f. Leave the SONET/SDH Intrusive check box cleared.
- 1g. Press Next.

Creating and Starting a Test Case

Typical Test Cases

- **2.** Interface connector selection:
 - 2a. From the data path selector, press the Optical interface connector. Optical is automatically selected when OTN Intrusive check box is selected.
 - **2b.** Select **Framed** or **Unframed**. **Framed** is automatically selected in **Through** or decoupled mode.

Optical [1,TX/RX] Config	
Framing	_
Framed	1

- 2c. Press Next.
- 3. Interface selection and configuration:
 - 3a. Press the desired interface: OTU1e (11.049G), OTU2e (11.096G), OTU1f (11.270G) or OTU2f (11.317G).

OTU2e 11.096G Config	
Enable FEC	
Enable Scrambler	

- 3b. When Unframed is selected, press Next and go to step 6.
- *3c.* Select the **Enable FEC** and **Enable Scrambler** check boxes if needed. Refer to *FEC TX* on page 154 and *OTU TX* on page 157 for more information.
- 3d. Press Next.
- **4.** Select ODU TCM (**TCM1** to **TCM6**) layers as required and press **Next** or **Finish**.

ODU2e Config
Т тсмз
TCM4
Г ТСМ5
Г тсм6

5. For OTU1e/OTU2e, if required, select 10G Ethernet as the mapping and set the Ethernet parameters. Refer to *Configuration* on page 393 for more information.

The 10G Ethernet link status is available from the **Tree** tab.

5a. Press Next or Finish.

- **6.** Pattern Configuration:
 - **6a.** Set the pattern parameters. Refer to *Pattern TX* on page 405 and *Pattern RX* on page 409 for more information.

10G Ethernet Config
Frame Size (Bytes)
64
TX Rate (%)
100.0
Source MAC Address
00:03:01:08:36:DD
Destination MACAddress
FE:FE:FE:FE:FE
VLAN
ID
Туре
Priority
*

Pattern Config		
Configuration Test Pattern		
PRB5 2^23-1	-	
Invert		
Live Traffic		

- **7.** Press **Finish** to complete the test setup. The **Grid** tab closes and automatically switch to the **Alarm** summary tab.
- 8. For additional configuration parameters and results, refer to Summary Tabs on page 125, Port Tabs on page 137, OTN Tabs on page 153, Ethernet Tabs on page 393 (OTU1e/OTU2e only), BERT Tabs on page 405, and Advanced Tabs on page 411. For Unframed mode, only Summary, Port, and BERT tabs are available.
- **9.** Press the **Start** button to start the test. Refer to Global Test Status and Controls *on page 35* for more information on test management.

7 Smart Mode

SmartMode allows to automatically identify the structure of the selected SONET/SDH signal rate that is connected to the **Transport Blazer** module. The identified signal structure can then, be used to simplify the setup of a test case. **SmartMode** allows also to monitor the basic SONET/SDH alarms/errors of each layer of the discovered signal structure.

Note: SmartMode is not available when a test is running. No other test functions are available when SmartMode is running (Smart Scan, Trib Scan or Alarm Scan). **SmartMode** is not available on the FTB-8140.

The Smart Mode window is displayed by default when the GUI is started

The following sections describe the **SmartMode** usage:

- ► SmartMode Interface Description on page 112
- ► Using SmartMode for Alarm/Error Monitoring on page 115
- > Creating and Starting a Test Case Using SmartMode on page 122
- ► Legend on page 123

SmartMode				_	_
Not Scanned. (Click here or on the "Smart Scan" button to scan.				
		Status -			
		Inactive			
		Interface			
		STM-64			
		Smart	Trib	Alarm	Launch
		Scan	Scan	Scan	Test

SmartMode Interface Description

➤ Not Scanned. Click here or on the Smart Scan button to scan and Smart Scan: Allows starting the signal scan of the selected interface to discover the high order path (HOP) signal structure. Make sure that the selected interface rate corresponds to the interface connected to the module. A Smart Scan takes about 5 seconds to discover the signal structure. This button gives the same result as the Smart Scan button but it is only available the first time the SmartMode is run. **Status**: Indicates the status of the **SmartMode**. Possible choices are:

Stopped indicates that SmartMode did not run yet.

Inactive indicates that SmartMode is not running or not available.

Smart Scan In-Progress indicates that the **Smart Scan** is scanning the selected/connected signal. Once the signal has been scanned, the **Alarm Scan In-Progress** message is displayed indicating that the **Alarm Scan** is running.

Trib Scan In-Progress indicates that the **Trib Scan** is discovering the LOPs of the selected timeslot. Once the tributaries have been discovered, the **Alarm Scan In-Progress** message is displayed indicating that the Alarm Scan is running.

Alarm Scan In-Progress indicates that the Alarm Scan is continuously scanning the alarms/errors.

► Interface: Allows the selection of the SONET/SDH interface connected to the module that will be used for the Smart Scan. Choices are:

For SONET: STS-1e, STS-3e, OC-3, OC-12, OC-48, OC-48 (OTU1), OC-192, and OC-192 (OTU2).

For SDH: **STM-0e**, **STM-1e**, **STM-1**, **STM-4**, **STM-16**, **STM-16** (**OTU1**), **STM-64**, and **STM-64** (**OTU2**).

Choices depend on the rates available on the FTB-8100 Series module. The default setting is the highest rate supported by the module. The default highest rate will be SONET when both SONET and SDH are supported by the module. OTU1 and OTU2 structures are not scanned, only the SONET/SDH part of the OTN signal is scanned.

➤ Smart Scan button: Allows starting the signal scan of the selected interface to discover the high order path (HOP) signal structure. Make sure that the selected interface rate corresponds to the interface connected to the module. A Smart Scan takes about 5 seconds to discover the signal structure. The Smart Scan button gives the same result as the Not Scanned. Click here or on the "Smart Scan" button to scan button.

- Trib Scan button: Allows starting the Trib Scan of the selected HOP to discover its low order path (LOP) information. This button is only available when the selected timeslot contains LOPs (VT/TU/TUG equipped). A Trib Scan takes about 5 seconds to discover the signal structure.
- ➤ Alarm Scan button: Allows to monitor the Port, Section/MS, Line/RS, HOP, and LOP alarms and errors. Alarm Scan is automatically started after a successful Smart Scan or Trib Scan. Alarm Scan displays the information of the selected timeslot or tributary. The alarm scan monitors in parallel all the HOPs discovered during the scan as well as the LOPs of the selected HOP.
- Launch Test: Allows creating and starting the test case based on the scanned signal for the selected path. This automatically stops the Alarm Scan and disables the SmartMode functionality with the exception of the Report. To re-enable access to the SmartMode functions, the test must be cleared.

Note that the default test preferences will be used for the test. For example, the laser will be Off if not enabled from the *Default Test Preferences* on page 530. However, the laser can be enabled once the test is started from the Test Setup or from the **Port TX** tab; first stop the test, enable the laser and re-start the test.

Using SmartMode for Alarm/Error Monitoring

Note: The default test preferences will be used for alarm/error monitoring. Refer to Default Test Preferences on page 530 for the list of test preferences.

To monitor alarms/errors using SmartMode:

- 1. Select the OTN/SONET/SDH signal interface rate corresponding to the signal connected to the module.
- 2. Press either the Not Scanned. Click here or on the "Smart Scan" button to scan or the Smart Scan button.

The structure of the signal is displayed when the scan succeeds; otherwise, a LOS is declared and a red border appears around the signal button. If the scan failed, make sure the selected interface rate corresponds to the signal connected to the module.

Frequency indicates current and history frequency alarm. Refer to *Port RX (Optical Interfaces)* on page 150 for more information.

LOS indicates current and history LOS alarm. Refer to Port RX (Optical Interfaces) on page 150 for more information.

Range indicates the minimum and maximum optical power values necessary to meet the standard BER for the test interface.

Power indicates the power level of the input signal in dBm. The background color of the **Power** field indicates the input presence as follow:

Background color	Description
Green	Power level in-range.
Yellow	Power level out of operational range.
Red	Power level crosses the "Close-to-damage" threshold.
Grey	LOS or invalid operational range value reported by the optical device (SFP/XFP).

Frequency (bps) indicates the received signal frequency in bps.

- **Note:** The port statistics are only refreshed (live) when the alarm scan is running.
 - *3.* To see the **Section/RS/Line/RS/MS** analysis, press the signal button and press the **Section/Line/RS/MS** tab.

J0 Trace indicates the J0 Trace value. Refer to *J0 Trace* on page 220 (SONET) or page 310 (SDH) for more information.

B1, LOF and **SEF** indicates Section/RS alarms/errors. Refer to *Section RX (SONET)* on page 219 and *Regenerator Section RX (SDH)* on page 311 for more information.

Synchronization Status message indicates the received synchronization status of the NE. Refer to *APS/Advanced Line OH TX/RX (SONET)* on page 236 and *Multiplex Section APS/Advanced OH TX/RX (SDH)* on page 328 for more information.

B2, **REI-L**, **AIS-L**, and **RDI-L** indicates **Line/MS** alarms/errors. Refer to *Line RX (SONET)* on page 228 and *Multiplex Section RX (SDH)* on page 320 for more information.

4. Selection of a timeslot for alarm/error analysis

Press a timeslot to select it. The alarms/errors displayed correspond to the selected timeslot. The following screen is displayed when a timeslot is selected. To return to the signal analysis, press the signal button.

Timeslot indicates the selected path number being monitored.

Error Analysis gives current and history status of the main errors. Refer to *SONET Tabs* on page 211 or *SDH Tabs* on page 303 for the error descriptions.

Alarm Analysis gives current and history status of the main alarms. Refer to *SONET Tabs* on page 211 or *SDH Tabs* on page 303 for the alarm descriptions. Last Alarm Scan Date indicates the date and time of the last Alarm Scan. The date is only displayed when the Alarm Scan is stopped.

Path Signal Label (C2) indicates the path signal label of the selected timeslot. Refer to *Path Signal Label (C2)* on page 256 (SONET) or page 346 (SDH) for more information.

J1 Trace indicates the J1 Trace value of the selected timeslot. Refer to *J1 Trace* on page 253 (SONET) or page 366 (SDH) for more information.

 For VT/TUG structured payload, press VT/TUG structured payload timeslot then, press Not Scanned. Click here or on the "Trib Scan" button to scan or Trib Scan. The LOP tributaries are displayed.

SmartMode														
	STM-64									AU-4 [1,4,1,0]				
VCG AU-3	VCG AU-3	<u>AU-3</u> AU-3	VCG AU-3	VCG AU-3	AU-3 AU-3	VCG AU-3	VCG AU-3	AU-3 AU-3	VCG AU-3	VCG AU-3	AU-3 AU-3	Error Analysis — H C B3	н с • • нр-	REI
	VCG <u>AU-4</u>	CG AU-4 VCG VCG U-4 AU-4 VCG AU-4					Alarm Analysis - AU-AIS AU-LOP	 ERI ERI 	DI-SD DI-PD					
	AU-4 AU-4			AU-4 AU-4	AU-	4-4c ?	? AU-4	?	?	? AU-4	?	 HP-RDI H4-LOM Path Signal Labe 	• • ERE	DI-CD
	AU-4 AU-4 AU-4 AU-4 AU-4-16c									J1 Trace HO- SmartMode Demo ^N U _L ^N	NULNULNUL	NUL UL ^{NUL}		
	AU-4-16c								Last Alarm Scan	Date				
Not Scanned. Click here or on the "Trib Scan" button to scan.								Alarm Scan In-F Interface STM-64 Smart Trib Scan Scan	Alarm Scan	▼ Launch Test				

Using SmartMode for Alarm/Error Monitoring

Press an LOP tributary then, the following tributary analysis is displayed.

Tributary indicates the selected timeslot or the number associated to the virtual tributary or tributary unit.

Error Analysis gives current and history status of the main errors. Refer to *SONET Tabs* on page 211 or *SDH Tabs* on page 303 for the error descriptions.

Alarm Analysis gives current and history status of the main alarms. Refer to *SONET Tabs* on page 211 or *SDH Tabs* on page 303 for the alarm descriptions.

Last Alarm Scan Date indicates the date and time of the last **Alarm Scan**. The date is only displayed when the **Alarm Scan** is stopped.

Path Signal Label (V5) indicates the path signal label of the selected tributary. Refer to *Path Signal Label (V5)* on page 267 (SONET) or page 357 (SDH) for more information.

Extended Signal Label							
SONET	SDH	Hex value					
Reserved	Reserved	00 to 07					
Experimental or development mapping	Experimental mapping	08					
ATM mapping	ATM mapping	09					
Mapping of HDLC/PPP framed signal	Mapping of HDLC/PPP framed signal	0A					
Mapping of HDLC/LAPS framed signal	Mapping of HDLC/LAPS framed signal	0B					
Virtually Concatenated O.181 test signal	VCAT test signal, O.181 specific mapping	0C					
GFP mapping	GFP mapping	0D					
Reserved for proprietary use	Reserved	D0 to DF					
Reserved	Reserved	FF					

Extended Signal Label indicates the extended signal label of the selected tributary.

J2 Trace indicates the **J2 Trace** value for the selected tributary. Refer to *J2 Trace* on page 265 (SONET) or page 352 (SDH) for more information.

Last Trib Scan indicates the date and time of the last Trib Scan.

Creating and Starting a Test Case Using SmartMode

Note: The default test preferences will be used for the test. For example, the laser will be Off if not enabled from the Default Test Preferences on page 530.

To setup a test case using SmartMode:

- **1.** Select the SONET/SDH signal corresponding to the signal connected to the module.
- 2. Press either Not Scanned. Click here or on the "Smart Scan" button to scan or Smart Scan. A Trib Scan is also required for LOP test purposes otherwise, a HOP test case will be created even if the signal contains LOP.
- **3.** The structure of the signal is displayed when the scan succeeds. If the scan succeeds, press **Launch Test** to start the test.
- **Note:** The user must select the desired HOP and LOP timeslots before pressing Launch Test otherwise, the first valid timeslot scanned will be used.

Legend

SmartMode uses visual indicators to identify particular information like alarms/errors, structured payload, selected timeslot/tributary, VCG, etc. The following table shows the different indicators.

Visual Indicator	Indicator Description	Description	Apply to
	Light blue color	Not selected	Timeslot, Tributary
	Dark blue color	Selected	Signal, Timeslat
	Red color	Current alarm/error	Tributary
	Yellow color	History alarm/errors	
	Light gray color	Unequipped	Timeslot, Tributary
AU-3	Underlined timeslot (STS-1 is used as example)	VT/TUG Structured Payload	Timeslot
AU-3	Underlined timeslot with a little triangle in the bottom-right corner (STS-1 is used as example)	VT/TUG Structured payload Scanned. The little triangle summarizes LOP alarms/errors.	
AU-3	Little blue square in the top-left corner (STS-1 is used as example	Pointer Adjustment	Timeslot, Tributary
TU-12	Low Order Path (LOP)	Type of payload Examples: VCG, VT1.5, etc.	Tributary
?	Light gray background color with a question mark (?)	Unidentified	Timeslot, Tributary

Summary Tabs

8

The summary tabs allow to configure the test parameters and to view the test status and results.

Tab	Page
Test Summary	125
Alarm Summary (including the Logger)	132
Test Logger	135

Test Summary

Gives the test configuration, status, preferences, and timer configuration.

Press TEST, Summary, and Test.

Test Status	Test Preferences		
Start Time:::	Background Traffic		STS-1 Fixed Stuff Columns
Link	OTN (Mux Type PT 20)	OTN (Mux Type PT 21)	Bulk Filled Overwrite Enable
Test Configuration	·	AIS	
Test Name	SONET/SDH HOP		OC-192/SIM-64 REI-L/MS-REI -
TEST	V		
Test Mode	SONET/SDH LOP		
Normal	v		
	DSn/PDH		
IM coupled I OIN Intrusive	v		
Through 🔲 SONET/SDH Intrusive	Timer Configuration		
Test Description	Start Time		
	2010-11-03 💌 13:52:40		
	Stop Time		
	2010-11-03 💌 13:52:40		
- Clock Configuration			
Clock Mode			
Internal	15 minutes		
	User Duration		
Alarm Analysis	00d:00:15:00		
H C Seconds			
• • LOC	On/Off 🕥		
Alarm			

Test Status

- ➤ Start Time: Indicates the date and time the test has been started. The date and time reset every time the test is restarted. The default time format is ISO (yyyy-mm-dd hh:mm:ss) unless otherwise set from the *Application Preferences* on page 528.
- ► Link: Indicates the status of the 10G Ethernet RX signal. Only available with OTU1e/OTU2e interface when 10G Ethernet is selected.

Test Configuration

- ► **Test Name**: The name of the test connection is used to identify the test. A maximum of 8 characters are allowed. The default setting is **TEST**.
- **Test Mode**: Indicates the selected test mode.
 - ➤ Normal: Indicates that the unit is monitoring a signal in coupled/decoupled and/or through mode.
 - ➤ Dual RX: Indicates that the FTB-8105/15/20/30 unit is monitoring two DS1 or DS3 signals at the same time. Both RX ports are coupled at the exception of the termination mode. Dual RX is not available then the AUX connector is used for synchronization (refer to Clock Synchronization *on page 520* for more information).

➤ NI/CSU Emulation: Indicates that the FTB-8105/15/20/30 unit is emulating the loopback capabilities of a network device in order to respond to an incoming loopback code of a DS1 signal. It can also be used to manually configure a payload or DS1 loopback adapted to the frame format.

Multi-Channel SDT: Indicates that the RX signal is looped to the TX port at the highest termination layer and the RX signal is monitored at each layer defined in the test case.

► Coupled:

 Indicates that both TX and RX parameters are coupled when the Coupled check box is selected.

 Indicates that TX and RX parameters are independent (decoupled) when the **Coupled** check box is cleared.

► **Through**: When enabled, indicates that the RX signal is looped to the TX port.

➤ OTN Intrusive and SONET/SDH Intrusive are mutually exclusive. When enabled, indicates that the RX signal is looped to the TX port with limited TX overwrite capabilities (For SONET/SDH Intrusive: OH and alarm/error generation). SONET/SDH Intrusive and OTN Intrusive are not available on FTB-8105/FTB-8115.

► **Test Description**: The test description is used to describe the test case. A maximum of 64 ASCII characters are allowed.

Clock Configuration

Note: Clock Mode is only available when the test is not started. External and Backplane clock modes are not available with the OTU1e, OTU2e, OTU1f, and OTU2f interfaces.

Clock Mode allows the clock source selection that will be used for the test.

Internal: Internal clock of the unit (STRATUM 3).

External: Clock from the connected DS1/E1/2M external clock signal (AUX-BNC port). Refer to *Clock Synchronization - RX* on page 522 to complete the external clock settings.

Recovered: Clock from the test optical/electrical port input signal. Recovered is the only choice available when the **Test Mode** is set to **Through** mode.

Backplane: 8 kHz clock from another test module on the FTB-500. Note that the other module must support the backplane clock feature and must be enabled (refer to *Backplane* on page 526 for more information). Only one module should have its backplane clock enabled to avoid a LOC.

Alarm Analysis

LOC indicates that the FTB-8100 Series is unable to synchronize with the selected test clock.

Test Preferences

Allows the configuration of the **Background Traffic, STS-1 Fixed Stuff Column**, and **OC-192/STM-64 REI-L/MS-REI** parameters. Refer to Default Test Preferences *on page 530* for the description of each parameter.

Timer Configuration

Allows to automatically start and/or stop a test case at a given time or for a specific duration.

- Start Time: Allows the selection of the specific time the created test case will automatically start. The start time check box has to be checked to be included in the test timer.
- **Note:** A valid start time has to be subsequent to the current time.
 - ➤ Stop Time: Allows the selection of the specific time the test case will automatically stop. The stop time check box has to be checked to be included in the test timer.
- **Note:** A valid stop time has to be subsequent to the current time or to the start time, when enabled. The Stop Time must not exceed 30 days based on the start time. Stop Time cannot be enabled while Duration is enabled.
 - Duration: Allows the selection of the test duration based on the test case start time. The test case start time can be the time the user presses the start button or the time the test is automatically started when the Start Time has been enabled. The Duration check box has to be checked to be included in the test timer. Choices are 15 minutes, 1, 2, 24, 48, 72 hours, 7 days, or User Defined (see User Duration below). The default setting is 15 minutes.
- **Note:** Duration cannot be enabled while Stop Time is enabled. When the test is started while duration is enabled, the stop time is calculated and the Stop Time field is updated to indicate the time the test will stop.
 - User Duration: Allows the selection of the test duration when User
 Defined has been selected for duration. Choices are from 1 second to
 30 days. The default setting is 15 minutes.

➤ On/Off button allows enabling the test timer. An error message is displayed and the test timer is not enabled when the provided start time or stop time is not valid. It is not possible to enable the test timer while the test is running. When the timer is enabled (On), it is possible to disable it even when the test is running. This setting is disabled (Off) by default.

When test timer is enabled, it is possible to manually stop a test case using the main test case Stop button. However, it is not possible to start the test case when the **Start Time** is enabled. An icon is displayed in the global test status area, in front of the test time, indicating that the timer is enabled.

The test timer is automatically disabled either when the user manually stops the test, or when the given stop time or duration has expired.

Note: When using Visual Guardian Lite for remote control, the timer configuration values will be based on the PC clock and not on the FTB-8100 Series. Make sure to consider the time zone differential if it exists between the PC and the FTB-8100 Series.

Alarm Summary

Press TEST, Summary, and Alarm.

The **Alarm** summary tab gives access to the alarm summary including the test logger. See *Test Logger* on page 135.

Alarm Summary

The alarm summary gives current and history summary of alarms and errors encountered during the test.

Note: The list of available alarms and errors depends on the test case.

➤ Test

Global: Indicates the presence of any alarms/errors related to the test such as **Port**, OTN, SONET/SDH, DSn/PDH, Next Generation, Pattern, and **Other**.

Log Full: Indicates that the logger reched it maximum capacity of 5000 events.

- **Configuration**: Indicates the test structure (data path).
- Port: Indicates the presence of any alarms/errors related to the physical port such as LOS, Frequency, LOC, and Code Errors (for electrical port: BPV, EXZ, or CV errors). Also indicates the port power measurement Power (dBm) and Range (dBm) for optical port, frequency Freq (bps), and Offset (ppm). For Dual RX test case, the measurement are available for both the Main (test port) and AUX ports. Refer to *Port Tabs* on page 137 for more information.
- OTN: Indicates the presence of any alarms/errors related to the OTN such as OTU, ODU (includes ODU TCM alarms), and OPU. Refer to OTN Tabs on page 153 for more information.
- ➤ SONET/SDH: Indicates the presence of any alarms/errors related to SONET/SDH testing such as Section/RS, Line/MS, HOP (High Order Path), and LOP (Low Order Path). LOP is not suppoted on the FTB-8140. Refer to SONET Tabs on page 211 and SDH Tabs on page 303 for more information.
- Next Generation: Indicates the presence of any alarms/errors related to Next Generation testing such as VCAT, LCAS, GFP, and Link. Refer to *Next-Generation Tabs* on page 429 for more information.
- DSn/PDH: Indicates the presence of any alarms/errors related to DSn/PDH testing such as DS1/1.5M, DS3/45M, E1/2M, E2/8M, E3/34M, and E4/140M. Not suppoted on the FTB-8140. Refer to DSn Tabs on page 269 and PDH Tabs on page 369 for more information.

- Ethernet: Indicates the presence of any alarms/errors related to Ethernet, Gb Ethernet, and 10G Ethernet testing such as Errors (FCS, Jabber, Runt, Oversize when enabled (refer to Oversize Monitoring on page 399), Undersize, Block Error, Out-of-sequence, or Frame Loss), Link, and Fault. Refer to Ethernet Tabs on page 393 for more information.
- ➤ Pattern: Indicates the presence of any alarms/errors related to pattern testing such as Bit Error, and Pattern Loss. Indicates also the Bit Error rate and count for both Main (test port) and AUX ports. Refer to BERT Tabs on page 405 for more information.
- Client Offset: Indicates the presence of client frequency alarm as well as the client frequency measurement value and its offset. Refer to *Client Offset RX* on page 515 for more information.
- ➤ Other: Indicates all other alarms/errors such as SDT. Refer to Service Disruption Time (SDT) on page 411 for more information.

Test Logger

Press TEST, Summary, and Alarm.

The **Test Logger** lists the test status/events.

D 🔺	Date/Time 🔺	Data Path	Event	Duration	Count	Rate

Total Events

Indicates the total number of recorded events.

Note: The Logger lists a maximum of 5000 events, over that amount the logger stops recording and the log full alarm is activated.

Logger Table

An event is automatically listed in the logger and saved on the hard drive in case a power failure condition occurs.

The logger is cleared when one of the following conditions is met:

- ► A test case is stopped and restarted.
- ► The test case is cleared.
- ► When pressing $\bigvee_{H, Reset}$.

Events are listed by **ID** - **Date/Time** by default. Events can also be sorted by **Data Path** or **Event** by pressing on the corresponding column title.

- **ID**: Indicates the Event number. Events are sequentially numbered.
- Date/Time: Indicates the date and time the Alarm/Error condition has been detected.
- ► Data Path: Indicates the origin of the alarm/error. [P1] and [P2] in the data path represent respectively the Port 1 and Port 2.
- **Event**: Indicates the alarm/error type.
- Duration: Indicates the number of seconds (day:hour:minute:second format) within which the alarm/error occurred.
- **Count**: Indicates the number of occurrences of the error.
- **Rate**: Indicates the error rate.
- **Note:** In the Duration, Count and Rate columns, **Pending** indicates that the alarm/error condition persists or was persisting when the test was stopped.

9 Port Tabs

This section describes the electrical and optical port tabs.

Note: The available tabs listed are a function of the test path activated.

Tab	Page
Port TX (Electrical Interfaces) ^a	138
Port RX (Electrical Interfaces) ^a	142
Port TX (Optical Interfaces) ^b	147
Port RX (Optical Interfaces) ^b	150

a. Not available on the FTB-8140.

b. Not available on the FTB-8105.

Port TX (Electrical Interfaces)

Press TEST, Port, and Port TX.

Configuration Line Coding CMI	Alam Generation Type LOS On/Off O
Uto 225 feet range	Error Injection Frequency Manual Frequency Offset (ppm) Type Amount BPV I Send
Output Presence	Automated Type Rate Dr/Off I.0E-02 Continuous Or/Off

Configuration

► Line Coding

Signal	Line Coding	Default setting
DS1	AMI and B8ZS	B8ZS
DS3	B3ZS	B3ZS
E1	AMI and HDB3	HDB3
E2	HDB3	HDB3
E3	HDB3	HDB3
E4	СМІ	СМІ
STS-1e/STM-0e	B3ZS	B3ZS
STS-3E/STM-1e	СМІ	СМІ

➤ LBO (Line Build Out): The LBO allows to meet the interface requirements over the full range of cable lengths. LBO is not available with E1, E2, E3, and E4 interfaces.

For DS1:

Preamplification values: +3.0 dBdsx (533-655 ft), +2.4 dBdsx (399-533 ft), +1.8 dBdsx (266-399 ft), +1.2 dBdsx (133-266 ft), and +0.6 dBdsx (0-133 ft).

Cable simulation (CSU Emulation mode) values: **0.0 dBdsx**, **-7.5 dBdsx**, **-15.0 dBdsx**, and **-22.5 dBdsx**.

For DS3: 0 to 225 feet range, 225 to 450 feet range, and Cable Simulation 900 ft).

For STS-1e/STM-0e: 0 to 225 feet range, 225 to 450 feet range, and Cable Simulation 900 ft).

For STS-3e/STM-1e: 0 to 225 ft.

Signal Analysis

Output Presence: Indicates the presence of a signal at the output port (green) or not (gray).

Alarm Generation

► Туре

LOS (Loss Of Signal): Turns off the output port signal.

> **On/Off** button: Press **On/Off** to enable/disable the alarm generation.

Error Injection

Allows manual or automated error injection.

► **Type**: The following error types are available with both manual and automated injection mode.

BPV (DSn) or CV (PDH)

EXZ (Excessive Zeros) is only available with DS1 and DS3 interfaces.

The default setting is **BPV/CV**.

> Amount: Select the amount of error to be generated.

Choices are 1 through 50. The default setting is 1.

- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 1.0E-2.
- ► Continuous: Continuous, when activated, generates the selected error to its theoretical maximum. This setting is disabled by default.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or continuously when continuous is enabled. This setting is disabled (Off) by default.

Frequency

Note: Frequency offset generation is not available for 10Base-T test.

- ➤ Frequency Offset (ppm): Allows entering a positive or a negative frequency offset in ppm. Choices are listed in the table below. The default setting is 0. The frequency offset value can be changed on the fly even when activated (On).
- ► Actual Frequency (bps): Indicates the frequency (actual frequency + Frequency offset) that will be used for transmission.
- ► Nominal Frequency (bps): Indicates the nominal frequency of the signal. The nominal frequencies are listed in the table below.
- On/Off button: Allows enabling the frequency offset generation. This setting is disabled (Off) by default.

Interface	Frequency Offset ^a	Nominal Frequency
DS1	±140 ppm	1544000 bps
E1	± 70 ppm	2048000 bps
E2	± 50 ppm	8448000 bps
E3	± 50 ppm	34368000 bps
DS3	± 50 ppm	44736000 bps
STS-1e/STM-0e	± 50 ppm	51840000 bps
E4	± 50 ppm	139264000 bps
STS-3e/STM-1e	± 50 ppm	155520000 bps

a. The frequency offset range is guaranteed for a source signal at 0 ppm. In the event that the source signal already has an offset then, the output signal may exhibit an offset larger than the range specified.

Port RX (Electrical Interfaces)

Press TEST, Port, and Port RX.

Configuration Line Coding [Cht] Termination Mode Termination Mode	Alarm Analysis Seconds H C Seconds LOS Frequency Error Analysis Seconds Count H C Seconds Count BPV	Frequency Analysis Frequency (bps) Frequency Offset Rate Max. Negative Offset Max. Negative Offset
	Signal Analysis Amplitude (Vpp) Power Level (dBm) Amplitude (Vpp)	Presence

Note: For DS1/DS3 **Dual RX** test mode, the second RX port's tab is accessible using the Tab Configuration on page 49.

Configuration

Note: See Configuration on page 138 for more information on Line Coding.

Termination Mode

Choices are: **Term, Mon,** and **Bridge**. **Bridge** is only available for DS1/E1 interfaces.
Alarm Analysis

Possible alarms that can be detected are:

- ► LOS (Loss Of Signal): The LOS alarm indicates absence of an input signal or an all-zeros pattern was detected.
- ► **Frequency**: The frequency alarm indicates if the received signal rate meets the standard rate specifications (green) or not (red).

Interface	Standard Rate Specification
DS1	1544000 ±57 bps (±36.6 ppm)
E1	2048000 ±112 bps (±54.6 ppm)
E2	8448000 ±293 bps (±34.6 ppm)
E3	34368000 ±846 bps (±24.6 ppm)
DS3	44736000 ±1101 bps (±24.6 ppm)
STS-1e/STM-0e	51840000 ±1276 bps (±24.6 ppm)
E4	139264000 ±2730 bps (±19.6 ppm)
STS-3e/STM-1e	155520000 ±3826 bps (±24.6 ppm)

Error Analysis

Possible errors that can be detected are:

► For DS1 and DS3

BPV (Bipolar Violation): A **BPV** error indicates that pulses of the same consecutive polarity were detected, in violation with the bipolar signal format.

EXZ (Excessive Zeros)

For **DS1** with **AMI Line Coding**: Indicates that more than 15 consecutive bit periods with no pulses have been received. For **DS1** with **B8ZS Line Coding**: Indicates that more than 7 consecutive bit periods with no pulses have been received. For **DS3**: Indicates that more than 2 consecutive bit periods with no pulses have been received.

► For E1, E2, E3, E4, STS-1e/STM-0e, and STS-3e/STM-1e

CV (Code Violation): A **CV** error indicates that pulses of the same consecutive polarity were detected, in violation with the bipolar signal format.

Signal Analysis

- ➤ Power Level: Indicates the power level of the input signal in dBm for E1, E2, E3, E4, STS-1e/STM-0e, and STS-3e/STM-1e. In order to get accurate power level reading (within specified tolerance), an all-ones signal must be present at the interface under test otherwise this value only provide indicative reading.
- Level (Vref = 6.00 Vpp) / Level (Vref = 1.21 Vpp): Presents the received signal level in dBdsx for respectively DS1 and DS3. The dBdsx values are calculated with the following expressions: For DS1: 20 log (Vpp measured / 6.00) For DS3: 20 log (Vpp measured / 1.21)
- > Amplitude: Indicates the amplitude of the input signal in Vpp.
- Input Presence: Indicates if there is a signal at the input port (green) or not (gray).

Frequency Analysis

The FTB-8100 Series allows the following frequency monitoring range.

Interface	Standard Rate Specification
DS1	1544000 ±140 ppm
E1	2048000 ±100 ppm
E2	8448000 ±100 ppm
E3	34368000 ±100 ppm
DS3	44736000 ±100 ppm
STS-1e/STM-0e	51840000 ±100 ppm
E4	139264000 ±100 ppm
STS-3e/STM-1e	155520000 ±100 ppm

- > Actual Frequency (bps): Indicates the frequency of the input signal.
- ► Frequency Offset: Indicates the offset between the standard rate specification and the rate of the input signal.
- Max. Positive Offset: Indicates the offset between the standard rate specification and the largest rate recorded from the received signal.
- Max. Negative Offset: Indicates the offset between the standard rate specification and the smallest rate recorded from the received signal.

Offset Unit: Allows the selection of the frequency offset unit. Choices are **bps** and **ppm**. The default setting is **ppm**.

Port TX (Optical Interfaces)

Note: Available with OTN, SONET, and SDH interfaces.

Press TEST and Port.

Signal Analysis

Output Presence: Indicates the presence of a signal at the output port (green) or not (grey). The output presence LED is grey when there is no SFP/XFP.

Wavelength (nm)

 Wavelength (nm): Indicates the detected SFP/XFP/TRN wavelength.Possible values are: For FTB-8105/15/20/30: 850, 1310, 1550 nm, or unknown if the SFP/XFP is missing or not recognized. For FTB-8140-NRZ: 1550 nm. For FTB-8140-DPSK: the wavelength is selectable.

Wavelength Configuration					
Wavelength (nm)	1550.12				
-0.4 nm 1528.77	1550.12	+0.4 nm 1563.86			
Default		OK Cancel			

► Invert Polarity: For the FTB-8140-DPSK model, invert the polarity if required.

Alarm Generation

- > Type: LOS (Loss Of Signal): Turns off the output port laser signal.
- ➤ On/Off button: Allows enabling the alarm generation. This setting is disabled (Off) by default.

Frequency

Note: Frequency offset is not available when Through mode is selected.

- ► Frequency Offset (ppm): Allows entering a positive or a negative frequency offset in ppm. The default setting is **0**.
- ► Actual Frequency (bps): Indicates the frequency (actual frequency + Frequency offset) used for transmission.
- ► Nominal Frequency (bps): Indicates the nominal frequency of the signal.
- ➤ On/Off button: Allows enabling the frequency offset generation. This setting is disabled (Off) by default.

Interface	Frequency Offset ^a	Nominal Frequency	
OC-3/STM-1	± 50 ppm	155520000 bps	
OC-12/STM-4	± 50 ppm	622080000 bps	
OC-48/STM-16	± 50 ppm	2488320000 bps	
OTU1	± 50 ppm	2666057143 bps	
OC-192/STM-64	± 50 ppm	9953280000 bps	
OTU2	± 50 ppm	10709225316 bps	
OTU1e	± 115 ppm	11049107143 bps	
OTU2e	± 115 ppm	11095727848 bps	
OTU1f	± 115 ppm	11270089286 bps	
OTU2f	± 115 ppm	11317642405 bps	
OC-768/STM-256	± 50 ppm	39813120000 bps	
OTU3	± 50 ppm	43018413559 bps	

a. The frequency offset range is guaranteed for a source signal at 0 ppm offset. In the event that the source signal already has an offset then, the output signal may exhibit an offset larger than the range specified.

Port RX (Optical Interfaces)

Press TEST and Port.

Range (dBm) Power (dBm)	3.0 8.0 6.0	Frequency (bps)		
Alarm Analysis H C O LOS Frequency RX Tuning	Seconds	Frequency Offset Max. Negative Offset Max. Positive Offset	Offset Unit	

Signal Analysis

- ► **Range** indicates the minimum and maximum optical power values necessary to meet the standard BER for the test interface.
- Power (dBm) indicates the power level of the input signal in dBm. The background color of the Power Level field indicates the input presence as follow:

Background color	Description
Green	Power level in-range.
Yellow	Power level out of operational range.
Red	Power level crosses the "Close-to-damage" threshold.
Grey	LOS or invalid operational range value reported by the optical device (SFP/XFP).

Alarm Analysis

- ► LOS (Loss Of Signal) indicates that there is no input signal or an all-zeros pattern on the incoming SONET/SDH signal persists for more than 100 µs.
- ► Frequency alarm indicates that the received signal rate meets the standard rate specifications (green) or not (red).

Interface	Standard Rate Specification
OC-3/STM-1	155520000 ±3826 bps (±24.6 ppm)
OC-12/STM-4	622080000 ±15304 bps (±24.6 ppm)
OC-48/STM-16	2488320000 ±61213 bps (±24.6 ppm)
OTU1	2666057143 ±65585 bps (±24.6 ppm)
OC-192/STM-64	9953280000 ± 244851 bps (±24.6 ppm)
OTU2	10709225316 ± 263446 bps (±24.6 ppm)
OTU1e	11049107143 ± 1155737 bps (±104.6 ppm)
OTU2e	11095727848 ± 1160613 bps (±104.6 ppm)
OTU1f	11270089286 ± 1178851 bps (±104.6 ppm)
OTU2f	11317642405 ± 1183825 bps (±104.6 ppm)
OC-768/STM-256	39813120000 ± 979402 bps (±24.6 ppm)
OTU3	43018413559 ± 1058253 bps (±24.6 ppm)

► **RX Tuning** alarm indicates that the wavelength of the DPSK transponder is being adjusted. Only available with the FTB-8140-DPSK model.

Frequency Analysis

The FTB-8100 Series allows the following frequency monitoring range.

Interface	Measurement range
OC-3/STM-1	155520000 ±100 ppm
OC-12/STM-4	622080000 ±100 ppm
OC-48/STM-16	2488320000 ±100 ppm
OTU1	2666057143 ±100 ppm
OC-192/STM-64	9953280000 ± 100 ppm
OTU2	10709225316 ±100 ppm
OTU1e	11049107143 ±120 ppm
OTU2e	11095727848 ±120 ppm
OTU1f	11270089286 ± 120 ppm
OTU2f	11317642405 ± 120 ppm
OC-768/STM-256	39813120000 ±100 ppm
OTU3	43018413559 ±100 ppm

Actual Frequency (bps) indicates the frequency of the input signal in bps.

Frequency Offset indicates the offset between the standard rate specification and the rate of the input signal.

Max. Negative Offset indicates the offset between the standard rate specification and the smallest rate recorded from the received signal.

Max. Positive Offset indicates the offset between the standard rate specification and the largest rate recorded from the received signal.

Offset Unit allows the selection of the frequency offset unit. Choices are **bps** and **ppm**. The default setting is **ppm**.

10 OTN Tabs

Note: OTN tabs are only available for OTU1, OTU2, OTU1e, OTU2e, OTU1f, OTU2f, and OTU3 interfaces. OTN options need to be enabled to be available. Refer to Available Options on page 547 for more information.

ΟΤΝ	Tab	Page
FEC	FEC TX	154
	FEC RX	156
OTU3, OTU2, OTU1,	OTU TX	157
OTU1e, OTU2e, OTU1f,	OTU OH TX	160
OTU2f	OTU TTI TX	162
	OTU RX	163
	OTU OH RX	166
	OTU TTI RX	168
ODU3 TCM, ODU2 TCM,	ODU TCM TX	170
ODU1 TCM, ODU0 TCM,	ODU TCM TTI TX	173
and ODUflex TCM	ODU TCM RX	175
	ODU TCM TTI RX	178
ODU3, ODU2, ODU1,	ODU TX	180
ODU0, and ODU FLEX	ODU OH TX	182
	ODU TTI/FTFL TX	186
	ODU RX	189
	ODU OH RX	191
	ODU TTI/FTFL RX	194
OPU3, OPU2, OPU1, OPU0,	OPU TX	197
OPUflex	OPU OH TX	200
	OPU RX	203
	OPU OH RX	205
GMP	GMP TX	208
	GMP RX	209

FEC TX

Press TEST, OTUk, and FEC (under OTUk TX).

Conflauration	Error Injection Manual Type Amount FEC-CORR-CW I I Send Send FEC-CORR-CW I I.SE-02 On/Off	
FEC OTU OT		

Configuration

Enable FEC allows detecting, reporting and correcting up to 8 symbol errors (Correctable) per codeword. Over 8 symbol errors, they are detected and reported as uncorrectable errors. This setting is enabled by default.

Note: Enable FEC must be selected when Enable Scrambler is not selected in order to prevent potential alarms caused by a lack of transition on the optical signal. To disable FEC, first select Enable Scrambler then clear Enable FEC. See OTU TX on page 157 for more information on Enable Scrambler.

Error Injection

Allows manual or automated error injection.

Note: Error injection is only available when the Enable FEC check box is selected.

► **Type**: The following error types are available with both manual and automated injection modes. The default setting is **FEC-CORR-CW**.

FEC-CORR-CW (Forward Error Correction - Correctable - Codeword): Generates 8 symbols (bytes) containing 8 bits in error each, in each codeword.

FEC-UNCORR-CW (Forward Error Correction - Uncorrectable - Codeword): Generates 16 symbol (bytes) containing 8 bits in error each, in each codeword.

FEC-CORR-SYMB (Forward Error Correction - Correctable - Symbol): Generates 1 symbol (byte) containing 8 bits in error.

FEC-CORR-BIT (Forward Error Correction - Correctable - Bit): Generates 1 symbol (byte) containing 1bit in error.

FEC-STRESS-CW (Forward Error Correction - Stress - Codeword): Generates correctable errors composed of a random number of symbol errors (less or equal to 8) containing a random number of bits distributed all over the OTU frame.

- Amount: Select the amount of errors to be generated. Choices are 1 through 50. The default setting is 1.
- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 1.5E-2.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

FEC RX

Press TEST, OTUk, and FEC (under OTUk RX).

Configuration				
Error Analysis H C	Seconds	Count	Rate	
FEC-CORR				CW 💌
B B FEC-LINCORR			- (m	

Configuration

Note: See OTU TX on page 157 for more information on Enable FEC.

Error Analysis

► FEC-CORR (FEC - Correctable): Gives statistics on codewords/symbols/bits corrected by the FEC.

CW/SYMB/BIT item list: FEC-CORR errors are displayed according with the select statistics. Available statistics are **Codeword (CW)**, **Symbol (SYMB)**, and **Bits (BIT)**. The default setting is **CW (Codeword)**.

➤ FEC-UNCORR (FEC - Uncorrectable): Gives statistics on the detected codewords (CW) having uncorrectable errors.

ΟΤU ΤΧ

Press TEST, OTUk, and OTU (under OTUk TX).

Configuration	Alarm Generation Type OTU-AIS	On/Off	Error Injection Manual Type OTU-BIP-8	Amount	Send
			Rate Type OTU-BIP-8	Rate 6.5E-05 Continuous	On/Off
FEC OTU OT	О ОН ОТО ТТІ				

Configuration

Note: Configuration for OTU TX and OTU RX are coupled.

Enable Scrambler provides enough "0" and "1" transitions on the optical signal for clock recovery. The **Enable Scrambler** check box is selected by default.

Note: Enable Scrambler must be selected when Enable FEC is not selected in order to prevent potential alarms caused by a lack of transition on the optical signal. To disable Scrambler, first select the Enable FEC check box then clear the Enable Scrambler check box. See FEC TX on page 154 for more information on Enable FEC.

Error Injection

Allows manual or automated error injection.

- ➤ Type: The following error types are available with both manual and automated injection mode: OTU-BIP-8, OTU-BEI, FAS, and MFAS. The default setting is OTU-BIP-8.
- Amount: Select the amount of errors to be generated. Choices are 1 through 50. The default setting is 1.
- ➤ Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 6.5E-05.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

Alarm Generation

Type: The following alarm types are available. The default setting is **OTU-AIS**.

- **LOF** (Loss Of Frame): Generates error in FAS bits continuously.
- ➤ OOF (Out-Of-Frame): Generates error in all FAS bits for 5 consecutive OTU frames.
- **LOM** (Loss Of Multiframe): Generates error in MFAS bits continuously.
- ➤ OOM (Out-Of-Multiframe): Generates error in multiframe number for 5 consecutive OTU frames.
- OTU-AIS (OTU Alarm Indication Signal): Generates polynomial number 11 (PN-11) over all OTU frame bits including FAS and MFAS continuously.
- ➤ OTU-BDI (OTU Backward Defect Indication): Generates "1" for the BDI bit in the SM overhead field (byte 3, bit 5) continuously.
- ➤ OTU-IAE (OTU Incoming Alignment Error): Generates "1" for the IAE bit in the SM overhead field (byte 3, bit 6) continuously.
- ➤ OTU-BIAE (OTU Backward Incoming Alignment Error): Generates "1011" for the BEI/BIAE bits in the SM overhead field (byte 3, bits 1 to 4) continuously.

On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

оти он тх

Allows to modify the OTU overhead information to be transmitted.

Note: Only available for FTB-8120NG, FTB-8130NG, FTB-8120NGE, FTB-8130NGE, and FTB-8140 modules when **OTN Intrusive** through mode is not selected.

Press TEST, OTUk, and OTU OH (under OTUk TX).

Note: Overhead bytes are organized using rows and columns structure as per G.709 standard.

Binary

The **Binary** field allows to individually edit any overhead byte in binary. Select the byte to be modified by clicking on its blue label and enter the new binary value. The **Binary** label will be replaced by the byte's label selected for modification.

Row 1

- ➤ FAS: All the Frame Alignment Signal OA1 bytes and OA2 bytes are individually configurable from 00 to FF. The default values are F6 for all OA1 bytes and 28 for all OA2 bytes.
- ▶ MFAS: The Multi-Frame Alignment Signal byte is not configurable.

SM: The Section Monitoring contains the following bytes.

The first SM byte (Column 8) contains the **TTI** multiframe byte that is only configurable from *OTU TTI TX* on page 162.

The second SM byte (Column 9) contains the **BIP-8** byte that is automatically generated for each frame. This byte is not configurable.

The third SM byte (Column 10) contains the following sub-fields. This byte is configurable from **00** to **FF**. The default value is **00**.

Sub-field	Bit
BEI/BIAE	1-4
BDI	5
IAE	6
RES	7-8

- ➤ GCC0: The two General Communication Channel-0 bytes are configurable from 00 to FF. The default value for each byte is 00.
- RES: The two Reserved (RES) bytes are configurable from 00 to FF. The default value for each byte is 00.

Default

Reverts the overhead bytes to their default values.

ΟΤU ΤΤΙ ΤΧ

Press TEST, OTUk, and OTU TTI (under OTUk TX).

SM TTI Trace Injected Message — Overwrite]
SAPI NULEXFOOTU	
DAPI NuLEXFO OTU A DAPI ^N UL ^N UL	
Operator Specific SPECIFICNuL NuL NuL NuL NuL NuL NuL NuL NuL NuL	

SM TTI Trace

Injected Message

- SAPI allows editing the Source Access point Identifier message to be generated (TTI bytes 1 to 15). A maximum of 15 characters are allowed. The default setting is EXFO OTU SAPI. The TTI byte 0 is set to NULL (all 0's).
- ➤ DAPI allows editing the Destination Access point Identifier message to be generated (TTI bytes 17 to 31). A maximum of 15 characters are allowed. The default setting is EXFO OTU DAPI. The TTI byte 16 is set to NULL (all 0's).
- ➤ Operator Specific allows editing the Operator Specific message to be generated (TTI bytes 32 to 63). A maximum of 32 characters are allowed. The default setting is EXFO OTU OPERATOR SPECIFIC.
- Overwrite: Available with OTN Intrusive through mode only (optional). The Overwrite check box when selected, generates the defined SM TTI Trace message. Overwrite is not available on FTB-8105/FTB-8115.

OTU RX

Press TEST, OTUk, and OTU (under OTUk RX).

Configuration Alarm Anal H C Enable Scrambler	ysis Seconds F	H C • • 00M	Seconds H	C OTU-BDI	Seconds
9 9 00 9 9 LO	NF M	 OTU-AIS OTU-TIM 	0 0	 OTU-IAE OTU-BIAE 	
H C Seconds C FAS	ount Rate	H C • • OTU-BEI	Seconds	Count	Rate
• MFAS	 	-			
ОТU_ОТU ОНОТU	I				

Configuration

Note: See OTU TX on page 157 for more information on Enable Scrambler.

Alarm Analysis

Possible alarms that can be detected are:

- ► LOF (Loss Of Frame): LOF is declared when OOF is present for at least 3 ms.
- ➤ OOF (Out-Of-Frame): OOF is declared when FAS (bytes 3, 4, and 5) are in error for at least 5 consecutive OTU frames.
- ► LOM (Loss Of Multiframe): LOM is declared when OOM is present for at least 3 ms.
- ➤ OOM (Out-Of-Multiframe): OOM is declared when MFAS are in error for at least 5 consecutive OTU frames.
- ➤ OTU-AIS (OTU Alarm Indication Signal): OTU-AIS is declared when polynomial number 11 (PN-11) is over all OTU frame bits including FAS and MFAS for at least 3 consecutive 8192 bit-interval.

- ➤ OTU-TIM (OTU Trace Identifier Mismatch): OTU-TIM is declared when expected SM SAPI and/or SM DAPI do not match the received SM SAPI and/or DAPI for at least 3 consecutive TTI. This alarm is only available when the Enable TIM SAPI and/or DAPI check boxes are selected from OTU TTI RX on page 168.
- ➤ OTU-BDI (OTU Backward Defect Indication): OTU-BDI is declared when the BDI bit in the SM overhead field (byte 3, bit 5) is "1" for at least 5 consecutive OTU frames.
- ➤ OTU-IAE (OTU Incoming Alignment Error): OTU-IAE is declared when IAE bit in the SM overhead field (byte 3, bit 6) is "1" for at least 5 consecutive OTU frames.
- ➤ OTU-BIAE (OTU Backward Incoming Alignment Error): OTU-BIAE is declared when BEI/BIAE bits in the SM overhead field (byte 3, bits 1 to 4) are "1011" for at least 3 consecutive frames.
- **Note:** Refer to Alarm/Error Measurements on page 47 for H/C LEDs and Seconds information.

Error Analysis

Possible errors that can be detected are:

- **FAS** (Frame Alignment Signal): Indicates the FAS bits in error.
- ▶ MFAS (Multiframe Alignment Signal): Indicates the MFAS bits in error.
- ➤ OTU-BIP-8 (OTU Bit Interleave Parity-8): Indicates the SM BIP-8 mismatch between the received value and locally computed value (0 to 8).
- ► **OTU-BEI** (OTU Backward Error Indication): Indicates SM BEI errors received from the DUT (value 0 to 8).

OTU BEI bits (1234)	BIP violations	ODUk BEI bits (1234)	BIP violations
0000	0	0101	5
0001	1	0110	6
0010	2	0111	7
0011	3	1000	8
0100	4	1001 to 1111	0

OTU OH RX

Displays the OTU overhead bytes received in the last second.

Press TEST, OTUk, and OTU OH (under OTUk RX).

Note: Overhead bytes are organized using rows and columns structure as per G.709 standard.

Binary

The **Binary** field allows to individually display any overhead byte in binary. Select the byte to be displayed by clicking on its blue label. The **Binary** label will be replaced by the byte's label selected.

Row 1

- ► FAS: Displays the received Frame Alignment Signal OA1 and OA2 byte values.
- ► MFAS: Displays the received Multi-Frame Alignment Signal byte value.

SM: Displays the received Section Monitoring bytes.

The first SM byte (Column 8) contains the **TTI** multiframe byte.

The second SM byte (Column 9) contains the **BIP-8** byte.

The third SM byte (Column 10) contains the following sub-fields.

Sub-field	Bit
BEI/BIAE	1-4
BDI	5
IAE	6
RES	7-8

- ► GCC0: Displays the received General Communication Channel byte values.
- ► **RES**: Displays the received RES (Reserved) byte values.

OTU TTI RX

Press TEST, OTUk, and OTU TTI (under OTUk RX).

SM TTI Tra Received M	ce lessage	Expected Message	
DAPI		DAPI	
Operator		Enable TIM	
Specific	V	SAPI	
FEC	оти оти он оти оти		

SM TTI Trace

Received Message

- ➤ SAPI indicates the received TTI (Trail Trace Identifier) Source Access Point Identifier. When the Enable TIM SAPI check box is selected, the SAPI field background becomes pink when there is a mismatch with the expected value and the OTU-TIM alarm is declared.
- ➤ DAPI indicates the received TTI Destination Access Point Identifier. When the Enable TIM DAPI check box is selected, the DAPI field background becomes pink when there is a mismatch with the expected value and the OTU-TIM alarm is declared.
- > Operator Specific indicates the received TTI Operator Identifier.

Expected Message

- ➤ SAPI allows editing the expected Source Access point Identifier (TTI bytes 1 to 15). Available when the Enable TIM SAPI check box is selected. The default setting is EXFO OTU SAPI. The TTI byte 0 is set to NULL (all 0's).
- ➤ DAPI allows editing the expected Destination Access point Identifier (TTI bytes 17 to 31). Available when the Enable TIM DAPI check box is selected. The default setting is EXFO OTU DAPI. The TTI byte 16 is set to NULL (all 0's).

Enable TIM

- ➤ SAPI allows editing the expected Source Access Point Identifier when the SAPI check box is selected. Enables also the OTU-TIM alarm monitoring. The SAPI check box is cleared by default.
- ➤ DAPI allows editing the expected Destination Access Point Identifier when the DAPI check box is selected. Enables also the OTU-TIM alarm monitoring. The DAPI check box is cleared by default.

ODU TCM TX

Note: This tab is not used when **OTN Intrusive** through mode is enabled.

Press TEST, ODUk, and ODU TCM (under ODUk TX).

Configuration	TCM Level	Alarm Generation Type TCM1-LTC	On/Off
		Type Amount Type TCM1-BIP-8 T	Send
Г ТСМ6		Rate Type Rate TCM1-BIP-8 G.SE-05 Continuous	On/Off
ООО ТСМ С	О ООО ТТТ МОТ ООО	DU OH ODU TTI/FTFL OPU OPU OH	

Configuration

TCM1 to **TCM6** allows enabling TCM level 1 to level 6. **TCM1** to **TCM6** are disabled by default.

TCM Level

Allows the selection of the TCM level for alarm/error generation. Choices are from **TCM1** to **TCM6**, but only enabled TCM levels are available.

Alarm Generation

Type: The following alarm types are available. The default setting is **TCMi-LTC**.

- ► TCMi-LTC (TCMi Loss of Tandem Connection): Generates "000" in the STAT field of TCMi overhead (byte 3, bits 6 to 8) continuously.
- ► TCMi-BDI (TCMi Backward Defect Indication): Generates a "1" in the BDI bit of the TCMi overhead field (byte 3, bit 5) continuously.
- ► **TCMi-IAE** (TCMi Incoming Alignment Error): Generates "1" in the IAE bit of the TCMi overhead (byte 3, bit 6) continuously.
- ➤ TCMi-BIAE (TCMi Backward Incoming Alignment Error): Generates "1011" in the BEI/BIAE bits of the TCMi overhead (byte 3, bits 1 to 4) continuously.

On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

Error Injection

Allows manual or automated error injection.

- ➤ Type: The following error types are available with both manual and automated injection mode: TCMi-BIP-8, and TCMi-BEI. The default setting is TCMi-BIP-8.
- > Amount: Select the amount of errors to be generated.

Choices are 1 through 50. The default setting is 1.

- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate field to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 6.5E-05.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or continuously when continuous is enabled. This setting is disabled (Off) by default.
- **Note:** "i" is the level (1 to 6) of the selected TCM.

ΟΟU ΤCM ΤΤΙ ΤΧ

Note: This tab is not used when **OTN Intrusive** through mode is enabled.

Press TEST, ODUk, and ODU TCM TTI (under ODUk TX).

TCM Level	TCML TTI Trace Message SAPI SAPI ^N ut
	DAPI NuLEXFOTCMI
	Operator Specific SPECIFIC ^R u _L ^N u _L ^N u _L

TCM Level

Allows the selection of the TCM level for alarm/error generation. Choices are from **TCM1** to **TCM6**, but only enabled TCM levels are available (see *TCM Level* on page 170).

TCMi TTI Trace

Message

- SAPI allows editing the Source Access Point Identifier to be generated (TTI bytes 1 to 15). A maximum of 15 characters are allowed. The default setting is EXFO TCMi SAPI. The TTI byte 0 is set to NULL (all 0's).
- ➤ DAPI allows editing the Destination Access Point Identifier to be generated (TTI bytes 17 to 31). A maximum of 15 characters are allowed. The default setting is EXFO TCMi DAPI. The TTI byte 16 is set to NULL (all 0's).
- ➤ Operator Specific allows editing the Operator Specific to be generated (TTI bytes 32 to 63). A maximum of 32 characters are allowed. The default setting is EXFO TCMi OPERATOR SPECIFIC.
- **Note:** "i" is the level (1 to 6) of the selected TCM.

ODU TCM RX

Press TEST, ODUk, and ODU TCM (under ODUk RX).

Configuration — TCM1 TCM2 TCM3	TCM Level	Error Analysis H C Seconds TCM1-BIP-8 TCM1-BEI	Count Rate	
TCM4	Alarm Analysis H C Sei	tonds H C	Seconds	
	TCM1-TIM		0PU 0H	

Configuration

TCM1 to **TCM6** allows enabling TCM level 1 to level 6. **TCM1** to **TCM6** are disabled by default.

TCM Level

Allows the selection of the TCM level for alarm/error analysis. Choices are from **TCM1** to **TCM6**, but only enabled TCM levels are available.

Error Analysis

- ➤ TCMi-BIP-8 (TCMi Bit Interleave Parity-8): Indicates TCMi BIP-8 mismatch between the received value and locally computed value (0 to 8).
- ➤ **TCMi-BEI** (TCMi Backward Error Indication): Indicates that interleaved-bit blocks in error are detected by the corresponding ODUk tandem connection monitoring sink using the BIP-8 code.

ODU TCMi BEI bits (1234)	BIP violations	ODU TCMi BEI bits (1234)	BIP violations
0000	0	0101	5
0001	1	0110	6
0010	2	0111	7
0011	3	1000	8
0100	4	1001 to 1111	0

Alarm Analysis

- ➤ TCMi-LTC (TCMi Loss of Tandem Connection): TCMi-LTC is declared when the STAT information in the TCMi Byte 3, bits 6, 7, and 8 are "000" for at least 3 consecutive frames.
- ➤ **TCMi-TIM** (TCMi -Trace Identification Mismatch): TCMi-TIM is declared when the expected TCMi SAPI and/or TCMi DAPI do not match the received TCMi SAPI and/or TCMi DAPI for at least 3 TTI. This alarm is only available when the Enable TIM SAPI and/or DAPI check boxes are selected from *ODU TCM TTI RX* on page 178.
- ➤ TCMi-BDI (TCMi Backward Defect Indication): TCMi-BDI is declared when the BDI bit in the TCMi overhead field Byte 3, bit 5 is "1" for at least 5 consecutive frames.
- ► TCMi-IAE (TCMi Incoming Alignment Error): TCMi-IAE is declared when the STAT information in the TCMi is "010" for at least 3 consecutive frames.
- ➤ TCMi-BIAE (TCMi Backward Incoming Alignment Error): TCMi-BIAE is declared when the BEI/BIAE bits in the TCMi overhead field Byte 3, bits 1 to 4 are "1011" for at least 3 consecutive frames.

Note: *"i" is the level (1 to 6) of the selected TCM.*

ODU TCM TTI RX

Press TEST, ODUk, and ODU TCM TTI (under ODUk TX).

TCM Level	TCMI TTI Trace Received Message SAPI A SAPI DAPI DAPI DAPI A
	Operator

TCM Level

Allows the selection of the TCM level for alarm/error analysis. Choices are from **TCM1** to **TCM6**, but only enabled TCM levels from the ODU TCM tab are available.

TCMi TTI Trace

Received Message

- ➤ SAPI indicates the received TTI (Trail Trace identifier) Source Access Point Identifier. When the Enable TIM SAPI check box is selected, the SAPI field background becomes pink when there is a mismatch with the expected value and the TCMi-TIM alarm is declared.
- ➤ DAPI indicates the received TTI Destination Access Point Identifier. When the Enable TIM DAPI check box is selected, the DAPI field background becomes pink when there is a mismatch with the expected value and the TCMi-TIM alarm is declared.
- > **Operator Specific** indicates the received TTI Operator Identifier.
Expected Message

- ➤ SAPI allows editing the expected Source Access point Identifier (TTI bytes 1 to 15). Available when Enable TIM SAPI is enabled. The default setting is EXFO TCMi SAPI. The TTI byte 0 is set to NULL (all 0's).
- DAPI allows editing the expected Destination Access point Identifier (TTI bytes 17 to 31). Available when Enable TIM DAPI is enabled. The default setting is EXFO TCMi DAPI. The TTI byte 16 is set to NULL (all 0's).

► Enable TIM

SAPI allows editing the expected Source Access Point Identifier when the **SAPI** check box is selected. Enables also the TCMi-TIM alarm monitoring. The **SAPI** check box is cleared by default.

DAPI allows editing the expected Destination Access Point Identifier when the **DAPI** check box is selected. Enables also the TCMi-TIM alarm monitoring. The **DAPI** check box is cleared by default.

Note: "i" is the level (1 to 6) of the selected TCM.

ODU TX

Press TEST, ODUk, and ODU (under ODUk TX).

Alarm Generation Type ODU-AIS	On/Off
Error Inlection Manual Type Amount ODU-BIP-8 T I	Send
Type Rate ODU-BIP-8 Government Opu	

Error Injection

Allows manual or automated error injection.

- ➤ Type: The following error types are available with both manual and automated injection mode: ODU-BIP-8, and ODU-BEI. The default setting is ODU-BIP-8.
- Amount: Select the amount of errors to be generated. Choices are 1 through 50. The default setting is 1.
- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 6.5E-05.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

Alarm Generation

Type: The following alarm types are available. The default setting is **ODU-AIS**.

- ➤ ODU-LOFLOM (ODU Loss of Frame Loss Of Multiframe): Generates error continuously in FAS and MFAS of a multiplexed test case. Available for ODU mux test case on the ODU sub-layers only.
- ODU-AIS (ODU Alarm Indication Signal): Generates an all "1"s pattern in the entire ODUk signal, excluding the frame alignment overhead (FA OH), OTUk overhead (OTUk OH) and ODUk FTFL.
- ➤ ODU-OCI (ODU Open Connection Indication): Generates a repeating "01100110" pattern in the entire ODUk signal, excluding the frame alignment overhead (FA OH) and OTUk overhead (OTUk OH).
- ODU-LCK (ODU Locked): Generates a repeating "01010101" pattern in the entire ODUk signal, excluding the frame alignment overhead (FA OH) and OTUk overhead (OTUk OH).
- ➤ ODU-BDI (ODU Backward Defect Indication): Generates a "1" in the BDI (byte 3, bit 5) of the PM overhead field continuously.
- ➤ ODU-FSF (ODU Forward Signal Fail): Generates a "00000001" pattern in the FTFL Byte 0 continuously.
- ODU-BSF (ODU Backward Signal Fail): Generates a "00000001" pattern in the FTFL Byte 128 continuously.
- ODU-FSD (ODU Forward Signal Degrade): Generates a "00000010" pattern in the FTFL Byte 0 continuously.
- ODU-BSD (ODU Backward Signal Degrade): Generates a "00000010" pattern in the FTFL Byte 128 continuously.

On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

ODU OH TX

Allows to modify the ODU overhead information to be transmitted.

Note: Only available when Through mode is not selected.

Press TEST, ODUk, and ODU OH (under ODUk TX).

Note: Overhead bytes are organized using rows and columns structure as per G.709 standard.

Binary

The **Binary** field allows to individually edit any overhead byte in binary. Select the byte to be modified by clicking on its blue label and enter the new binary value. The **Binary** label will be replaced by the byte's label selected for modification.

- ➤ RES: The three Reserved (RES) bytes are configurable from 00 to FF. The default value for each byte is 00.
- ▶ **PM&TCM**: The Path Monitoring & Tandem Connection Monitoring is configurable from **00** to **FF**. The default value is **00**.
- ► TCM ACT: The Tandem Connection Monitoring Activation is configurable from **00** to **FF**. The default value is **00**.
- ► TCM6/TCM5/TCM4 (Row 2) and TCM3/TCM2/TCM1 (Row 3): The Tandem Connection Monitoring overhead contains the following bytes.

The first TCMi byte contains the **TTI** multiframe byte and is only configurable from *ODU TTI/FTFL TX* on page 186.

The second TCMi byte contains the **BIP-8** byte and is automatically generated for each frame. This byte is not configurable.

The third TCMi byte contains the following sub-fields. This byte is configurable from **00** to **FF**. The default value is **00** when TCMi is disabled, and **01** when enabled.

Sub-field	Bit
BEI/BIAE	1-4
BDI	5
STAT	6-8

► **FTFL**: The Fault Type Fault Location multiframe byte is only configurable from *ODU TTI/FTFL TX* on page 186.

- **TCM3/TCM2/TCM1**: See *Row 2* on page 183 for more information.
- ► **PM**: The Performance Monitoring overhead contains the following bytes.

The first PM byte (Column 10) contains the **TTI** byte that is not configurable.

The second PM byte (Column 11) contains the **BIP-8** byte and is automatically generated for each frame. This byte is not configurable.

The third PM byte (Column 12) contains the following sub-fields. This byte is configurable from **00** to **FF**. The default value is **01**.

Sub-field	Bit
BEI	1-4
BDI	5
STAT	6-8

➤ EXP: The two Experimental overhead bytes are configurable form 00 to FF. The default value for each byte is 00.

- ➤ GCC1: The two General Communication Channel-1 bytes are configurable from 00 to FF. The default value for each byte is 00.
- ➤ GCC2: The two General Communication Channel-2 bytes are configurable from 00 to FF. The default value for each byte is 00.
- APS/PCC: The Automatic Protection Switching / Protection Communication Channel overhead bytes are defined in the ITU-T G.709 standard. These bytes are configurable from 00 to FF. The default value is 00.
- ► **RES**: The six Reserved (RES) bytes are configurable from **00** to **FF**. The default value for each byte is **00**.

Default

Reverts the overhead bytes to their default values.

ODU TTI/FTFL TX

Press TEST, ODUk, and ODU TTI/FTFL (under ODUk TX).

PM TTI Tra Message		— 🗖 Overwrite	FTFL Forward ————————————————————————————————————	Backward Overwrite
SAPI	NuLEXFO ODU SAPINULNUL	*	No Fault Fault Indication Code	No Fault Fault Indication Code
DAPI	NULEXFO ODU DAPINULNUL		00 Binary Operator Identifier	00 E Binary Operator Identifier
Operator Specific	EXFO ODU OPERATOR SPECIFIC ^{Nu} L ^{Nu} L ^{Nu} L		Νυ Νυ	Νυμ Νυμ Νυμ Νυμ Νυμ Νυμ Νυμ Operator Specific Νυμ Νυμ Νυμ Νυμ Νυμ Νυμ Νυμ Νυμ Νυμ Νυμ Νυμ Νυμ
ODU TCM		ODU ODU OH		он

PM TTI Trace

Message

- SAPI allows editing the Source Access point Identifier message to be generated (TTI bytes 1 to 15). A maximum of 15 characters are allowed. The default setting is EXFO ODU SAPI. The TTI byte 0 is set to NULL (all 0's).
- ➤ DAPI allows editing the Destination Access point Identifier message to be generated (TTI bytes 17 to 31). A maximum of 15 characters are allowed. The default setting is EXFO ODU DAPI. The TTI byte 16 is set to NULL (all 0's).
- ➤ Operator Specific allows editing the Operator Specific message to be generated (TTI bytes 32 to 63). A maximum of 32 characters are allowed. The default setting is EXFO ODU OPERATOR SPECIFIC.
- Overwrite: Available with OTN Intrusive through mode only (optional). The Overwrite check box when selected, generates the defined PM TTI Trace message. Overwrite is not available on FTB-8105/FTB-8115.

FTFL TX

Allows the configuration of the **Forward** and **Backward** ODU Fault Type Fault Location (FTFL) to be generated.

➤ Fault Indication and Fault Indication Code allows the selection of the FTFL fault indicator message/code (byte 0 for forward, byte 128 for backward) to be generated. The default setting is No fault (00). Choices are:

Fault Indication	Fault Indication Code
No fault	00
Signal fail	01
Signal Degrade	02
Reserved	03 ^a

a. Selecting **Reserved** will use the hexadecimal code 03 but, all codes from 03 to FF are reserved for future international standardization.

Note: The Fault Indication Code field is automatically updated when the Fault Indication is changed and vice versa.

Binary allows either displaying the Fault Indication Code in binary (when enabled) or hexadecimal (when disabled). This setting is disabled by default.

- Operator Identifier allows editing the Operator Identifier (bytes 1 to 9 for forward, byte 129 to 137 for backward) to be generated. A maximum of 9 characters are allowed. By default no Operator Identifier is defined.
- Operator Specific allows editing the Operator Specific (bytes 10 to 127 for forward, byte 138 to 255 for backward) to be generated. A maximum of 118 characters are allowed. By default no Operator Specific is defined.
- ➤ Overwrite: Available with OTN Intrusive through mode only (optional). The Overwrite check box when selected, generates the defined FTFL. Overwrite is not available on FTB-8105/FTB-8115.

ODU RX

Press TEST, ODUk, and ODU (under ODUk RX).

Γ	Erro	r An	alysis	Seconds	Count	Rate	Alan	m An	alysis	Seconds	н	c		Seconds
			ODU-BIP-8						ODU-LOFLOM				ODU-BDI	
	•	•	ODU-BEI						ODU-AIS			•	ODU-FSF	
									ODU-OCI		۲	•	ODU-BSF	
									ODU-LCK		۲	•	ODU-FSD	
								۲	ODU-TIM		۲	•	ODU-BSD	
	ODU TCM ODU TCM TTI ODU ODU OH ODU TTI/FTFL OPU OPU OH													

Error Analysis

- ➤ ODU-BIP-8 (ODU Bit Interleave Parity-8): Indicates the PM BIP-8 mismatch between the received value and locally computed value (0 to 8).
- ODU-BEI (ODU Backward Error Indication): Indicates the interleaved block in error detected by the corresponding ODU path monitoring sink using the BIP-8 code.

ODU BEI bits (1234)	BIP violations	ODU BEI bits (1234)	BIP violations
0000	0	0101	5
0001	1	0110	6
0010	2	0111	7
0011	3	1000	8
0100	4	1001 to 1111	0

Alarm Analysis

- ➤ ODU-LOFLOM (ODU Loss of Frame Loss Of Multiframe): Indicates that OOF is present for at least 3 ms. Available for ODU mux test case on the ODU sub-layers only.
- ➤ ODU-AIS (ODU Alarm Indication Signal): Indicates that the STAT information detected, PM byte 3, bits 6 to 8 is "111" for at least 3 consecutive frames.
- ➤ ODU-OCI (ODU Open Connection Indication): Indicates that the STAT information detected, PM byte 3, bits 6 to 8 is "110" for at least 3 consecutive frames.
- ➤ ODU-LCK (ODU Lock): Indicates that the STAT information detected, PM byte 3, bits 6 to 8 is "101" for at least 3 consecutive frames.
- ➤ ODU-TIM (ODU Trace Identification Mismatch): ODU-TIM is declared when the received SAPI and/or DAPI do not math the expected SAPI and/or DAPI. This alarm is only available when the Enable TIM SAPI and/or DAPI check boxes are selected from ODU TTI/FTFL TX on page 186.
- ➤ ODU-BDI (ODU Backward Defect indication): ODU-BDI is declared when the BDI bit in the PM overhead field (byte 3, bit 5) is "1" for at least 5 consecutive frames.
- ➤ ODU-FSF (ODU Forward Signal Fail): ODU-FSF is declared when the received FTFL byte 0 is "00000001".
- ➤ ODU-BSF (ODU Backward Signal Fail): ODU-BSF is declared when the received FTFL byte 128 is "00000001".
- ➤ ODU-FSD (ODU Forward Signal Degrade): ODU-FSD is declared when the received FTFL byte 0 is "00000010"
- ➤ ODU-BSD (ODU Backward Signal Degrade): ODU-BSD is declared when the received FTFL byte 128 is "00000010".

ODU OH RX

Displays the ODU overhead bytes received in the last second.

Press TEST, ODUk, and ODU OH (under ODUk RX).

Note: Overhead bytes are organized using rows and columns structure as per G.709 standard.

Binary

The **Binary** field allows to individually display any overhead byte in binary. Select the byte to be displayed by clicking on its blue label. The **Binary** label will be replaced by the byte's label selected.

- **RES**: Displays the three Reserved (RES) bytes values received.
- ► **PM&TCM**: Displays the Path Monitoring & Tandem Connection Monitoring value received.
- ► TCM ACT: Displays the Tandem Connection Monitoring Activation value received.
- ► TCM6/TCM5/TCM4 (Row 2) and TCM3/TCM2/TCM1 (Row 3): Displays the following Tandem Connection Monitoring overhead bytes.

The first TCMi byte contains the **TTI** multiframe byte.

The second TCMi byte contains the **BIP-8** byte.

The third TCMi byte contains the following sub-fields.

Sub-field	Bit
BEI/BIAE	1-4
BDI	5
STAT	6-8

► **FTFL**: Displays the Fault Type Fault Location byte. See *FTFL RX* on page 196 for more information.

- **TCM3/TCM2/TCM1**: See *Row 2* on page 192 for more information.
- PM: Displays the following Performance Monitoring overhead bytes. The first PM byte (Column 10) contains the TTI multiframe byte. The second SM byte (Column 11) contains the BIP-8 byte.

The third PM byte (Column 12) contains the following sub-fields.

Sub-field	Bit
BEI	1-4
BDI	5
STAT	6-8

EXP: Displays the two Experimental overhead bytes received.

Row 4

- **GCC1**: Displays the two General Communication Channel-1 bytes.
- ► GCC2: Displays the two General Communication Channel-2 bytes.
- APS/PCC: Displays the Automatic Protection Switching / Protection Communication Channel overhead bytes. The Automatic Protection Switching / Protection Communication Channel overhead bytes are defined in the ITU-T G.709 standard.
- ► **RES**: Displays the six Reserved (RES) bytes received.

ODU TTI/FTFL RX

Press TEST, ODUk, and ODU TTI/FTFL (under ODUk RX).

PM TTI Trace Expected Message Expected Message Expected Message SAPI	FTFL Backward Forward — Fault Indication Fault Indication			
DAPI DAPI	Fault Indication Code Fault Indication Code Binary Operator Identifier Operator Identifier	Sinary		
Operator	Operator Specific Operator Specific ·· ·· ··	*		

PM TTI Trace

Received Message

- ➤ **SAPI** indicates the received TTI (Trail Trace identifier) Source Access point Identifier. When TIM is enabled, the SAPI field background becomes pink when there is a mismatch with the expected value.
- ► **DAPI** indicates the received TTI Destination Access point Identifier. When TIM is enabled, the DAPI field background becomes pink when there is a mismatch with the expected value.
- > Operator Specific indicates the received TTI Operator Identifier.

Expected Message

- ➤ SAPI allows editing the expected Source Access point Identifier (TTI bytes 1 to 15). Available when Enable TIM SAPI is enabled. The default setting is EXFO ODU SAPI. The TTI byte 0 is set to NULL (all zeros).
- ➤ DAPI allows editing the expected Destination Access point Identifier (TTI bytes 17 to 31). Available when Enable TIM DAPI is enabled. The default setting is EXFO ODU DAPI. The TTI byte 16 is set to NULL (all 0's).

► Enable TIM

SAPI allows the edition of the expected Source Access Point Identifier when the **SAPI** check box is selected. Enables also the ODU-TIM alarm monitoring. The **SAPI** check box is cleared by default.

DAPI allows the edition of the expected Destination Access Point Identifier when the DAPI check box is selected. Enables also the ODU-TIM alarm monitoring. The DAPI check box is cleared by default.

FTFL RX

Indicates the **Forward** and **Backward** ODU Fault Type Fault Location (FTFL).

➤ Fault Indication and Fault Indication Code displays the FTFL Fault Indication field (byte 0 for forward, byte 128 for backward). Possible Fault Indication are:

Fault Indication	Fault Indication Code
No fault	00
Signal fail	01
Signal Degrade	02
Reserved	03 to FF

Binary allows either displaying Fault Indication Code in binary (when enabled) or hexadecimal (when disabled). This setting is disabled by default.

- Operator Identifier displays the received operator identifier characters (bytes 1 to 9 for forward, byte 129 to 137 for backward).
- ➤ Operator Specific displays the received operator specific (bytes 10 to 127 for forward, byte 138 to 255 for backward).

ΟΡU ΤΧ

Press TEST, ODUk, and OPU (under ODUk TX).

Payload Type Binary Injected Payload Type ODU Multiplex Structure Code 20	Alarm Generation Type OPU-MSIM	On/Off
	TI/FTFL OPU	

Payload Type

- ► Injected Payload Type allows the selection of the payload signal type to be generated.
- **Note:** Changing the payload type will not affect the test structure, only the generated payload will use the selected payload type.

Payload type	Hex Code	MSB 1234	LSB 5678
Reserved for International Standardization ^a	00	0000	0000
Experimental	01	0000	0001
Asynchronous CBR	02	0000	0010
Bit Synchronous CBR	03	0000	0011
АТМ	04	0000	0100
GFP	05	0000	0101
Virtual Concatenation Signal	06	0000	0110
1000Base-X into ODU0	07	0000	0111
FC-1200 into ODU2e	08	0000	1000

OTN Tabs

OPU TX

Payload type	Hex Code	MSB 1234	LSB 5678
GFP Into Extended OPU2	09	0000	1001
OC-3/STM1 mapping inot ODU0	0A	0000	1010
OC-12/STM-4 into ODU0	0B	0000	1011
FC-100 into ODU0	0C	0000	1100
FC-200 into ODU1	0D	0000	1101
FC-400 into ODUflex	0E	0000	1110
FC-800 into ODUflex	0F	0000	1111
Bit Stream with Octet Timing	10	0001	0000
Bit Stream Without Octet Timing	11	0001	0001
ODU Multiplex with ODTUjk	20	0010	0000
ODU Muliplex with ODTUk.ts/ODTUjk	21	0010	0001
Not Available ^b	55	0101	0101
Reserved Codes for Proprietary Use ^c	80	1000	0000
NULL Test Signal	FD	1111	1101
PRBS Test Signal	FE	1111	1110

a. Selecting **Reserved for International Standardization** will use the hexadecimal code 00 but, all codes not listed in the previous table at the exception of those cover in notes b and c are reserved for future standardization.

b. Selecting Not Available will use the hexadecimal code 55 but, 66 and FF are also Not Available payload types.

c. Selecting **Reserved Proprietary** will use the hexadecimal code 80 but, all codes from 80 to 8F are reserved proprietary payload types.

Note: Codes not listed in the previous table are reserved for future standardization (Reserved For International Standardization).

Note: The Code field is automatically updated when the Injected payload Type is changed and vice versa.

- Overwrite: Available with OTN Intrusive through mode only (optional). The Overwrite check box when selected, generates the defined Payload Type.
- Code allows entering the code of the payload type. Choices are 00 to FF.
- Binary allows either displaying the payload code value in binary (when enabled) or hexadecimal (when disabled). This setting is disabled by default.

Alarm Generation

- Note: Alarm generation is only available with multiplexed test case only.
 - ➤ OPU-MSIM (Multiplex Structure Identifier Mismatch): OPU-MSIM is an OPU alarm that is available for multiplexed test case only. The OPU-MSIM alarm is generated by corrupting the content of the PSI (bytes 2 and 3 for ODU0 in ODU1, bytes 2 to 5 for ODU1 in ODU2, and bytes 2 to 17 for ODU2 in ODU3).
- **Note:** OPU-AIS and OPU-CSF are only available on the OPU client signal (designated as LO in the standard). In this case, OPU-MSIM is not available.
 - ➤ OPU-AIS (OPU Alarm Indication Signal): The OPU-AIS alarm is generated by generating the PRBS 2 ^ 11-1 pattern.
 - ➤ OPU-CSF (OPU Client Signal Fail): The OPU-CSF alarm is generated by setting the bit 1 of the OPUk PSI[2] byte to "1".
 - On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

ОРИ ОН ТХ

Allows to modify the OPU overhead information to be transmitted.

Note: Only available when Through mode is not selected.

Press TEST, ODUk, and OPU OH (under ODUk TX).

Note: Overhead bytes are organized using rows and columns structure as per G.709 standard.

Binary

The **Binary** field allows to individually edit any overhead byte in binary. Select the byte to be modified by clicking on its blue label and enter the new binary value. The **Binary** label will be replaced by the byte's label selected for modification.

Row 1/2/3

For Payload Type 20 test case

- RES (Column 15): The Reserved (RES) bytes are configurable from 00 to FF. The default value for each byte is 00.
- ► **RES** and **JC** (Column 16):

RES: The Reserved (RES) bits 1-6 are configurable from binary **000000** to **111111**. The default value for each byte is **000000**.

JC: The Justification Control bits 7-8 are configurable from binary **00** to **11**. Not available with ODU mux. The default value for each JC is **00**. Changing the JC values will corrupt the payload.

For Payload Type 21 test case

- ➤ JC1 to JC3 (Column 16): Displays the justification control bytes carrying the GMP Cm value.
- ➤ JC4 to JC6 (Column 15): Displays the justification control bytes carrying the GMP CnD value.

Row 4

▶ **PSI** (Column 15): The Payload Structure Identifier is only configurable from *Payload Type* on page 197. The PSI byte is not displayed.

For Payload Type 20 test case

 NJO (Column 16): The Negative Justification Opportunity byte is not configurable.

For Payload Type 21 test case

 RES (Column 16): The Reserved (RES) byte is for future international standardization.

PSI Overhead Bytes

Note: The PSI Overhead bytes are only available for OPU3, OPU2, and OPU1 with ODU mux.

PSI [0] (PT): The Payload Structure Identifier (Payload Type) is only configurable from *Payload Type* on page 197.

PSI [2] up to **PSI [17]:** The Payload Structure Identifier bytes are configurable from **00** to **FF**. The first two bits are used to indicate the ODU mapping type while the remaining bits indicate the tributary port number.

Note: PSI [2] and PSI [3] and Tributary port 1 and 2 are supported with OPU1.
PSI [2] to PSI [5] and Tributary port 1 to 4 are supported with OPU2.
PSI [2] to PSI [17] and Tributary port 1 to 16 are supported with OPU3.

Default

Reverts the overhead bytes to their default values.

OPU RX

Press TEST, ODUk, and OPU (under ODUk RX).

LO	Payload Type Received Payload Type (PT) Code Binary	Expected Payload Type (PT) PR8S Test Signal Code FE III Binary Enable OPU-PLM	Alarm Analysis H C Seconc OPU-ALS OPU-PLM OPU-CSF	ds
	оритсм Соритситт	Payload Type Received Payload Type (PT) 	Expected Payload Type (PT) ODU Multiplex Structure Code 20 Enable OPU-PLM	Alarm Analysis H C OPU-PLM OPU-PLM C OPU-MSIM Enable OPU-MSIM
			OPU	

Alarm Analysis

- ➤ OPU-PLM (Payload Mismatch): OPU-PLM is declared when the Payload Structure Identifier (PSI) field do not match the expected PT for at least 3 consecutive frames. See Enable OPU-PLM on page 204.
- ➤ OPU-MSIM (Multiplex Structure Identifier Mismatch): OPU-MSIM is an HO alarm that is available for multiplexed test case only. OPU-MSIM is declared when the RX Payload Structure Identifier (PSI) information do not match the expected HO Multiplex Structure Identifier configuration defined from the test case setup.

Enable OPU-MSIM allows enabling the OPU-MSIM alarm analysis.

Note: OPU-AIS and OPU-CSF are only available on the OPU client signal (designated as LO in the standard). In this case, OPU-MSIM is not available.

OPU-AIS (OPU - Alarm Indication Signal): OPU-AIS is declared when a PRBS 2 ^ 11-1 pattern is received indicating a failure of the client signal.

OPU-CSF (OPU - Client Signal Fail): OPU-CSF is declared when bit 1 of the OPUk PSI[2] byte is set to "1" indicating a failure of the client signal mapped into the OPUk of the OTN signal.

Payload Type

- Binary allows either displaying the payload code value in binary (when enabled) or hexadecimal (when disabled). This setting is disabled by default.
- Received Payload Type (PT) indicates the received payload signal type. See Payload Type on page 197 for more information.

Code indicates the corresponding payload type hexadecimal code.

- Expected Payload Type allows the selection of the expected payload type signal. See Payload Type on page 197 for choices.
- **Note:** The Code field is automatically updated when the Expected payload is changed and vice versa.

Code allows entering the code of the payload type. Choices are **00** to **FF**. The default setting is **03**.

Enable OPU-PLM allows enabling the OPU-PLM alarm analysis.

OPU OH RX

Displays the OPU overhead bytes received in the last second.

Press **TEST**, **ODUk**, and **OPU OH** (under **ODUk RX**).

Note: Overhead bytes are organized using rows and columns structure as per G.709 standard.

Binary

The **Binary** field allows to individually display any overhead byte in binary. Select the byte to be displayed in binary by clicking on its blue label. The **Binary** label will be replaced by the label of the selected byte.

Row 1/2/3

For Payload Type 20 test case

- ▶ **RES** (Column 15): Displays the received Reserved (RES) bytes.
- ► **RES** and **JC** (Column 16):

RES: Displays the received Reserved (RES) bits 1-6.

JC: Displays the received Justification Control bits 7-8. Not available with ODU mux.

For Payload Type 21 test case

- ➤ JC1 to JC3 (Column 16): Displays the received justification control bytes carrying the GMP Cm value.
- ➤ JC4 to JC6 (Column 15): Displays the received justification control bytes carrying the GMP CnD value.

Row 4

► **PSI** (Column 15): Displays the received Payload Structure Identifier (Payload Type). See *Payload Type* on page 197 for more information.

For Payload Type 20 test case

 NJO (Column 16): Displays the received Negative Justification Opportunity byte.

For Payload Type 21 test case

▶ RES (Column 16): Displays the received Reserved (RES) byte.

PSI Overhead Bytes

Note: The PSI Overhead bytes are only available for OPU3, OPU2, and OPU1 with ODU mux.

PSI [0] (PT): Displays the received Payload Structure Identifier (Payload Type). See *Payload Type* on page 197 for more information.

PSI [2] to **PSI [17]** bytes: For OPU3, displayed the received Payload Structure Identifier bytes. The first two bits are indicate the ODU mapping type while the remaining bits indicate the tributary port numbers.

Note: PSI [2] and PSI [3] and Tributary port 1 and 2 are supported with OPU1.
PSI [2] to PSI [5] and Tributary port 1 to 4 are supported with OPU2.
PSI [2] to PSI [17] and Tributary port 1 to 16 are supported with OPU3.

Next/Previous button, available with ODU3, allows to respectively access the next (bytes 18 to 33) or previous (bytes 1 to 17) PSI Overhead bytes.

GMP TX

Generic Mapping Procedure (GMP) is available with GFP-F over ODUflex, GFP-T over ODU0, and SONET/SDH over ODU0. GMP is available on both HO and LO for ODU0 over ODU2 or ODU0 over ODU3 mapping.

Press TEST, ODUk, and GMP (under ODUk TX).

Configuration	- Statistics
Cm	Cm Min
15230	
	Cm Max
	CnD Min
	CnD Max
ODU TCM ODI	U TCM TTI ODU ODU OH ODU TTI/FTFL OPU OPU OH GMP

Configuration

Note: Only available for Ethernet in ODUflex over ODU3. Not supported with ODUflex CBR test case. This value is set to **15230** for Ethernet in ODUflex over ODU2.

Cm corresponds to the number of payload bytes per framed transported. Choices are from **15165** to **15230** bytes. The default setting is **15230** bytes. A minimum Cm value higher than 15165 may be imposed in order to guarantee that no packet is lost.

Statistics

Cm Min and **Cm Max**: Indicates respectively the minimum and maximum Cm values transmitted during the test.

CnD Min and **CnD Max**: Indicates respectively the minimum and maximum CnD values transmitted during the test.

GMP RX

Generic Mapping Procedure (GMP) is available with GFP-F over ODUflex, GFP-T over ODU0, and SONET/SDH over ODU0. GMP is available on both HO and LO for ODU0 over ODU2 or ODU0 over ODU3 mapping.

Press TEST, ODUk, and GMP (under ODUk RX).

Harm Analysis H C Seconds GMP 005	Cm Min
- Error Analysis H C Seconds Count Rate ● Cm CRC-8 ● CnD CRC-5	Crn Max
Соритсм Доритсм тті Дори Дорион Дориттират	CnD Max

Alarm Analysis

GMP OOS (Generic Mapping Procedure Out Of Synchronization): Indicates that the GMP RX cannot synchronize with the GMP TX.

Error Analysis

Cm CRC-8: Indicates Cm CRC-8 mismatch between received value and locally computed value.

CnD CRC-5: Indicates CnD CRC-5 mismatch between received value and locally computed value.

Statistics

Cm Min and **Cm Max**: Indicates respectively the minimum and maximum Cm value captured during the test.

CnD Min and **CnD Max**: Indicates respectively the minimum and maximum CnD value captured during the test.

11 SONET Tabs

The SONET tabs allow configuration of different test parameters and display the test status and results.

Note:	The available	tabs listed a	are a function	of the test	path activated.

SONET	Tab	Page
Section	Section TX (SONET)	213
	Section RX (SONET)	219
	Section OH TX/RX (SONET)	221
	Performance Monitoring (PM) ^a	504
Line	Line TX (SONET)	223
	Line RX (SONET)	228
	Line OH TX/RX (SONET)	234
	APS/Advanced Line OH TX/RX (SONET)	236
	Performance Monitoring (PM) ^a	504
НОР	HOP TX (SONET)	245
	HOP RX (SONET)	251
	HOP OH TX/RX (SONET)	254
	HOP/LOP Pointer Adjust TX (SONET/SDH) ^a	492
	HOP/LOP Pointer Adjust RX (SONET/SDH) ^a	495
	TCM TX ^{ab}	497
	TCM RX ^{ab}	500
	Performance Monitoring (PM) ^a	504

SONET	Tab	Page
LOP ^b	LOP TX (SONET)	257
	LOP RX (SONET)	263
	LOP OH TX/RX (SONET)	266
	HOP/LOP Pointer Adjust TX (SONET/SDH) ^a	492
	HOP/LOP Pointer Adjust RX (SONET/SDH) ^a	495
	TCM TX ^a	497
	TCM RX ^a	500
	Performance Monitoring (PM) ^a	504

a. These tabs are described in *Common Tabs* on page 491.b. Not available on the FTB-8140.

Section TX (SONET)

Press TEST, Sec-Line, and Section (under Sec-Line TX).

Error Injection Manual Rate Burst	Type B1	Amount	Send	JO Trace Format Message	
Alarm Generation	Type LOF		On/Off	Enable Trace	C Overwrite
Section Section	on OH Line Lir	e OH APS/Adv Line OH			

Error Injection

Allows Manual, Rate, or Burst error injection methods.

Error Injection Manual Rate Burst	Type B1	Amount	Send	Error Injection C Manual C Rate C Burst	Type B1	Rate	On/Off
Error Injection C Manual C Rate C Burst	Type B1 Mode Single	Duration Unit 1 Frames Period Unit	On/Off				

Type: The following errors are available: **B1** and **FAS**.

For Manual method:

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- ➤ Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.

For Rate method:

- Rate: Select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.
For **Burst** method:

The burst method injects the programmed number of consecutive errored frames, reprensenting the burst duration (M), over a specific event period (N).

- ► **Duration** and **Unit**: Select the number of consecutive errored frames or the number of consecutive seconds in error.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the error burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected error for the selected Duration and Period. For Single Mode, the injection will be active for the specified duration and will atuomatically stop (the On/Off button turns Off). For Repeat Mode the error injection will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Alarm Generation

Allows **Continuous** or **Burst** alarm generation methods.

Alem Genesion C Continuous Type C Burst LOF On/Off	Alarm Generation Type Duration Unit Continuous LOF 1 Frames V Burst Mode Period Unit On/off On/off Single V V V V On/off On/off
---	---

▶ Туре

LOF (Loss Of Frame): Generates non-valid framing bytes (A1 and A2).

SEF (Severely Errored Framing): Generates four consecutive errored framing patterns.

For **Continuous** method:

On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default. Exceptionally for continuous SEF alarm, the On/Off button turns Off once the SEF alarm has been sent.

For **Burst** method:

The burst method injects the programmed number of consecutive alarmed frames, reprensenting the burst **Duration** (M), over a specific event **Period** (N).

- ► **Duration** and **Unit**: Select the number of consecutive alarmed frames or the number of consecutive seconds in alarm.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the alarm burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm for the selected Duration and Period. For Single Mode, the alarm generation will be active for the specified duration and will automatically stop (the On/Off button turns Off). For Repeat Mode the alarm generation will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

J0 Trace

- ➤ Format: Displays the J0 value in 16 or 64 bytes format. The default setting is 16 bytes.
- Message: Enter the J0 trace value in 16 or 64 bytes format as selected. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer Section/RS trace test message for 64 bytes.
- ➤ Enable Trace: Generates the defined J0 Trace message except for SONET/SDH Intrusive mode (see Overwrite) when the Enable Trace check box is selected. The Enable Trace check box has to be selected to give access to the trace format and message. When the Enable Trace check box is cleared, the J0 1-byte format is used and can be configured from the Section OH TX on page 221.
- Overwrite: Available with SONET/SDH Intrusive through mode only (optional). Overwirte is not available on FTB-8105/FTB-8115. The Overwrite check box when selected, generates the defined J0 Trace message. The Enable Trace check box has to be selected to give access to the trace Format, Message, and Overwrite.
- **Note:** 16-bytes selection allows typing up to 15 bytes (a CRC-7 byte will be added in front for a total of 16 bytes). 64-bytes selection allows typing up to 62-bytes ($< C_R >$ and $< L_F >$ bytes will be added at the end for a total of 64-bytes).

Section RX (SONET)

Press TEST, Sec-Line, and Section (under Sec-Line RX).

Error Analysis H C S FAS B1	Seconds 	Count 	Rate	Ala H	rm Ar C	SEF LOF	Seconds 	
- JO Trace Received Message	Expe	cted Message		•	•	TIM-5		
Enable TIM-S		I						

Error Analysis

FAS (Frame Alignment Signal): A FAS defect indicates that at least one A1 or A2 byte of the FAS word is in error.

B1 (BIP-8, Bit-Interleave Parity - 8 bits): The B1 (BIP-8) error indicates a Section parity error by performing a routine even-parity check over all frames of the previous STS-n signal (located in the first STS-1 of an STS-n signal).

Alarm Analysis

- ► SEF (Severely Errored Framing): A SEF defect indicates that a minimum of four consecutive errored framing patterns are received.
- ► LOF (Loss Of Frame): A Loss Of Frame alarm indicates that a Severely Error Framing (SEF) defect on the incoming SONET signal persists for at least 3 milliseconds.
- ➤ TIM-S (Trace Identifier Mismatch Section): The TIM-S defect indicates that the received J0 Trace doesn't match the expected message value. The TIM-S alarm is only available when Enable TIM-S check box from J0 Trace section has been selected.

J0 Trace

- ➤ Received Message: Displays the received J0 value. The <crc7> represents the CRC-7 for a 16-bytes format. The last two bytes of a 64-bytes format, <C_R> and <L_F>, represent respectively a carriage return and a line feed.
- Enable TIM-S (Trace Identifier Mismatch Section): Allows enabling the Trace Identifier Mismatch for the expected message defined.
 Enable TIM-S has to be enabled to give access to the expected trace format and message.
- Expected Message: Allows entering the expected J0 Trace message. J0 value should be ASCII suitable characters. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer Section/RS trace test message for 64 bytes.
- Expected Format: Allows the selection of the expected format: 16 or 64 bytes. The default setting is 16 bytes.

Section OH TX/RX (SONET)

The **Section OH TX** allows changing the transport overhead information to be transmitted while the **Section OH RX** allows verification of the transport overhead information received. Refer to *Glossary* on page 577 for detailed overhead information.

Press TEST, Sec-Line, and Section OH (under Sec-Line TX/RX).

Section Overhead

➤ Timeslot: Select the timeslot number that will be used for verification. Choices are 1 to 3, 12, 48, 192, or 768 depending on the OC-N interface selected. The default setting is 1. The following controls are available with **SONET/SDH Intrusive** through mode only (optional):

- The Overwrite check box when enabled, allows the generation of the selected byte. The byte can be selected by clicking on its blue label. The byte having its Overwrite check box selected will have its hexadecimal value on a yellow background. A byte having its hexadecimal value with a gray background cannot be overwritten.
- ➤ The Overwrite LED indicates if there is any byte in any timeslot having the Overwrite check box selected (LED is green) or not (LED is gray).
- Disable All allows to clear the Overwrite check box for all bytes in all timeslots.

The following section overhead byte values are displayed in hexadecimal format. However, a common field allows to see the value of specific byte in binary format. Click on the blue label of a byte and its binary value will be displayed in the common field beside the **Timeslot** selection.

- A1 and A2: Framing. The value should be hexadecimal F6 for A1 and 28 for A2.
- ► J0/Z0

J0: Trace: STS-1 #1 of an electrical or OC-N signal. J0 is only available when the **Enable Trace** check box from the *Section TX (SONET)* on page 213 is cleared.

Z0: Growth: STS-1 #2 to STS-1 #N of a OC-N signal.

- ▶ **B1**: BIP-8. This byte is not programmable from this tab
- ► E1: Orderwire.
- ► **F1**: User.
- ▶ D1, D2, and D3: Data Communications Channel (DCC).

Line TX (SONET)

Press TEST, Sec-Line, and Line (under Sec-Line TX).

Error Injection Manual Rate	Type B2	Amount	Send	
Alarm Generation Continuous				
C Burst	AIS-L		On/Off 🕥	
Section Section	on OH Line L	ine OH APS/Adv Line OH		

Error Injection

Allows Manual, Rate, or Burst error injection methods.

Error Injection Manual C Rate C Burst	Type B2	Amount	Send	Error Injection C Manual C Rate C Burst	Type B2	Rate	On/Off
Error Injection C Manual C Rate © Burst	Type B2 Mode Single	Duration Unit 1 Frames Period Unit	On/Off				

► **Type**: The following errors are available: **B2** (BIP-8), and **REI-L** (Remote Error Indication). The default setting is **B2**.

For Manual method:

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- ➤ Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.

For Rate method:

- Rate: Select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive errored frames, reprensenting the burst duration (M), over a specific event period (N).

- ► **Duration** and **Unit**: Select the number of consecutive errored frames or the number of consecutive seconds in error.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the error burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected error for the selected Duration and Period. For Single Mode, the injection will be active for the specified duration and will atuomatically stop (the On/Off button turns Off). For Repeat Mode the error injection will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Alarm Generation

Allows **Continuous** or **Burst** alarm generation methods.

Alem Generation Continuous Type Burst AIS-L On/Off	Alarm Generation Continuous AIS-L I I Frames Mode Period Unit On/Off On/Off
---	--

▶ Туре

AIS-L (Alarm Indication Signal - Line): Generates a SONET signal that contains a valid Section Overthead (SOH) and an all-ones pattern on the SPE.

RDI-L (Remote Defect Indication - Line): Generates a "110" pattern for the bits 6, 7 and 8 of the K2 byte.

The default setting is AIS-L

- For **Continuous** method:
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive alarmed frames, reprensenting the burst **Duration** (M), over a specific event **Period** (N).

- ► **Duration** and **Unit**: Select the number of consecutive alarmed frames or the number of consecutive seconds in alarm.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the alarm burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm for the selected Duration and Period. For Single Mode, the alarm generation will be active for the specified duration and will automatically stop (the On/Off button turns Off). For Repeat Mode the alarm generation will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Line RX (SONET)

Press TEST, Sec-Line, and Line (under Sec-Line RX).

Erro	r Ana	alysis				Alan	n Ar	nalysis	
н	С		Seconds	Count	Rate	н	С		Seconds
	۲	B2					۲	AIS-L	
	•	REI-L						RDI-L	
			,		·				·
Secti	on	Section OH	Section PM	Line Line	OH APS/Adv L	ine O	н	Line PM	

Error Analysis

▶ B2 (BIP-8, Bit-Interleave Parity - 8 bits): The B2 (BIP-8) error indicates a Line parity error by performing an even-parity check over all bits of the LOH and SPE of the previous frame (located in every STS-1 of an STS-n signal).

REI-L (Remote Error Indicator - Line):

For STS-1e: The REI-L error is declared when the M0 byte located in the first STS-1 indicates that one or more BIP violations have been detected.

M0, bits 234 5678	Indicates
000 0000	0 BIP violation
000 0001	1 BIP violation
000 0010	2 BIP violations
:	:
000 1000	8 BIP violations
000 1001	0 BIP violation
:	:
111 1111	0 BIP violation

For STS-3e and OC-3: The REI-L error is declared when the M1 byte located in the STS-1 #3 indicates that one or more BIP violations have been detected

M1, bits 234 5678	Indicates
000 0000	0 BIP violation
000 0001	1 BIP violation
000 0010	2 BIP violations
:	:
001 1000	24 BIP violations
001 1001	0 BIP violation
:	:
111 1111	0 BIP violation

For OC-12: The REI-L error is declared when the M1 byte located in the STS-1 #7 indicates that one or more BIP violations have been detected.

M1, bits 234 5678	Indicates
000 0000	0 BIP violation
000 0001	1 BIP violation
000 0010	2 BIP violations
:	:
110 0000	96 BIP violations
110 0001	0 BIP violation
:	:
111 1111	0 BIP violation

For OC-48: The REI-L error is declared when the M1 byte located in the STS-1 #7 indicates that one or more BIP violations have been detected.

M1	Indicates
0000 0000	0 BIP violation
0000 0001	1 BIP violation
0000 0010	2 BIP violations
:	:
1111 1111	255 BIP violations

For OC-192: The REI-L error is declared when either the M1 byte located in the STS-1 #7 indicates that one or more BIP violations have been detected, or the combination of the M0 and M1 bytes indicates that one or more BIP violations have been detected. Refer to *OC-192/STM-64 REI-L/MS-REI* on page 542 for REI-L computation method.

M1	Indicates	
0000 0000	0 BIP violation	
0000 0001	1 BIP violation	
0000 0010	2 BIP violations	
:	:	
1111 1111	255 BIP violations	

M0 Located in STS-1 #4	M1 Located in STS-1 #7	Indicates
0000 0000	0000 0000	0 BIP violation
0000 0000	0000 0001	1 BIP violation
0000 0000	0000 0010	2 BIP violations
:	:	
0000 0110	0000 0000	1536 BIP violations
0000 0110	0000 0001	0 BIP violation
:		:
1111 1111	1111 1111	0 BIP violation

For OC-768: The REI-L error is declared when the combination of the M0 and M1 bytes indicates that one or more BIP violations have been detected.

M0 Located in STS-1 #4	M1 Located in STS-1 #7	Indicates
0000 0000	0000 0000	0 BIP violation
0000 0000	0000 0001	1 BIP violation
0000 0000	0000 0010	2 BIP violations
:	:	
0001 1000	0000 0000	6144 BIP violations
0001 1000	0000 0001	0 BIP violation
:		:
1111 1111	1111 1111	0 BIP violation

Alarm Analysis

- ➤ AIS-L (Alarm Indication Signal Line): The AIS-L alarm is declared when bits 6, 7 and 8 of the K2 byte contain the "111" pattern in five consecutive frames.
- ➤ **RDI-L** (Remote Defect Indication Line): The RDI-L alarm is declared when bits 6, 7, and 8 of the K2 byte contain the "110" pattern in five consecutive frames.

Line OH TX/RX (SONET)

The Line OH TX allows changing the line overhead information to be transmitted while the Line OH RX allows verification of the line overhead information received.

Press TEST, Sec-Line, and Line OH (under Sec-Line TX/RX).

Line Ove	erhead Fimeslot 1		_ г	Overwrite]		
H1 B2 D4 D7	00	H2 K1 D5 D8	00	H3 K2 D6 D9	00	Overwrite S			
51	00	Z2	00	E2	00				
Section	Section OH	Lin	STS-1 Time	eslot 1		00			
			н1		H2	Н3			
			B2		К1	К2			
			D4		D5	D6			
			D7		D8	D9			
			D10		D11	D12			
			S1		Z2	E2			
		U	Section	Section OH	Section PM	Line Line OH AF	PS/Adv Line OH Line	PM	

Line Overhead

Timeslot: Select the timeslot number that will be used for the test.

Choices are 1 to 3, 12, 48, 192, or 768 depending on the OC-N interface selected. The default setting is 1.

The following controls are available with **SONET/SDH Intrusive** through mode only (optional):

➤ The Overwrite check box when enabled, allows the generation of the selected byte. The byte can be selected by clicking on its blue label. The byte having its Overwrite check box selected will have its hexadecimal value on a yellow background. A byte having its hexadecimal value with a gray background cannot be overwritten.

- ➤ The Overwrite LED indicates if there is any byte in any timeslot having the Overwrite check box selected (LED is green) or not (LED is gray).
- Disable All allows to clear the Overwrite check box for all bytes in all timeslots.

The following overhead byte values are displayed in hexadecimal format. However, a common field allows to see the value of specific byte in binary format. Click on the blue label of a byte and its binary value will be displayed in the common field beside the **Timeslot** selection.

- ► H1 and H2: Pointer
- ► H3: Pointer Action
- ► **B2**: BIP-8
- ► **K1** and **K2**: Automatic Protection Switching (APS)
- ▶ D4 through D12: Data Communications Channel (DCC)
- ► S1/Z1

S1: Synchronization Status (STS-1 #1 of an electrical or OC-N signal)

Z1: Growth (STS-1 #2, STS-1 #3, up to STS-1 #N of a OC-N (N>3) signal)

► M0 or M1/Z2

M0: REI-L (STS-1 #1 of an STS-1e signal; STS-1 #4 of OC-192/OC-768 signal)

M1: REI-L (STS-1 #3 of STS-3e or OC-3 signal; STS-1 #7 of an OC-12/OC-48/OC-192/OC-768 signal)

Z2: Growth (STS-1 #1 up to STS-1 #48 except for timeslots used by M0 and M1).

Undefined "---" for all other timeslots not covered by M0, M1, and Z2.

► E2: Orderwire

APS/Advanced Line OH TX/RX (SONET)

The Line OH TX allows changing the line overhead information to be transmitted while the Line OH RX allows verification of the line overhead information received.

Press TEST, Sec-Line, and APS/Adv Line OH (under Sec-Line TX/RX).

APS Switching Mode Linear K1 K2 Request (0000) K2 Protected Channel Architecture Operation Mode O - Null K2 Reserved (000) V	H1 Overwrite 00 Image: Overwrite S1 Overwrite Bits 1-4 0000 Bits 5-8 (Synchronization Status Message) Synchronizad - Traceability Unknown (STU) (0000)
Section Section OH Line APS Switching Mode Linear K1 Request Chann 	ration Mode K1+k2 Capture File Setup Transitions S0 ration Mode K1+k2 Capture File Setup Transitions S1 Bits 1-4 - Bits 5-8 (Synchronization Status Message) Bits 6-4

Gives access to the advanced section of the Line OH TX/RX signal.

APS

► Switching Mode

Allows the switching mode selection and is available on both TX and RX tabs. Choices are **Linear** and **Ring**. The default setting is **Linear**.

Overwrite: The Overwrite check box when selected, allows the activation of the APS. Overwrite is available with SONET/SDH Intrusive mode only.

► K1

Request: Bits 1 through 4 of the K1 byte. The default setting is No Request (0000). Choices are:

Bits 1 to 4	Linear mode	Ring mode
0000	No Request	No Request
0001	Do Not Revert	Reverse Request - Ring
0010	Reverse Request	Reverse Request - Span
0011	Not Used	Exerciser - Ring
0100	Exerciser	Exerciser - Span
0101	Not Used	Wait-to-Restore
0110	Wait-to-Restore	Manual Switch - Ring
0111	Not Used	Manual Switch - Span
1000	Manual Switch	Signal Degrade - Ring
1001	Not Used	Signal Degrade - Span
1010	Signal Degrade - Low Priority	Signal Degrade -Protection
1011	Signal Degrade - High Priority	Signal Fail Ring
1100	Signal Fail - Low Priority	Signal Fail Span
1101	Signal Fail - High Priority	Force Switch - Ring
1110	Force Switch	Force Switch -Span
1111	Lockout of Protection	Lockout of Protection - Span/SF - P

► Channel/Destination Node ID

Bits 5 through 8 of the K1 byte. Channel if available with Linear switching mode while Destination Node ID is available with Ring switching mode. The default setting is **Null Channel** for **Linear** switching mode and **0** for **Ring** switching mode.

Bits 5 to 8	Channel ID (Linear mode)	Destination Node ID (Ring mode)
0000	0 - Null	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	10
1011	11	11
1100	12	12
1101	13	13
1110	14	14
1111	15 - Extra Traffic	15

► K2

Protected Channel/Source Node ID: Bits 1 through 4 of the K2 byte. Protected Channel is available with Linear switching mode while Source Node ID is available with Ring switching mode. The default setting is Null Channel for Linear switching mode and 0 for Ring switching mode.

Bits 1 to 4	Protected Channel (Linear mode)	Source Node ID (Ring mode)
0000	0 - Null	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	10
1011	11	11
1100	12	12
1101	13	13
1110	14	14
1111	15 - Extra Traffic	15

➤ Architecture/Bridge Request: Bit 5 of the K2 byte. Architecture is available with Linear switching mode while Bridge Request is available with Ring switching mode. The default setting is 1+1 for Linear switching mode and Short Path Request for Ring switching mode.

Bit 5	Architecture (Linear mode)	Bridge Request (Ring mode)
0	1+1	Short Path
1	1:n	Long Path

➤ Operation Mode: Bits 6 through 8 of the K2 byte. The default setting is Reserved (000) for Linear switching mode and Idle for Ring switching mode.

Bits 6 to 8	Linear mode	Ring mode
000	Reserved	Idle
001	Reserved	Bridged
010	Reserved	Bridged and Switched
011	Reserved	Extra Traffic - Protection
100	Unidirectional	Reserved
101	Bidirectional	Reserved
110	RDI-L	RDI-L
111	AIS-L	AIS-L

K1-K2 Capture

This feature allows to capture and save the K1/K2 byte transitions to a text file on disk. Not available on FTB-8105 and FTB-8115.

Once generated and saved, the K1/K2 capture file can be loaded using Windows File Manager. The default directory is d:\ToolBox\User Files\SonetSdhAnalyzerG2\Reports. The following is an example of captured K1/K2 byte transition file.

Start Capture					
Transitions	K1	К2	Time to detect (Frames)		
0:	A0	02	>32768		
1:	A0	00	>32768		
2:	00	00			
End Capture	e				
********	*******	************	***************************************		
********	*******	***********	***************************************		
Start Captu	re				
Transitions	K1	К2	Time to detect (Frames)		
0:	00	00	23666		
1:	20	00	14995		
2:	60	00	22172		
3:	C0	00	>32768		
4:	B0	00	24659		
5:	00	00			
End Capture					
Linu Captur	5				

Note: The transition #0, indicates the state of K1 and K2 before the capture starts.

► Files Setup

Press the **File Setup** button to select the file that will be used to save the captured K1/K2 byte transitions. Selecting a new file name will create an empty file on disk that will be used to capture the K1/K2 byte transitions. Selecting an existing file name will overwrite the existing file.

➤ Transitions

Allows to select the number of K1/K2 byte transitions that will be captured. Once the number of K1/K2 byte transitions is reached, the capture stops (the **Capture** button LED turns off).

► Capture

Press the **Capture** button to enable the K1/K2 capture process. However the capture will only start when the test is started. The **Capture** button is only available when a file has been selected (see **File Setup** button).

If the capture is restarted, the content of the file will be appended.

H1

SS Bits (H1): Bits 5 and 6 of the H1 byte represent the SS bits.

SS Bits	Description
00	SONET
01	Undefined
10	SDH
11	Undefined

Overwrite: The Overwrite check box when selected, allows the generation of the selected SS Bits. Overwrite is available with SONET/SDH Intrusive mode only. In normal mode, the SS Bits are written on all timeslots (foreground and background). When SONET/SDH Intrusive is selected, the SS Bits are written on the foreground timeslots only.

S1

- Overwrite: The Overwrite check box when selected, allows the generation of the selected S1 bits. Overwrite is available with SONET/SDH Intrusive mode only.
- ▶ Bits 1-4: Bits 1 through 4 of the S1 byte are currently undefined but can be set from 0000 to 1111 if required.
- ➤ Bits 5-8 (Synchronization Status Message): Bits 5 through 8 of the S1 byte are used to convey synchronization status of the NE. The default setting is Synchronized Traceability Unknown (0000). Choices are:

Bits 5 to 8	Description	Bits 5 to 8	Description
0000	Synchronized - Traceability Unknown	1000	Reserved
0001	Stratum 1 Traceable	1001	Reserved
0010	Reserved	1010	Stratum 3 Traceable
0011	Reserved	1011	Reserved
0100	Transit Node Clock Traceable	1100	SONET Minimum Clock Traceable
0101	Reserved	1101	Stratum 3E Traceable
0110	Reserved	1110	Provisionable by the Network Operator
0111	Stratum 2 Traceable	1111	Don't Use for Synchronization

HOP TX (SONET)

Press TEST, HOP, and Path (under HOP TX).

Error Injection Manual Rate Burst	Type B3	Amount	Send	J1 Trace Format Message	×
Alarm Generation C Continuous C Burst	Type AIS-P		On/Off	Enable Trace	Cverwrite
Path OH	Ptr Adj TCM				

Error Injection

Allows Manual, Rate, or Burst error injection methods.

Error Injection Manual C Rate C Burst	Туре В3	Amount	Send	Error Injection C Manual C Rate C Burst	Туре В3 💌	Rate	On/Off
Error Injection C Manual C Rate • Burst	Type B3 V Mode Single V	Duration Unit 1 Frames Period Unit	On/Off				

➤ Type: The following errors are available with both manual and automated injection modes: B3 (BIP-8, Bit-Interleave Parity - 8 bits), and REI-P (Remote Error Indicator - Path). For Manual method:

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- ➤ Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.

For Rate method:

- Rate: Select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive errored frames, reprensenting the burst duration (M), over a specific event period (N).

- ► **Duration** and **Unit**: Select the number of consecutive errored frames or the number of consecutive seconds in error.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the error burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected error for the selected Duration and Period. For Single Mode, the injection will be active for the specified duration and will atuomatically stop (the On/Off button turns Off). For Repeat Mode the error injection will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Alarm Generation

Allows Continuous or Burst alarm generation methods.

Alarm Generation Continuous	Туре			1	Alarm Generation C Continuous	Type	_	Duration	Unit	T	
C Burst	AIS-P	•	On/Off ●		 Burst 	Mode Single	-	Period	Unit	-	On/Off 🕚

Туре

- ► AIS-P (Alarm Indication Signal Path): Generates an all-ones pattern over H1, H2, H3, and SPE.
- RDI-P (Remote Defect Indication Path): Generates a "100" pattern for bits 5, 6 and 7 of the G1 byte.
- ERDI-PSD (Enhanced RDI Path Server Defect): Generates a "101" pattern for bits 5, 6 and 7 of the G1 byte.
- ► ERDI-PCD (Enhanced RDI Path Connectivity Defect): Generates a "110" pattern for bits 5, 6 and 7 of the G1 byte.
- ERDI-PPD (Enhanced RDI Path Payload Defect): Generates a "010" pattern for bits 5, 6 and 7 of the G1 byte.
- ► LOM (Loss Of Multiframe): Generates a wrong H4 byte multiframe indicator sequence. Not supported on the FTB-8140.
- ► LOP-P (Loss Of Pointer Path): Generates a non-valid pointer.
- ➤ PDI-P (Payload Defect Indication Path): For VT-structured STS-1 SPE, generates a VT-structured STS-1 SPE with payload defect. For non-VT-structured STS-1 or STS-Nc SPE, generates a payload defect by inserting the hexadecimal FC code in the C2 byte.
- ► UNEQ-P (Unequipped Path): Generates an all-zeros pattern over POH and SPE.

For **Continuous** method:

 On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default. For **Burst** method:

The burst method injects the programmed number of consecutive alarmed frames, reprensenting the burst **Duration** (M), over a specific event **Period** (N).

- ► **Duration** and **Unit**: Select the number of consecutive alarmed frames or the number of consecutive seconds in alarm.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the alarm burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm for the selected Duration and Period. For Single Mode, the alarm generation will be active for the specified duration and will automatically stop (the On/Off button turns Off). For Repeat Mode the alarm generation will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

J1 Trace

- Format: Displays the J1 value in 16-bytes or 64-bytes format. Enter the J1 trace value in 16 or 64-bytes format as selected. The default setting is 16-bytes.
- Message: Enter the J1 trace value in 16 or 64 bytes format as selected. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer high order path trace test message for 64 bytes. However, with VCAT/LCAS the default message will be EXFO followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example EXFO-VCG1-SQ0) for both 16 and 64 bytes formats.
- ➤ Enable Trace: Generates the defined J1 Trace message defined except for Intrusive mode (see Overwrite) when the Enable Trace check box is selected. The Enable Trace check box has to be selected to give access to the trace format and message. When the Enable Trace check box is cleared, the J1 1-byte format is used and can be configured from the HOP OH TX on page 254.
- Overwrite: Available with SONET/SDH Intrusive through mode only (optional). Overwirte is not available on FTB-8105/FTB-8115. The Overwrite check box when selected, generates the defined J1 Trace message. The Enable Trace check box has to be selected to give access to the trace Format, Message, and Overwrite.
- **Note:** 16-bytes selection allows typing up to 15 bytes (a CRC-7 byte will be added in front for a total of 16 bytes). 64-bytes selection allows typing up to 62-bytes ($< C_R >$ and $< L_F >$ bytes will be added at the end for a total of 64 bytes).
HOP RX (SONET)

Press TEST, HOP, and Path (under HOP RX).

Error Analysis H C	Seconds	Count	Rate		larm i I C	Analysis	Seconds	н	с		Seconds
B3						AIS-P		۲	۲	PDI-P	
REI-	·					LOP-P			۲	ERDI-PSD	
J1 Trace				LOM			۲	ERDI-PCD			
Received Mes	sage			RDI-P		۲	۲	ERDI-PPD			
	-					TIM-P					
	T	Expected Format				PLM-P					
🔲 Enable T	M-P		7	•		UNEQ-P					
Path 0	Path OH Ptr Adj TCM PM										

Error Analysis

- ▶ B3 (BIP-8, Bit-Interleave Parity 8 bits): The B3 (BIP-8) error indicates a Path parity error by performing an even-parity check over all bits of the previous SPE.
- ➤ REI-P (Remote Error Indicator Path): The REI-P error is declared when bits 1 through 4 of the G1 byte contain one pattern from the following binary range: "0001" through "1000" (1 to 8) (located in every STS-1 of an STS-n signal).

Alarm Analysis

- ➤ AIS-P (Alarm Indication Signal Path): The AIS-P alarm is declared when the H1 and H2 bytes for an STS path contain an all-ones pattern in three consecutive frames or more.
- ► LOP-P (Loss Of Pointer Path): The LOP alarm indicates that a valid pointer is not found in N consecutive frames (where 8 ≤ N ≤ 10), or that N consecutive NDFs ("1001" pattern) are detected (non-concatenated payloads).
- ► LOM (Loss Of Multiframe): For VT structured SONET frames, the LOM alarm indicates that the system loss track of the H4 byte multiframe indicator sequence. Not supported on the FTB-8140.
- ► **RDI-P** (Remote Defect Indication Path): The RDI-P alarm is declared when bits 5, 6, and 7 of the G1 byte contain the "100" or "111" pattern in five consecutive frames.
- ➤ TIM-P (Trace Identifier Mismatch Path): The TIM-P defect indicates that the received J1 Trace doesn't match the expected message value. The TIM-P alarm is only available when Enable TIM-P check box from J1 Trace section has been selected.
- PLM-P (Payload Label Mismatch Path): The PLM-P is declared upon receipt of five consecutive frames with mismatched STS signal labels (C2 byte).
- ► UNEQ-P (Unequipped Path): UNEQ-P is declared when the C2 bytes contain "00 H" in five consecutive frames.
- ➤ PDI-P (Payload Defect Indication Path): For VT-tructured STS-1 SPE, the PDI-P is declared when detecting LOP-V, AIS-V, DS3 AIS, DS3 LOS, or DS3 OOF defect on any VT or DS3 payload that it embeds into the STS SPE that it is originating. For non-VT-structured STS-1 or STS-Nc SPE, and for FTB-8140, thePDI-P is declared when receiving the hexadecimal FC code (C2 byte).

- ➤ ERDI-PSD (Enhanced RDI Path Server Defect): The ERDI-PSD alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "101" pattern in five consecutive frames.
- ► ERDI-PCD (Enhanced RDI Path Connectivity Defect): The ERDI-PCD alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "110" pattern in five consecutive frames.
- ERDI-PPD (Enhanced RDI Path Payload Defect): The ERDI-PPD alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "010" pattern in five consecutive frames.

J1 Trace

- ➤ Received Message: Displays the J1 value in 16-bytes or 64-bytes format. The <crc7> represents the CRC-7 for a 16-bytes format. The last two bytes of a 64-bytes format, <C_R> and <L_F>, represent respectively a carriage return and a line feed.
- Enable TIM-P (Trace Identifier Mismatch Path): Allows enabling the Trace Identifier Mismatch for the expected message defined. When the Enable TIM-P check box is cleared, the J1 1-byte is available from the HOP OH RX (SONET) on page 254. The Enable TIM-P check box has to be selected to give access to the expected trace format and message.
- ➤ Expected Message: Allows entering the message that is expected. J1 value should be ASCII suitable characters. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer high order path trace test message for 64 bytes. However, with VCAT/LCAS the default message will be EXFO followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example EXFO-VCG1-SQ0) for both 16 and 64 bytes formats.
- ➤ Expected Format: Allows the selection of the format expected. Choices are 16 or 64 bytes. The default setting is 16 bytes.

HOP OH TX/RX (SONET)

The HOP OH TX allows changing the high order path overhead information to be transmitted while the HOP OH RX allows verification of the high order path overhead information received.

Overhead Overwrite 0000 0000 Path Signal Label (C2) -H4 Test signal, ITU-T 0.181 specific mapping **B**3 73 Z4 00 Overwrite @ N1 00 G1 02 Disable All F2 Path Ptr Adj TCM Path Signal Label (C2) Н4 Expected Path Signal Label Test signal, ITU-T 0.181 specific mapping -Enable PLM-P/UNEQ-P N1 F2 OH Ptr Adj TCM PM

Press TEST, HOP, and OH (under HOP TX/RX).

Path Overhead

The following controls are available with **SONET/SDH Intrusive** through mode only (optional):

- The Overwrite check box when enabled, allows the generation of the selected byte. The byte can be selected by clicking on its blue label. The byte having its Overwrite check box selected will have its hexadecimal value on a yellow background. A byte having its hexadecimal value on a gray background cannot be overwritten.
- ➤ The Overwrite LED indicates if there is any byte in any timeslot having the Overwrite check box selected (LED is green) or not (LED is gray).
- Disable All allows to clear the Overwrite check box for all OH bytes in the HOP.

The following section overhead byte values are displayed in hexadecimal format. However, a common field allows to see the value of specific byte in binary format. Click on the blue label of a byte and its binary value will be displayed in the common field beside the **Timeslot** selection.

- ▶ J1¹: Trace. J1 is only available when Enable Trace from the HOP TX (SONET) on page 245 is disabled.
- ► **B3**¹: BIP-8
- ► C2: Signal Label. Entering a C2 byte value will automatically update the Path Signal Label (C2) selection and vice versa.
- ► G1: Path Status
- ► F2: User Channel
- ► H4: Multiframe Indicator. This byte is not programmable with LOP or VCAT.
- ► **Z3** and **Z4**: Growth
- ► N1: Tandem Connection Monitoring

^{1.} These bytes are not programmable from the HOP OH TX tab.

Path Signal Label (C2)

The C2 byte is allocated to indicate the content of the STS SPE, including the status of the mapped payloads.

Note: Selecting the C2 byte from the list will automatically update the C2 byte from the Path Overhead section and vice versa.

C2 (Hex.)	Description	C2 (Hex.)	Description
00*	Unequipped	16	Mapping of HDLC over SONET
01	Equipped - Non-Specific	17	SDL with self-synchronization scrambler
02	Floating VT Mode	18	Mapping of HDLC/LAPS
03	Locked VT Mode	19	SDL with use of a set-reset scrambler
04	Asynchronous Mapping for DS3	1A	10 Gbps Ethernet (IEEE 802.3)
05	Mapping under development	1B	GFP
12	Asynchronous Mapping for 140M (DS4NA)	CF	Reserved (Obsolete HDLC/PPP framed)
13	Mapping for ATM	E1 ^a to	STS-1 w/1 VTx Payload Defects, STS-1
		FC ^a	w/2 VTx Payload Defects, STS-1 w/28
			VTx or STS-n/nc with Payload Defects
14	Mapping for DQDB	FE	Test Signal, ITU-T 0.181 specific mapping
15	Asynchronous Mapping for FDDI	FF ^a	STS SPE AIS (TCM)

a. These values cannot be selected as Expected Path Signal Label.

For HOP OH RX tab only:

- Expected Path Signal Label: Allows selecting the expected Path Signal Label.
- ► Enable PLM-P/UNEQ-P (Payload Label Mismatch Path / Unequipped Path): Enables the Payload Label Mismatch and UNEQ-P monitoring.

LOP TX (SONET)

Press TEST, LOP, and Path (under LOP TX).

Error Injection Manual Rate Burst	Type BIP-2	Amount	Send	J2 Trace Format Message
Alarm Generation C Continuous C Burst	Type AIS-V		On/Off	Finable Trace
Path OH	Ptr Adj TCM			

Error Injection

Allows Manual, Rate, or Burst error injection methods.

Error Injection Manual Rate Burst	Type BIP-2	Amount	Send	Error Injection C Manual C Rate C Burst	Type BIP-2	Rate	On/Off
Error Injection C Manual C Rate O Burst	Type B2 Mode Single	Duration Unit 1 Frames Period Unit	On/Off				

► **Type**: The following errors are available: **BIP-2** (Bit-Interleave Parity - 2 bits) and **REI-V** (Remote Error Indicator - VT).

For Manual method:

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- ➤ Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.

For Rate method:

- Rate: Select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive errored frames, reprensenting the burst duration (M), over a specific event period (N).

- ► **Duration** and **Unit**: Select the number of consecutive errored frames or the number of consecutive seconds in error.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the error burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected error for the selected Duration and Period. For Single Mode, the injection will be active for the specified duration and will atuomatically stop (the On/Off button turns Off). For Repeat Mode the error injection will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Alarm Generation

Allows **Continuous** or **Burst** alarm generation methods.

Alarm Generation Continuous C Burst	Type	T	[On/Off	Alarm Generation	Type AIS-V Mode	•	Duration 1 Period	Unit Frames Unit	•	0n/Off
OBUISC	AIS-V	_		On/Off	o burst	Single	•	Period		Ŧ	On/Off ●

Type: The following alarms are available:

AIS-V (Alarm Indication Signal - VT): Generates an all-ones pattern for the V1 and V2 bytes of the VT path and payload.

RDI-V (Remote Defect indication - VT): Generates "1" for the bit 8 of the V5 byte and a "00" pattern for bits 6 and 7 of the Z7 byte.

ERDI-VSD (Enhanced RDI - VT Server Defect): Generates a "101" pattern for bits 5, 6, and 7 of the Z7 byte, and "1" for bit 8 of the V5 byte.

ERDI-VCD (Enhanced RDI - VT Connectivity Defect): Generates a "110" pattern for bits 5, 6, and 7 of the Z7 byte, and "1" for bit 8 of the V5 byte.

ERDI-VPD (Enhanced RDI - VT Payload Defect): Generates a "010" pattern for bits 5, 6, and 7 of the Z7 byte, and "0" for bit 8 of the V5 byte.

RFI-V (Remote Failure Indication - VT): Generates "1" for the bit 4 of the V5 byte.

LOP-V (Loss of Pointer - VT): Generates a non-valid pointer.

UNEQ-V (Unequipped - VT): Generates samples of unequipped VT signal label (bits 5 through 7 of V5 byte are set to "000").

For **Continuous** method:

➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive alarmed frames, reprensenting the burst **Duration** (M), over a specific event **Period** (N).

- ► **Duration** and **Unit**: Select the number of consecutive alarmed frames or the number of consecutive seconds in alarm.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the alarm burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm for the selected Duration and Period. For Single Mode, the alarm generation will be active for the specified duration and will automatically stop (the On/Off button turns Off). For Repeat Mode the alarm generation will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

J2 Trace

Enable Trace: Generates the J2 Trace message defined when the **Enable Trace** check box is selected. The **Enable Trace** check box has to be selected to give access to the trace format and message. When the **Enable Trace** check box is cleared, the J2 1-byte format is used and can be configured from the *LOP OH TX/RX (SONET)* on page 266.

Format: Select the display format for J2. Choices are **16** and **64 bytes**. The default setting is **16-bytes**.

Message: Enter the J2 value in 16-bytes or 64-bytes format. The default message is **EXFO SONET/SDH** for 16 bytes and **EXFO SONET/SDH Analyzer low order path trace test message** for 64 bytes. However, with VCAT/LCAS the default message will be **EXFO** followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example **EXFO-VCG1-SQ0**) for both 16 and 64 bytes formats.

Note: 16-bytes selection allows typing up to 15 bytes (a CRC-7 byte will be added in front for a total of 16 bytes). 64-bytes selection allows typing up to 62-bytes (<cr> and <L_F> bytes will be added at the end for a total of 64 bytes). J2 value should be ASCII suitable characters including the ITU T.50 Characters on page 57.

LOP RX (SONET)

Press TEST, LOP, and Path (under LOP RX).

Error Analysis H C	Seconds	Count	Rate	Ala	rm A C	Analysis	Seconds	н	С		Seconds
BIP-2					۲	AIS-V			۲	ERDI-VSD	
REI-V					0	LOP-V			0	ERDI-VCD	
J2 Trace				۲	۲	RDI-V			۲	ERDI-VPD	
Received Message	Received Message Expected Message										
	-				۲	LIW-A					
	Expr	ected Format			۲	PLM-V					
Enable TIM-V											
Path OH Ptr Ad	ij ТСМ	PM									

Error Analysis

- ➤ BIP-2 (Bit-Interleave Parity 2 bits): The BIP-2 error indicates a parity error by performing a routine even-parity check over all VT1.5 bytes of the previous frame of a composite signal (VT1.5/VT2/VT6).
- ► **REI-V** (Remote Error Indicator): The REI-V error is declared when bit 3 of the V5 byte is set to "1".
- **Note:** Refer to Alarm/Error Measurements on page 47 for *H/C LEDs*, *Seconds*, *Count*, and *Rate* information.

Alarm Analysis

- ➤ AIS-V (Alarm Indication Signal VT): The AIS-V alarm is declared when V1 and V2 bytes for the VT path contain an all-ones pattern in three consecutive superframes.
- ► LOP-V (Loss Of Pointer VT): The LOP alarm indicates that a valid pointer is not found in N consecutive superframes (where 8 ≤ N ≤ 10), or if N consecutive NDFs ("1001" pattern) are detected.
- ➤ RDI-V (Remote Defect Indication VT): The RDI-V alarm is declared when bit 8 of the V5 byte contains "1" in five consecutive VT superframes while bits 6 and 7 of the Z7 byte contain the "00" or "11" pattern.

- ► **RFI-V** (Remote Failure Indication VT): The RFI-V alarm is declared when bit 4 of the V5 byte contains "1" in five consecutive superframes.
- ➤ TIM-V (Trace Identifier Mismatch VT): The TIM-V defect indicates that the received J2 Trace doesn't match the expected message value. The TIM-V alarm is only available when Enable TIM-V check box from J2 Trace section has been selected.
- ► The TIM-V alarm result is only available when TIM-V from J2 Trace section has been enabled.
- ▶ PLM-V (Payload Label Mismatch VT): The PLM-V is declared upon receipt of five consecutive superframes with mismatched VT Signal (bits 5 through 7 of the V5 byte are "000", "001" or "111").
- ► UNEQ-V (Unequipped VT): UNEQ-V is declared when bit 5 through 7 of the V5 byte contain "000" for five consecutive superframes.
- ➤ ERDI-VSD (Enhanced RDI VT Server Defect): The ERDI-VSD alarm is declared when bits 5, 6, and 7 of the Z7 byte contain the "101" pattern, and bit 8 of the V5 byte contain "1", in five consecutive VT superframes.
- ► ERDI-VCD (Enhanced RDI VT Connectivity Defect): The ERDI-VCD alarm is declared when bits 5, 6, and 7 of the Z7 byte contain the "110" pattern, and bit 8 of the V5 byte contain "1", in five consecutive VT superframes.
- ► ERDI-VPD (Enhanced RDI VT Path Payload Defect): The ERDI-VPD alarm is declared when bits 5, 6, and 7 of the Z7 byte contain the "010" pattern, and bit 8 of the V5 byte contain "0", in five consecutive VT superframes.

J2 Trace

- ➤ Received Message: Displays the J2 value in 16-bytes or 64-bytes format. The <crc7> represents the CRC-7 for a 16-bytes format. The last two bytes of a 64-bytes format, <C_R> and <L_F>, represent respectively a carriage return and a line feed.
- ➤ Enable TIM-V (Trace Identifier Mismatch VT): Allows enabling the Trace Identifier Mismatch for the expected message defined. The Enable TIM-V check box has to be selected to give access to the expected trace format and message. When the Enable TIM-V check box is cleared, the J2 1-byte is available from the LOP OH RX on page 266.
- Expected Message: Allows entering the message that is expected. J2 value should be ASCII suitable characters. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer high order path trace test message for 64 bytes. However, with VCAT/LCAS the default message will be EXFO followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example EXFO-VCG1-SQ0) for both 16 and 64 bytes formats.
- **Expected Format**: Allows the selection of the format expected. Choices are **16** or **64** bytes. The default setting is **16 bytes**.

LOP OH TX/RX (SONET)

The LOP OH TX allows changing the low order path overhead information to be transmitted while the LOP OH RX allows verification of the low order path overhead information received.

Press TEST, LOP, and OH (under LOP TX/RX).

Overhead	Path Signal Label (VS)	
E Binary	Asynchronous	
VS 04 32 00 26 00 27 01 Path 0H P	Overhead Path Signal Label (VS) Binary VS J2 Z6 Z7	
	Path OH Ptr Adj TCM PM	

Path Overhead

- Binary allows either displaying all overhead values in binary (when enabled) or hexadecimal (when disabled). This setting is disabled by default.
- ► V5 (VT Path Overhead)
- ▶ J2 (VT Path Trace). J2 is only available when Enable Trace from the LOP TX (SONET) on page 257 is disabled.
- ► **Z6**: VT Tandem Connection Monitoring
- > Z7: Extended signal label

Path Signal Label (V5)

The V5 byte is allocated to indicate the content of the VT path, including the status of the mapped payloads.

Bits 5, 6, 7 of V5	Description
000 ^a	Unequipped
001	Reserved (Equipped - Non-specific)
010	Asynchronous
011	Bit Synchronous
100	Byte Synchronous
101	Extended Signal Label
110	Test Signal, ITU-T 0.181 specific mapping
111 ^a	VT SPE AIS (TCM)

a. These bytes cannot be selected in receive mode.

For LOP OH RX tab only:

- Expected Path Signal Label: Allows selecting the expected Path Signal Label.
- Enable PLM-V/UNEQ-V (Payload Label Mismatch VT / Unequipped -VT): Allows enabling the Signal Label Mismatch for the expected message defined.

12 DSn Tabs

The DSn tabs allow configuration of different test parameters and to view the test status and results.

Note: The available tabs listed are a function of the test path activated. Not available on the FTB-8140.

Signal	Tab	Page
DS0/64K	DS0/64K TX	270
	DS0/64K RX	273
DS1/1.5M	DS1/1.5M TX	275
	DS1/1.5M RX	278
	FDL TX	280
	FDL RX	285
	FDL PRM TX	288
	FDL PRM RX	290
	FDL PRM Content RX	291
	Performance Monitoring (PM) ^a	504
DS3/45M	DS3/45M TX	293
	DS3/45M RX	295
	DS3 FEAC TX	297
	DS3 FEAC RX	301
	Performance Monitoring (PM) ^a	504

a. This tab is described in the Common Tabs section.

DS0/64K TX

Press TEST, DSn-PDH, and DS0 (under DSn-PDH TX).

Configuration	Payload C	ontent					
🔽 Enable DS0	1	2	3	4	5	6	Idle
DS0 Mode	Pattern	Pattern	Pattern	Pattern	Pattern	Pattern	I Binary
64K 💌	7 Pattern	8 Pattern	9 Pattern	10 Pattern	11 Pattern	12 Pattern	Tone 1004 Hz
Zero Code Suppression	13 Pattern	14 Pattern	15 Pattern	16 Pattern	17 Pattern	18 Pattern	Payload Content
	19 Pattern	20 Pattern	21 Pattern	22 Pattern	23 Pattern	24 Pattern	Set All
DS1 FDL PRM	D50						

Note: DS0/64K TX configuration is not available when the selected framing from the DS1/1.5M TX on page 275 is unframed.

Configuration

- ► Enable DS0: Allows the activation of DS0/64K testing. This setting is disabled (Off) by default unless otherwise set during the test setup.
- ➤ DS0 Mode: Allows the selection of the channel timeslot data rate for the pattern payload content. Choices are 56K and 64K. The default setting is 64K.

56K: A timeslot data rate of 56 Kbps uses 7 bits to carry the payload information.

64K: A timeslot data rate of 64 Kbps uses 8 bits to carry the payload information.

Zero Code Suppression: Allows the selection of the Zero Code Suppression (ZCS) method used to replace the all-zero bytes of the Idle and Tone payload contents. The ZCS mechanism is a global parameter meaning that all channel timeslots configured with Tone/Idle data, use the same ZCS method. Choices are None, Jammed Bit 8, GTE, and BELL. The default setting is None.

None: No Zero Code Suppression

Jammed Bit 8: Every 8th (LSB) bit is forced to 1.

GTE: Bit 8 of an all zero channel byte is replaced by **1**, except in signaling frames where bit 7 is forced to **1**.

Bell: Bit 7 of an all zero channel byte is replaced by 1.

Note: Bit 8 is the Least-Significant Bit (LSB) and bit 1 is the Most-Significant Bit (MSB).

Payload Content

Select the payload content by pressing once or several times on each timeslot until the desired content appears (or use the Set All buttons). Choices are **Pattern**, **Idle**, and **Tone**. The default setting is **Pattern**.

- > Pattern: Uses the selected pattern from the *Pattern TX* on page 405.
- ➤ Idle: Uses the Idle code byte from the Idle field. Choices are 00 to FF. The selected Idle code applies to all timeslots set to Idle. The default setting is 7F.

Binary: Allows either displaying the Idle code values in binary (when enabled) or hexadecimal (when disabled). This setting is disabled by default.

- Tone: Allows the selection of a tone for digital milliwatt testing. The signal output power, when converted to analog, is 0 dBm. Choices are 1000 Hz and 1004 Hz. The selected Tone applies to all timeslots set to Tone. The default setting is 1004 Hz.
- Payload Content: Allows the selection of the payload content that will be applied when pressing Set All. Choices are Pattern, Idle and Tone.
- Set All: Allows to set the payload content of all timeslots to the selected payload content with its Pattern, Idle, or Tone value.
- **Note:** The timeslots set to Idle or Tone can be changed from Idle to Tone and vice versa even when the test is running; the Idle and Tone values can also be changed.

DS0/64K RX

Press TEST, DSn-PDH, and DS0 (under DSn-PDH RX).

Enable DS0				4	5	6	Payload Content	
D Mode							Pattern	
4K 💌	7 Pattern	8 Pattern	9 Pattern	10 Pattern	11 Pattern	12 Pattern	Set All	
	13 Pattern	14 Pattern	15 Pattern	16 Pattern	17 Pattern	18 Pattern		
	19 Pattern	20 Pattern	21 Pattern	22 Pattern	23 Pattern	24 Pattern		

Note: DS0/64K RX configuration is not available when the selected framing from the DS1/1.5M RX on page 278 is unframed.

Configuration

- *Note:* See DS0/64K RX on page 273 for more information on *Enable DS0* and *DS0 Mode*.
 - ► Enable: Allows the activation of DS0/64K testing. This setting is disabled (Off) by default unless otherwise set during the test setup.
 - ➤ DS0 Mode: For decoupled test mode, allows the selection of the channel timeslot data rate. Choices are 56K and 64K. The default setting is 64K.

56K: A timeslot data rate of 56 Kbps uses 7 bits to carry the payload information.

64K: A timeslot data rate of 64 Kbps uses 8 bits to carry the payload information.

Payload Content

Note: Payload content configuration is only available for decoupled test mode, otherwise the payload content is coupled with the DS0/64K TX configuration.

Select the payload content by pressing once or several times on each timeslot until the desired content appears (or use the Set All buttons). Choices are **None** and **Pattern**. The default setting is **Pattern**.

- > **Pattern**: Uses the pattern from the received signal.
- ► None: Does not use the pattern.
- ► Set All: Allows to set the payload content of all timeslots with (Pattern) or without (None) the selected Pattern.

DS1/1.5M TX

Press TEST, DSn-PDH, and DS1 (under DSn-PDH TX).

Configuration Framing ESF	Alarm Generation Type AIS On/Off O	
Error Iniccion Manual Type Amount CRC-6 I Automated Type Rate CRC-6 I 2.1E-04 Continuous DS1 FDL PRM DS0	Loopback Type CSU (1000)(100) Command Loop-Up Send	Loop-Up 10000 Loop-Down 100

Configuration

Framing: Select the framing that will be used for transmission. Choices are **Unframed**, **SF**, and **ESF**. The default setting is **ESF**.

Alarm Generation

- ► **Type**: Select the type of alarm to be generated. Choices are **AIS**, **RAI**, and **OOF**. The default setting is **AIS**.
- Note: Choices depend on the selected framing.
 - ► **On/Off** button: Press **On/Off** to enable/disable the alarm generation.

Error Injection

Allows manual or automated error injection.

Note: Error injection is not available when the framing is set to Unframed.

- ➤ Type: The following error types are available with both manual and automated injection modes. Choices are Framing Bit and CRC-6. CRC-6 is only available with ESF framing.
- Note: Choices depend on the selected framing.
 - Amount: Select the amount of error to be generated. Choices are 1 through 50. The default setting is 1.
 - Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
 - Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
 - Continuous: Generates the selected error to its theoretical maximum when the Continuous check box is selected. The Continuous check box is cleared by default.
 - On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

Loopback

The Loopback feature generates a code that is interpreted by the DUT. The DUT interprets the command and implements the loopback.

 Type allows the selection of the type of loopback. Choices are CSU (10000/100), NIU FAC1 (1100/1110), NIU FAC2 (11000/11100), NIU FAC3 (100000/100), 10 predefined Loop Codes (refer to DSn Loop Codes on page 543), and User Defined.

Loophack Type	Command			
соорьаск туре	Loop-Up	Loop-Down		
CSU (10000/100)	10000	100		
NIU FAC1 (1100/1110)	1100	1110		
NIU FAC2 (11000/11100)	11000	11100		
NIU FAC3 (100000/100)	100000	100		

- ➤ Loop-Up and Loop-Down: Indicates respectively the Loop-Up and Loop-Down code corresponding to the selected loopback type. When the selected loopback type is User Defined, enter the Loop-Up and Loop-Down loopcode values from 3 to 16 bits (000 to 11111111111111).
- Command: Allows the selection of the loopback codes that will be used to overwrite the traffic that will be generated. Choices are Loop-Up and Loop-Down. The default setting is Loop-Up.
- Send: Allows the injection of the selected loop code. The loop code will be generated continuously for a maximum of 10 seconds or until the loopback is confirmed. After 10 seconds, if the loopback has failed, a Loop-Down command is sent. A pop-up window appears indicating the loop code injection progress and result.

DS1/1.5M RX

Press TEST, DSn-PDH, and DS1 (under DSn-PDH RX).

Configuration Framing	Error Analysis H C	Seconds	Count	Rate	Alar H	m Ar C	nalysis	Seconds
	• • CRC-6				0	0	RAI	
								,
DS1 DS1 PM FDL	PRM PRM Conte	nt DS0						

Configuration

Note: See DS1/1.5M TX on page 275 for more information on Framing.

Error Analysis

Possible errors that can be detected are:

- ► **Framing Bit**: A Framing Bit error indicates that an incorrect value appeared in a bit position reserved for framing.
- ➤ CRC-6 (Cyclical Redundancy Check): A CRC-6 error indicates that one or more bit errors have been detected in a block of data through cyclical redundancy check. CRC-6 is only available with ESF framing.

Alarm Analysis

Possible alarms that can be detected are:

- ➤ OOF (Out-OF-Frame): A OOF error indicates that four consecutive frame bit errors are detected.
- ► RAI (Yellow) (Remote Alarm Indication):

For SF framing: The RAI alarm is declared when bit 2 in each timeslot contains "0".

For ESF framing: The RAI alarm is declared when eight "ones" followed by eight "zeros" pattern is received continuously in the data link (FDL).

► AIS (Alarm Indication Signal): The AIS alarm is declared when an unframed all-ones signal is received.

FDL TX

Press TEST, DSn-PDH, and FDL (under DSn-PDH TX).

Configuration	Pit-Oriented Messages Priority	
	Codeword RAI (0000000) On/Off	
	Command/Response	
	Codeword Amount Line Loopback Activate (00001110) 10 Send	
DS1 FDL	PRM DS0	

Note: FDL TX is only available for DS1 interface with ESF framing. For Dual RX test, FDL is only available for the primary DS1 TX/RX port.

The FDL TX tab is used to set and configure the Bit-Oriented Messages (BOM) of the Extended Super-Frame (ESF).

Configuration

Enable FDL: Allows the activation of the Facility Data Link testing. This setting is disabled (Off) by default unless otherwise set during the test setup.

Bit-Oriented Messages

The Bit-Oriented Messages are priority messages sent over the Data-Link. These messages are mostly used for networking operation and maintenance. A Bit-Oriented Message consists of 8 consecutive ones followed by a byte starting and ending by zeros.

► Priority

Priority Codeword	Pattern		
RAI	0000000 11111111		
Loopback Retention and Acknowledge	00101010 11111111		
RAI-CI	00111110 11111111		

On/Off allows generating the selected codeword priority message.

► Command/Response

Command/Response Codeword	Pattern
Line Loopback Activate	00001110 11111111
Line Loopback Deactivate	00111000 11111111
Payload Loopback Activate	00010100 11111111
Payload Loopback Deactivate	00110010 11111111
Reserved for Network Use	00010010 11111111 (Loopback Activate)
Universal Loopback (Deactivate)	00100100 11111111
ISDN Line Loopback (NT2)	00101110 11111111
CI/CSU Line Loopback (NT1)	00100000 11111111
For network use	00011100 11111111 (indication of NT1 power off)
Protection Switch Line 1 b	01000010 11111111
Protection Switch Line 2	01000100 11111111
Protection Switch Line 3	01000110 11111111
Protection Switch Line 4	01001000 11111111
Protection Switch Line 5	01001010 11111111
Protection Switch Line 6	01001100 11111111
Protection Switch Line 7	01001110 11111111
Protection Switch Line 8	01010000 11111111
Protection Switch Line 9	01010010 11111111
Protection Switch Line 10	01010100 11111111
Protection Switch Line 11	01010110 11111111
Protection Switch Line 12	01011000 11111111

DSn Tabs FDL TX

Command/Response Codeword	Pattern
Protection Switch Line 13	01011010 11111111
Protection Switch Line 14	01011100 11111111
Protection Switch Line 15	01011110 11111111
Protection Switch Line 16	01100000 11111111
Protection Switch Line 17	01100010 11111111
Protection Switch Line 18	01100100 11111111
Protection Switch Line 19	01100110 11111111
Protection Switch Line 20	01101000 11111111
Protection Switch Line 21	01101010 11111111
Protection Switch Line 22	01101100 11111111
Protection Switch Line 23	01101110 11111111
Protection Switch Line 24	01110000 11111111
Protection Switch Line 25	01110010 11111111
Protection Switch Line 26	01110100 11111111
Protection Switch Line 27	01110110 11111111
Protection Switch Acknowledge	00011000 11111111
Protection Switch Release	00100110 11111111
Do Not use for Synchronization	00110000 11111111
Stratum 2 Traceable	00001100 11111111
SONET Minimum Clock Traceable	00100010 11111111
Stratum 4 Traceable	00101000 11111111
Stratum 1 Traceable	00000100 11111111
Synchronization Traceability Unknown	00001000 11111111
Stratum 3 Traceable	00010000 11111111

Command/Response Codeword	Pattern
Reserved for Network Synchronization	01000000 11111111
Transmit Node Clock (TNC)	01111000 11111111
Stratum 3E Traceable	01111100 11111111
Under study for maintenance	00101100 11111111
Under study for maintenance	00110100 11111111
Reserved for network use	00010110 11111111
Reserved for network use	00011010 11111111
Reserved for network use	00011110 11111111
Reserved for network use	00111010 11111111
Reserved for customer	00000110 11111111
Reserved for customer	00001010 11111111
Reserved for customer	00000010 11111111
Reserved for customer	00110110 11111111
Reserved for customer	00111100 11111111
Reserved for customer	01111010 11111111

- ➤ Amount allows the selection of the number of message to be generated. Choices are 1 to 15. The default value is 10.
- **Send** allows to manually generate the selected amount of messages.

FDL RX

Press TEST, DSn-PDH, and FDL (under DSn-PDH RX).

Configuration	Configuration		Link Activity Idle Priority Command/Response Unassigned		
	Current	-	PRM		
D51 D51 PM	FDL PRM	PR/M Content DS0			

- **Note:** FDL RX is only available for DS1 interface with ESF framing. For **Dual RX** test, FDL is only available for the primary DS1 TX/RX port.
- Note: Path and test signal identification are not supported.

Configuration

Note: See FDL TX on page 280 for more information on Enable FDL.

Bit-Oriented Messages

The Bit-Oriented Messages are priority messages send over the Data-Link. These messages are mostly used for networking operation and maintenance. A Bit-Oriented Message consists of 8 consecutive 1s followed by a byte starting and ending by zeros.

► Priority

Note: See Priority on page 281 for the list of possible **Priority** codeword messages.

Current indicates the priority message detected in the last second. If no priority message has been detected, "--" is displayed.

Previous indicates the last priority message detected excluding the current message. If no priority message has been detected since the beginning of the test, "--" is displayed.

► Command/Response

Note: See Command/Response on page 282 for the list of possible Command/Response codeword messages.

Current indicates the command/response message detected in the last second. If no priority message has been detected, "--" is displayed.

Previous indicates the last command/response message detected excluding the current message. If no command/response message has been detected since the beginning of the test, "--" is displayed.
Link Activity

Indicates the activity of the following parameters during the last second of measurement A link activity is indicated by an LED.

Idle indicates that only idle codes have been detected in the last second.

Priority indicates that at least one valid priority message has been detected in the last second.

Command/Response indicates that a least one valid command and response has been detected in the last second.

Unassigned indicates that at least one unassigned message has been detected in the last second. Therefore, since an unassigned message is part of a Command/Response codewords, the Command/Response LED will also be red.

PRM indicates that at least one PRM has been detected in the last second.

FDL PRM TX

Press TEST, DSn-PDH, and PRM (under DSn-PDH TX).

Performance Report Messag	es		Statistics
Circuit	PRM Bit Events		Count
CI To Network 💌	G1: CRC error event = 1	SE: Severely errored framing event ≥ 1	
	G2: 1 < CRC error event ≤ 5	\square FE: Frame sync. bit error event ≥ 1	
W ANDI 11.403	G3: 5 < CRC error event ≤ 10	\square LV: Line code violation event ≥ 1	
Manual	G4: 10 < CRC error event ≤ 100	SL: Slip event ≥ 1	
Send	\square G5: 100 < CRC error event \leq 319	LB: Payload loopback activated	
Continuous	G6: CRC error event ≥ 320	🔲 UI BR	
On/Off	🗖 R Bit	🔲 U2 Bit	
D51 FDL PRM	D50		

Note: FDL PRM TX is only available for DS1 interface with ESF framing when Enable FDL from FDL TX/RX is enabled. For **Dual RX** test, FDL is only available for the primary DS1 TX/RX port.

Performance Report Messages

- Circuit allows the selection of the circuit type. Choices are CI to Network and Network to CI. The default setting is CI to Network.
- ➤ ANSI T1-403 allows the generation of a compliant ANSI T1.403 PRM Message.
- ► Manual

Send allows to manually send the selected PRM Message(s).

► Continuous

On/Off allows to generate the selected PRM Message(s) continuously.

► **PRM Bit Events**: Allows the activation of the following PRM bit events. All PRM bit events are disabled by default.

G1: CRC error event = 1 G2: 1 < CRC error event \leq G3: 5 < CRC error event \leq G4: 10 < CRC error event \leq G5: 100 < CRC Error Event \leq G6: CRC error event \geq R Bit (Reserved - Default value is 0) SE: Severely errored framing event \geq FE: Frame synchronization bit error event \geq LV: Line code violation event \geq SL: Slip event \geq LB: Payload loopback activated U1: Bit U2: Bit

Statistics

Count indicates the number of PRM messages sent.

FDL PRM RX

Press TEST, DSn-PDH, and PRM (under DSn-PDH TX).

Performance Report Messages Circuit PRM Bit Event Counts				Statistics Valid Count 				
G1: CRC error event = 1 G2: 1 < CRC error event ≤ 5 G3: 5 < CRC error event ≤ 10 G4: 10< CRC error event ≤ 100 G5: 100 < CRC error event ≤ 319 G6: CRC error event ≥ 320	=- =- =- =- =-	SE: Severely errored framing event ≥ 1 FE: Frame sync. bit error event ≥ 1 LV: Line code violation event ≥ 1 SL: Sip event ≥ 1 LB: Payload loopback activated	=- =- =- =- =-					
DS1 DS1 PM FDL PRM PRM Content DS0								

Note: FDL PRM RX is only available for DS1 interface with ESF framing when **Enable FDL** from **FDL TX/RX** is enabled. For **Dual RX** test, FDL is only available for the primary DS1 TX/RX port.

Performance Report Message

- Circuit indicates the selected circuit type which can be CI to Network or Network to CI.
- PRM Bit Event Counts: Indicates the count of the detected valid PRM bit events.

G1: CRC Error Event = 1	SE: Severely-Errored Framing Event ≥ 1
G2: 1 < CRC Error Event ≤ 5	FE: Frame Sync. Bit Error Event ≥ 1
G3: $5 < CRC$ Error Event ≤ 10	LV: Line Code Violation Event ≥ 1
G4: $10 < CRC$ Error Event ≤ 100	SL: Controlled Slip Event ≥ 1
G5: 100 < CRC Error Event \leq 319	LB: Payload Loopback Activated
G6: CRC Error Event \ge 320	

Statistics

Valid Count indicates the number of valid PRM messages received.

FDL PRM Content RX

Press TEST, DSn-PDH, and PRM Content (under DSn-PDH RX).

me	G3	LV	G4	U1	U2	G5	SL	G6	FE	SE	LB	G1	R	G2	Nm	N	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, j
0-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0-2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0-3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Note: FDL PRM Content RX is only available for DS1 interface with ESF framing when Enable FDL from FDL TX/RX is enabled. For Dual RX test, FDL is only available for the primary DS1 TX/RX port.

Current Performance Report Message

Each PRM is listed into four lines called Time (t0, t0-1, t0-2 and t0-3).

Where:

► Time

t0 represents the valid PRM message received in the last second of measurement (bytes 5 and 6).

- t0-1 represents the message one PRM ago (bytes 7 and 8).
- t0-2 represents the message two PRM ago (bytes 9 and 10).
- t0-3 represents the message three PRM ago (bytes 11 and 12).

G3: 5 < CRC Error Event ≤ 10
LV: Line Code Violation Event ≥ 1
G4: 10 < CRC Error Event ≤ 100
U1: Under study for synchronization
U2: Under study for synchronization
G5: 100 < CRC Error Event ≤ 319
SL: Controlled Slip Event ≥ 1
G6: CRC Error Event ≥ 320
FE: Frame Sync. Bit Error Event ≥ 1
SE: Severely-Errored Framing Event ≥ 1
LB: Payload Loopback Activated
G1: CRC Error Event = 1
R: Reserved
G2: 1 < CRC Error Event ≤ 5
Nm and NI: One-second report modulo 4 counter.

Statistics

Valid Count indicates the number of valid PRM messages received.

DS3/45M TX

Press TEST, DSn-PDH, and DS3 (under DSn-PDH TX).

Configuration Framing C-Bit Parity		larm Generation Type AIS	▼ On/Off ●]
Error Injection Manual				
C-Bit	Amount		Send	
Automated	Bata			≝
C-Bit	 Rate 2.1E-04 	🔲 Continuous	On/Off 🕚	
D53				

Configuration

Framing: Select the framing that will be used for transmission. Choices are Unframed, M13, and C-Bit Parity. The default setting is C-Bit Parity.

Alarm Generation

- ➤ Type: Select the type of alarm to be generated. Choices are AIS, RDI, OOF, and Idle. The default setting is AIS.
- > **On/Off** button: Press **On/Off** to enable/disable the alarm generation.

Error Injection

Allows manual or automated error injection.

Note: Error injection is not available when the framing is set to Unframed.

- ➤ Type: The following error types are available with both manual and automated injection modes. Choices are C-bit, F-bit, P-bit, and FEBE. Choices depend also on the selected framing. The default setting is C-bit.
- Amount: Select the amount of error to be generated. Choices are 1 through 50. The default setting is 1.
- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 1.0E-2.
- Continuous: Generates the selected error to its theoretical maximum when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

DS3/45M RX

Press TEST, DSn-PDH, and DS3 (under DSn-PDH RX).

Configuration	Error Analysis				Alar	m Analysis —	
Framing	нс	Seconds	Count	Rate	н	C	Seconds
C-Bit Parity	C-Bit				۲	OOF	
	🕲 🕲 F-Bit				۲	RDI	
	P-Bit				۲	AIS	
	FEBE				۲	Idle	
DS3 DS3 PM							

Configuration

Note: See DS3/45M TX on page 293 for more information on Framing.

Error Analysis

Possible errors that can be detected are:

- ► C-Bit (Control-Bit): A C-Bit error indicates that the three C-bits reserved to control bit stuffing are different of "111" and "000".
- ► **F-Bit** (Framing-Bit): A F-Bit error indicates that the frame alignment pattern received is different of "1001".
- ➤ P-Bit (Parity-Bit): A P-Bit error indicates that the P-Bits does not match the parity of all the information bits following the first X-Bit of the previous DS3 frame.
- ➤ FEBE (Far-End Block Error): A FEBE is detected when the three FEBE bits reserved for framing or parity error detection contain the "000" pattern.

Alarm Analysis

Possible alarms that can be detected are:

- ➤ OOF (Out-OF-Frame): A OOF error indicates that four consecutive frame bit errors are detected.
- ► **RDI** (Remote Defect Indicator): The RDI alarm is declared when both X-bits of the M-Frame are set to "0".
- ➤ AIS (Alarm Indication Signal): The AIS alarm is declared when the M-frame contains zeros (0) for C-bits, ones (1) for X-bits, 1010... repeating sequence with a one (1) immediately following any of the control bit positions for the information bits.
- ➤ Idle (DS3 Idle): The Idle alarm is declared when subframe 3 of the M-frame contains zeros (0) for the three C-bits, ones (1) for X-bits, 1100... repeating sequence with the first two bits following each control bit set to 11 for the information bits.

DS3 FEAC TX

The Far-End Alarm and Control signal *(FEAC)* provides Communication Channel capability over a DS3 in a network applications using C-bit Parity configuration.

The DS3 FEAC TX tab is used to configure and send alarms/status information and control signals (loopback commands) to other network elements.

Note: The DS3 FEAC tab is available when the DS3 framing is set to C-Bit Parity (see page 293).

Press TEST, DSn-PDH, and FEAC (under DSn-PDH TX).

Configuration

Enable FEAC: Enables DS3 FEAC codeword configuration and analysis.

Alarm/Status Unassigned Messages

Allows manual or continuous alarm/status injection.

 Codeword: Select the codeword alarm/status to be generated either manually or continuously.

The FEAC message format is a 16 bit codeword (0xxxxx0 1111111) with the rightmost bit transmitted first. The 0xxxxx0 represents the message codeword.

Codeword								
DS3 Equipment Failure SA (00110010)	User Defined (00001100)							
DS3 Loss of Signal (LOS) (00011100)	User Defined (00010000)							
DS3 Out-of-Frame (00000000)	User Defined (00010100)							
DS3 AIS Received (00101100)	User Defined (00010110)							
DS3 Idle Signal Received (00110100)	User Defined (00011000)							
DS3 Equipment Failure NSA (00011110)	User Defined (00011010)							
DS3 NUI Loop Up (00010010)	User Defined (00100000)							
DS3 NUI Loop Down (00100100)	User Defined (00100010)							
Common Equipment Failure NSA (00111010)	User Defined (00101000)							
Multiple DS1 LOS (00101010)	User Defined (00101110)							
DS1 Equipment Failure SA (00001010)	User Defined (00110000)							
Single DS1 LOS (00111100)	User Defined (00111110)							
DS1 Equipment Failure NSA (00000110)	User Defined (01000000)							
User Defined (00000010)	User Defined (01111010)							
User Defined (00000100)	User Defined (01111100)							
User Defined (00001000)	User Defined (01111110)							

- Amount: Select the amount of codeword to be generated. Choices are 1 through 15. The default setting is 10.
- Send button: Press Send to manually generate error(s) according to the Codeword and the Amount of Errors selected.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the transmission of the selected continuous codeword continuously. This setting is disabled (Off) by default.

Loopback Commands

 Control Codeword: Select the loopack control codeword to be generated. Choices are Line Loopback Activate (00001110) and Line Loopback Deactivate (00111000).

Amount: Select the amount of **Control Codeword** to be generated. Choices are **1** through **15**. The default setting is **10**.

Channel Codeword								
DS3 Line (00110110)	DS1 Line-No15 (01011110)							
DS1 Line-No1 (01000010)	DS1 Line-No16 (01100000)							
DS1 Line-No2 (01000100)	DS1 Line-No17 (01100010)							
DS1 Line-No3 (01000110)	DS1 Line-No18 (01100100)							
DS1 Line-No4 (01001000)	DS1 Line-No19 (01100110)							
DS1 Line-No5 (01001010)	DS1 Line-No20 (01101000)							
DS1 Line-No6 (01001100)	DS1 Line-No21 (01101010)							
DS1 Line-No7 (01001110)	DS1 Line-No22 (01101100)							
DS1 Line-No8 (01010000)	DS1 Line-No23 (01101110)							
DS1 Line-No9 (01010010)	DS1 Line-No24 (01110000)							
DS1 Line-No10 (01010100)	DS1 Line-No25 (01110010)							
DS1 Line-No11 (01010110)	DS1 Line-No26 (01110100)							
DS1 Line-No12 (01011000)	DS1 Line-No27 (01110110)							
DS1 Line-No13 (01011010)	DS1 Line-No28 (01111000)							
DS1 Line-No14 (01011100)	DS1 Line-All (00100110)							

Channel Codeword: Select the channel codeword to be generated.

Amount: Select the amount of Channel Codeword to be generated. Choices are 1 through 15. The default setting is 10.

Send button: Press **Send** to generate the defined loopback command.

DS3 FEAC RX

The DS3 FEAC RX tab gives current and previous alarms/status and loopback commands as well as the link activity for the received DS3 signal.

Note: The DS3 FEAC RX tab is available when the DS3 framing is set to C-Bit Parity (see page 293).

Press TEST, DSn-PDH, and FEAC (under DSn-PDH RX).

Configuration	Alarm/Status	Unassigned Messages		
Enable FEAC	Current			
	Previous			
No Activity No Activity (All 1's)	Loopback Com	mands		
Alarm/Status		Control	Channel	
Loopback	Current			
Unassigned	Previous			
DS3 FEAC DS3 PM				

Configuration

Enable FEAC: Enables DS3 FEAC codeword configuration and analysis.

Link Activity

- ➤ No Activity (All 1's): An all ones pattern (1111111111111111) has been detected in the last second.
- Alarm/Status: An Alarm/Status codeword has been detected in the last second. An Alarm/Status is only detected when receiving at least 10 consecutive occurrences of a specific codeword.
- Loopback: A Loopback command message has been detected in the last second. A valid loopback command is detected only when receiving 10 consecutive occurrences of a specific Loopback Command immediately followed by 10 occurrences of a specific Channel Codeword.

Unassigned: An unassigned message has been detected in the last second. An Unassigned message is only detected when receiving at least 10 consecutive occurrences of a specific unassigned codeword. An Alarm/Status codeword is also reported since Unassigned is part of the Alarm/Status group.

Alarm/Status Unassigned Messages

Displays the current and previously received Codeword messages.

Current: Indicates the last valid message, if any, received in the last second of measurment.

Previous: Indicates the message, if any, that was received just before the current measurement.

Loopback Commands

Current: Displays the valid message received in the last second of measurement. A valid message is detected only when receiving 10 consecutive occurrences of a specific **Loopback Command** immediately followed by 10 occurrences of a specific **Channel Codeword**. See DS3 FEAC TX *on page 297* for more information.

Previous: Displays the last valid message received excluding the actual **Current** message.

13 SDH Tabs

The SDH tabs allow configuration of different test parameters and to view the test status and results.

Note:	The	available	tabs	listed	are (a fun	ction	of	the	test	path	activat	ed.
								•••			p		~ ~~

SDH	Tab	Page
RS	Regenerator Section TX (SDH)	305
	Regenerator Section RX (SDH)	311
	Regenerator Section OH TX/RX (SDH)	313
	Performance Monitoring (PM) ^a	504
MS	Multiplex Section TX (SDH)	315
	Multiplex Section RX (SDH)	320
	Multiplex Section OH TX/RX (SDH)	326
	<i>Multiplex Section APS/Advanced OH TX/RX</i> (SDH)	328
	Performance Monitoring (PM) ^a	504
HOP	HOP TX (SDH)	335
	HOP RX (SDH)	341
	HOP OH TX/RX (SDH)	344
	HOP/LOP Pointer Adjust TX (SONET/SDH) ^a	492
	HOP/LOP Pointer Adjust RX (SONET/SDH) ^a	495
	TCM TX ^{ab}	497
	TCM RX ^{ab}	500
	Performance Monitoring (PM) ^a	504

SDH	Tab	Page					
LOP ^b	LOP TX (SDH)	347					
	LOP RX (SDH)	353					
	LOP OH TX/RX (SDH)	356					
	LOP TX (SDH, TU-3 path) LOP RX (SDH, TU-3 path)						
	LOP OH TX/RX (SDH, TU-3 path)	367					
	HOP/LOP Pointer Adjust TX (SONET/SDH) ^a	492					
	HOP/LOP Pointer Adjust RX (SONET/SDH) ^a	495					
	TCM TX ^a	497					
	TCM RX ^a	500					
	Performance Monitoring (PM) ^a	504					

a. These tabs are described in *Common Tabs* on page 491.b. Not available on the FTB-8140.

Regenerator Section TX (SDH)

Press TEST, RS-MS, and RS (under RS-MS TX).

Error Injection Manual Rate Burst	Type B1	Amount	Send	JO Trace Format Message
Alarm Generation	Type		On/Off	Enable Trace Overwrite
RS RS OH	MS MS OH	APS/Adv MS OH		

Error Injection

Allows Manual, Rate, or Burst error injection methods.

Error Injection (* Manual C Rate C Burst	Туре В1 т	Amount	Send	Error Injection C Manual C Rate C Burst	Type B1	Rate	On/Off
Error Injection C Manual C Rate • Burst	Type B1 Mode Single	Duration Unit 1 Frames Period Unit	On/Off				

Type: The following errors are available: **B1** and **FAS**.

For Manual method:

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- ➤ Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.

For Rate method:

- Rate: Select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive errored frames, reprensenting the burst duration (M), over a specific event period (N).

- ► **Duration** and **Unit**: Select the number of consecutive errored frames or the number of consecutive seconds in error.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the error burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected error for the selected Duration and Period. For Single Mode, the injection will be active for the specified duration and will atuomatically stop (the On/Off button turns Off). For Repeat Mode the error injection will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Alarm Generation

Allows **Continuous** or **Burst** alarm generation methods.

Alern Generation C Continuous Type C Burst LOF On/Off	Alam Generation Type Duration Unit C Continuous LOF 1 Frames V C Burst Mode Period Unit On/Off On/Off
--	---

▶ Туре

LOF (Loss Of Frame): Generates non-valid framing bytes (A1 and A2).

OOF (Out of Frame): Generates four consecutive errored framing patterns.

For **Continuous** method:

➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default. Exceptionally for continuous OOF alarm, the On/Off button turns Off once the OOF alarm has been sent.

For **Burst** method:

The burst method injects the programmed number of consecutive alarmed frames, reprensenting the burst **Duration** (M), over a specific event **Period** (N).

- ► **Duration** and **Unit**: Select the number of consecutive alarmed frames or the number of consecutive seconds in alarm.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the alarm burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm for the selected Duration and Period. For Single Mode, the alarm generation will be active for the specified duration and will automatically stop (the On/Off button turns Off). For Repeat Mode the alarm generation will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

J0 Trace

- ➤ Format: Displays the J0 value in 16 or 64 bytes format. The default setting is 16 bytes.
- Message: Enter the J0 trace value in 16 or 64 bytes format as selected. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer Section/RS trace test message for 64 bytes.
- ➤ Enable Trace: Generates the defined J0 Trace message except for Intrusive mode (see Overwrite) when the Enable Trace check box is selected. The Enable Trace check box has to be selected to give access to the trace format and message. When the Enable Trace check box is cleared, the J0 1-byte format is used and can be configured from the Regenerator Section OH TX (SDH) on page 313.
- Overwrite: Available with SONET/SDH Intrusive through mode only. Overwirte is not available on FTB-8105/FTB-8115. The Overwrite check box when selected, generates the defined J0 Trace message. The Enable Trace check box has to be selected to give access to the trace Format, Message, and Overwrite.
- **Note:** 16-bytes selection allows typing up to 15 bytes (a CRC-7 byte will be added in front for a total of 16 bytes). 64-bytes selection allows typing up to 62-bytes ($< C_R >$ and $< L_F >$ bytes will be added at the end for a total of 64-bytes).

Regenerator Section RX (SDH)

Press TEST, RS-MS, and RS (under RS-MS RX).

Error Analysis H C S FAS B1	Seconds 	Count 	Rate	AL H	arm A	00F LOF	Seconds
JO Trace Received Message	Expe	cted Message			• •	RS-TIM	
Enable RS-TIM		cted ronnac	*				
RS RS OH RS PM	MS MS	OH APS/Ad	v MS OH MS	PM			

Error Analysis

FAS (Frame Alignment Signal): A FAS defect indicates that at least one A1 or A2 byte of the FAS word is in error.

B1 (BIP-8, Bit-Interleave Parity - 8 bits): The BIP-8 error indicates a Regenerator Section parity error by performing a routine even-parity check over all frames of the previous STM-n signal.

Alarm Analysis

- ➤ OOF (Out Of Frame): A OOF alarm indicates that a minimum of four consecutive errored framing patterns are received.
- ► LOF (Loss Of Frame): A LOF alarm indicates that an Out Of Frame (OOF) defect on the incoming optical signal persists for 3 milliseconds.
- RS-TIM (Regenerator Section Trace Identifier Mismatch): The RS-TIM defect indicates that the received J0 Trace doesn't match the expected message value. RS-TIM alarm is only available when the Enable RS-TIM check box is selected.
- **Note:** Refer to Alarm/Error Measurements on page 47 for **H/C LEDs**, and **Seconds** information.

J0 Trace

- ➤ Received Message: Displays the J0 value in 16 or 64 bytes format. The <crc7> represents the CRC-7 for a 16-bytes format. The last two bytes of a 64-bytes format, <C_R> and <L_F>, represent respectively a carriage return and a line feed.
- ➤ Enable RS-TIM (Regenerator Section Trace Identifier Mismatch): Enables the Trace Identifier Mismatch for the expected message defined when the Enable RS-TIM check box is selected. The Enable RS-TIM check box has to be selected to give access to the expected trace format and message. When the Enable RS-TIM check box is selected, the J0 1-byte is available from the *Regenerator Section OH TX/RX (SDH)* on page 313.
- Expected Message: Allows entering the message that is expected. J0 value should be ASCII suitable characters. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer Section/RS trace test message for 64 bytes.
- Expected Format: Allows the selection of the format expected. Choices are 16 or 64 bytes. The default setting is 16 bytes.

Regenerator Section OH TX/RX (SDH)

The **Regenerator Section OH TX** allows changing the regenerator transport overhead information to be transmitted while the **Regenerator Section OH RX** allows verification of the information received. Refer to *Glossary* on page 577 for detailed overhead information.

Press TEST, RS-MS, and RS OH (under RS-MS TX/RX).

Regenerator Overhead STM-1 Channel 1	
A1/A1/A1 F6 F6	F6 A2/A2/A2 28 28 28 30/Z0/Z0 01 CC CC Overwrite
B1// 00 00	00 E1// 00 00 00 F1// 00 00 00 Disable All
D1// 00 00	00 D2// 00 00 D3// 00 00 00
RS RSOH MS	Repensator Overhead STM-1 Channel A1/A1/A1 - A1/A1/A1 - B1/-/- - - D1/-/- - D1/-/- - D2/-/- - D3/-/-
	RS RS OH RS PM MS MS OH APS/Adv MS OH MS PM

Regenerator Section Overhead

➤ STM-1 Channel: Select the channel number that will be used for verification. Choices are 1 for STM-1, 1 to 4 for STM-4, 1 to 16 for STM-16, 1 to 64 for STM-64, and 1 to 256 for STM-256.

The following controls are available with **SONET/SDH Intrusive** through mode only:

- ➤ The Overwrite check box when selected, allows the generation of the selected byte. The byte can be selected by clicking on its blue label. The byte having its Overwrite check box selected will have its hexadecimal value on a yellow background. A byte having its hexadecimal value with a gray background cannot be overwritten.
- The Overwrite LED indicates if there is any byte in any timeslot having the Overwrite check box selected (LED is green) or not (LED is gray).
- **> Disable All** allows to clear the **Overwrite** check box for all bytes.

The following section overhead byte values are displayed in hexadecimal format. However, a common field allows to see the value of specific byte in binary format. Click on the blue label of a byte and its binary value will be displayed in the common field beside the **STM-1 Channel** selection.

- A1 and A2: Framing. The value should be hexadecimal F6 for A1 and 28 for A2.
- ► J0/Z0

J0: Trace: STM-1 of a STM-N signal. J0 is only available when **Enable Trace** from the *Regenerator Section TX (SDH)* on page 305 is disabled.

Z0: Growth

- ▶ **B1**: BIP-8. This byte is not programmable from this tab.
- ► E1: Orderwire
- ► F1: User
- ▶ **D1, D2**, and **D3**: Data Communications Channel (DCC)

Multiplex Section TX (SDH)

Press TEST, RS-MS, and MS TX (under RS-MS TX).

Error Injection Manual Rate Burst	Type B2	Amount	Send	
Alarm Generation	Type MS-AIS		On/Off	
RS RS OH	М5 М5 ОН	APS/Adv MS OH		

Error Injection

Allows Manual, Rate, or Burst error injection methods.

Error Injection (* Manual C Rate C Burst	Type B2	Amount	Send	Error Injection C Manual C Rate C Burst	Type B2	Rate	On/Off
Error Injection C Manual C Rate G Burst	Type B2 Mode Single	Duration Unit 1 Frames Period Unit	On/Off				

➤ Type: The following errors are available with both manual and automated injection modes: B2 (BIP-8), and MS-REI (Multiplex Section - Remote Error Indication). The default setting is B2.

For Manual method:

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- ➤ Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.

For Rate method:

- Rate: Select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive errored frames, reprensenting the burst duration (M), over a specific event period (N).

- ► **Duration** and **Unit**: Select the number of consecutive errored frames or the number of consecutive seconds in error.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the error burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected error for the selected Duration and Period. For Single Mode, the injection will be active for the specified duration and will atuomatically stop (the On/Off button turns Off). For Repeat Mode the error injection will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Alarm Generation

Allows **Continuous** or **Burst** alarm generation methods.

Alem Geneeldon C Continuous Type C Burst MS-AIS On/Off On/Off		Alarm Generation	Type MS-AIS Mode Single	•	Duration 1 Period	Unit Frames Unit	•	On/Off
---	--	------------------	----------------------------------	---	-------------------------	------------------------	---	--------

▶ Туре

MS-AIS (Multiplex Section - Alarm Indication Signal): Generates an SDH signal that contains a valid Regenerator Section Overthead (RSOH) and an all-ones pattern on the SPE.

MS-RDI (Multiplex Section - Remote Defect Indication): Generates a "110" pattern for the bits 6, 7 and 8 of the K2 byte.

The default setting is MS-AIS.

- For **Continuous** method:
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive alarmed frames, reprensenting the burst **Duration** (M), over a specific event **Period** (N).

- ► **Duration** and **Unit**: Select the number of consecutive alarmed frames or the number of consecutive seconds in alarm.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the alarm burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm for the selected Duration and Period. For Single Mode, the alarm generation will be active for the specified duration and will automatically stop (the On/Off button turns Off). For Repeat Mode the alarm generation will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Multiplex Section RX (SDH)

Press TEST, RS-MS, and MS RX (under RS-MS RX).

Erro	r An	alysis				Alan	m Ar	nalysis		
н	C		Seconds	Count	Rate	н	C	MC 410	Seconds	
		D2	-	-				MD-AID		
		MD-KEI)) 				MD-KD1	1"	
							_			
RS		KS UH CRS PM		IS OH J (APS/A		MS PM)			

Alarm Analysis

- ➤ MS-AIS (Multiplex Section Alarm Indication Signal): The MS-AIS alarm is declared when bits 6, 7 and 8 of the K2 byte contain the "111" pattern in three consecutive frames.
- ➤ MS-RDI (Multiplex Section Remote Defect Indication): The MS-RDI alarm is declared when bits 6, 7, and 8 of the K2 byte contain the "110" pattern in five consecutive frames.
- **Note:** Refer to Alarm/Error Measurements on page 47 for **H/C LEDs**, and **Seconds** information.

Error Analysis

- B2 (BIP-Nx24, Bit-Interleave Parity Nx24 bits): The B2 error indicates a Multiplex Section parity error by performing an even-parity check over all bits (except those in the RSOH bytes) of the previous frame of a STM-N signal.
- **MS-REI** (Multiplex Section Remote Error Indicator):

For STM-0e: The MS-REI error is declared the M1 byte located in the STM-1 channel 1 (first timeslot) indicates that one or more BIP violations have been detected.

M1, bits 234 5678	Indicates
000 0000	0 BIP violation
000 0001	1 BIP violation
000 0010	2 BIP violations
:	:
000 1000	8 BIP violations
000 1001	0 BIP violation
:	:
111 1111	0 BIP violation

For STM-1e and STM-1o: The MS-REI error is declared when the M1 byte located in the STM-1 channel 1 (timeslot #3) indicates that one or more BIP violations have been detected

M1, bits 234 5678	Indicates
000 0000	0 BIP violation
000 0001	1 BIP violation
000 0010	2 BIP violations
:	:
001 1000	24 BIP violations
001 1001	0 BIP violation
:	:
111 1111	0 BIP violation
For STM-4: The MS-REI error is declared when the M1 byte located in the STM-1 channel 3 (timeslot #7) indicates that one or more BIP violations have been detected.

M1, bits 234 5678	Indicates
000 0000	0 BIP violation
000 0001	1 BIP violation
000 0010	2 BIP violations
:	:
110 0000	96 BIP violations
110 0001	0 BIP violation
:	:
111 1111	0 BIP violation

For STM-16: The MS-REI error is declared when the M1 byte located in the STM-1 channel 3 (timeslot #7) indicates that one or more BIP violations have been detected.

M1	Indicates
0000 0000	0 BIP violation
0000 0001	1 BIP violation
0000 0010	2 BIP violations
:	:
1111 1111	255 BIP violations

For STM-64: The MS-REI error is declared when either the M1 byte located in the timeslot #7 (STM-1 channel 3) indicates that one or more BIP violations have been detected, or the combination of the M0 and M1 bytes indicates that one or more BIP violations have been detected. Refer to *OC-192/STM-64 REI-L/MS-REI* on page 542 for MS-REI computation method.

M1	Indicates
0000 0000	0 BIP violation
0000 0001	1 BIP violation
0000 0010	2 BIP violations
:	:
1111 1111	255 BIP violations

M0 Located in STM-1 channel 2 (timeslot #4)	M1 Located in STM-1 channel 3 (timeslot #7)	Indicates
0000 0000	0000 0000	0 BIP violation
0000 0000	0000 0001	1 BIP violation
0000 0000	0000 0010	2 BIP violations
:	:	
0000 0110	0000 0000	1536 BIP violations
0000 0110	0000 0001	0 BIP violation
:		:
1111 1111	1111 1111	0 BIP violation

For STM-256: The MS-REI error is declared when the combination of the M0 and M1 bytes indicates that one or more BIP violations have been detected.

M0 Located in STM-1 channel 2 (timeslot #4)	M1 Located in STM-1 channel 3 (timeslot #7)	Indicates
0000 0000	0000 0000	0 BIP violation
0000 0000	0000 0001	1 BIP violation
0000 0000	0000 0010	2 BIP violations
:	:	
0001 1000	0000 0000	6144 BIP violations
0001 1000	0000 0001	0 BIP violation
:		•
1111 1111	1111 1111	0 BIP violation

Multiplex Section OH TX/RX (SDH)

The **Multiplex Section OH TX** allows changing the multiplex transport overhead information to be transmitted while the **Multiplex Section OH RX** allows verification of the multiplex transport overhead information received.

Multiplexer Overhea STM-1 Channel Cverwrite 🔽 Overwrite Overwrite H3/H3/H3 H1/H1/H1 H2/H2/H2 Overwrite 🛢 B2/B2/B2 К1/--/--00 K2/--/--D4/--/--D5/--/-D6/--/-D7/--/--D8/--/-D9/--/-D10/--/-D11/--/--D12/--/-E2/--/-S1/--/ultiplexer Overhe RS RS OH MS STM-1 Channel H1/H1/H1 -H2/H2/H2 -H3/H3/H3 B2/B2/B2 К1/--/-K2/--/-D4/--/--D7/--/--D10/--/-D11/--/-D12/--/ E2/--/-51/--/ MSOH PS OH DS DM APS/Adv MS OH

Press TEST, RS-MS, and MS OH (under RS-MS TX/RX).

Multiplex Section Overhead

➤ STM-1 Channel: Select the timeslot number that will be used for the test. Choices are 1 for STM-1, 1 to 4 for STM-4, 1 to 16 for STM-16, 1 to 64 for STM-64, and 1 to 256 for STM-256. The default setting is 1.

The following controls are available with **SONET/SDH Intrusive** through mode only:

- The Overwrite check box when selected, allows the generation of the selected byte. The byte can be selected by clicking on its blue label. The byte having its Overwrite check box selected will have its hexadecimal value on a yellow background. A byte having its hexadecimal value with a gray background cannot be overwritten.
- ➤ The Overwrite LED indicates if there is any byte in any timeslot having the Overwrite check box selected (LED is green) or not (LED is gray).
- **> Disable All** allows to clear the **Overwrite** check box for all bytes.

The following overhead byte values are displayed in hexadecimal format. However, a common field allows to see the value of specific byte in binary format. Click on the blue label of a byte and its binary value will be displayed in the common field beside the **STM-1 Channel** selection.

- ► H1 and H2: Pointer
- ► H3: Pointer Action
- ► **B2**: BIP-8
- ► K1 and K2: Automatic Protection Switching (APS)
- ▶ D4 through D12: Data Communications Channel (DCC)
- **S1**: Synchronization Status.
- ► M0 or M1

M0: REI-L [STM-1 channel 1 of a STM-0e signal; STM-1 channel 2 of an STM-64/STM-256 signal]

M1: REI-L [STM-1 channel 1 of a STM-1e or STM-1o signal; STM-1 channel 3 of an STM-4/16/64/256 signal]

Undefined "--" for all other timeslots not covered by M0 and M1.

► E2: Orderwire

Multiplex Section APS/Advanced OH TX/RX (SDH)

The **APS/Advanced MS OH TX** allows changing the multiplex transport overhead information to be transmitted while the **APS/Advanced MS OH RX** allows verification of the multiplex transport overhead information received.

Press TEST, RS-MS, and APS/Advanced MS OH (under RS-MS TX/RX).

APS Switching Mode Linear K1 Request No Request (0000) K2 Protected Channel Archite 0 - Null	Channel Channel Channel Channel Correstion Mode Reserved (000)	H1 Verwrite SS Bits (H1) Verwrite S1 Verwrite Bits 1-4 0000 Bits 5-8 (Synchronization Status Message) Quality Unknown (0000)	
RS RSOH MS M	APS Switching Mode Linear K1 Request Chan K2 Protected Channel R5 RS OH RS MS M MS MS	nel File Setup Transitions 50 Cepture	H1 SS Bits

APS

► Switching Mode

Allows the switching mode selection and is available on both TX and RX tabs. Choices are **Linear** and **Ring**. The default setting is **Linear**.

Overwrite: The Overwrite check box when selected, allows the activation of the APS. Overwrite is available with SONET/SDH Intrusive mode only.

- ► K1
 - Request: Bits 1 through 4 of the K1 byte. The default setting is No Request (0000). Refer to K1 on page 237 for available/possible choices.
 - ➤ Channel ID/Destination Node ID: Bits 5 through 8 of the K1 byte. Channel if available with Linear switching mode while Destination Node ID is available with Ring switching mode. The default setting is Null Channel for Linear switching mode and 0 for Ring switching mode. Refer to Channel/Destination Node ID on page 238 for available/possible choices.

► K2

- Protected Channel/Source Node ID: Bits 1 through 4 of the K2 byte. Protected Channel is available with Linear switching mode while Source Node ID is available with Ring switching mode. The default setting is Null Channel for Linear switching mode and 0 for Ring switching mode. Refer to K2 on page 239 for available/possible choices.
- ➤ Architecture/Bridge Request: Bit 5 of the K2 byte. Architecture is available with Linear switching mode while Bridge Request is available with Ring switching mode. The default setting is 1+1 for Linear switching mode and Short Path Request for Ring switching mode. Refer to *K2* on page 239 for available/possible choices.

➤ Operation Mode: Bits 6 through 8 of the K2 byte. The default setting is Reserved (000) for Linear switching mode and Idle for Ring switching mode.

Bits 6 to 8	Linear mode	Ring mode
000	Reserved	Idle
001	Reserved	Bridged
010	Reserved	Bridged and Switched
011	Reserved	Extra Traffic - Protection
100	Unidirectional	Reserved
101	Bidirectional	Reserved
110	MS-RDI	MS-RDI
111	MS-AIS	MS-AIS

K1-K2 Capture

This feature allows to capture and save the K1/K2 byte transitions to a text file on disk. Not available on FTB-8105 and FTB-8115.

Once generated and saved, the K1/K2 capture file can be loaded using Windows File Manager. The default directory is d:\ToolBox\User Files\SonetSdhAnalyzerG2\Reports. The following is an example of captured K1/K2 byte transition file.

Start Capture						
Transitions	K1	К2	Time to detect (Frames)			
0:	A0	02	>32768			
1:	A0	00	>32768			
2:	00	00				
End Capture	e					
********	*******	*********	***************************************			
********	*******	*********	**************			
Start Captu	re					
Transitions	K1	К2	Time to detect (Frames)			
0:	00	00	23666			
1:	20	00	14995			
2:	60	00	22172			
3:	C0	00	>32768			
4:	B0	00	24659			
5:	00	00				
End Capture	e					

Note: The transition #0, indicates the state of K1 and K2 before the capture starts.

► Files Setup

Press the **File Setup** button to select the file that will be used to save the captured K1/K2 byte transitions. Selecting a new file name will create an empty file on disk that will be used to capture the K1/K2 byte transitions. Selecting an existing file name will overwrite the existing file.

➤ Transitions

Allows to select the number of K1/K2 byte transitions that will be captured. Once the number of K1/K2 byte transitions is reached, the capture stops (the **Capture** button LED turns off).

► Capture

Press the **Capture** button to enable the K1/K2 capture process. However the capture will only start when the test is started. The **Capture** button is only available when a file has been selected (see **File Setup** button).

If the capture is restarted, the content of the file will be appended.

H1

SS Bits (H1): Bits 5 and 6 of the H1 byte represent the SS bits.

SS Bits	Description
00	SONET
01	Undefined
10	SDH
11	Undefined

Overwrite: The Overwrite check box when selected, allows the generation of the selected SS Bits. Overwrite is available with SONET/SDH Intrusive mode only. In normal mode, the SS Bits are written on all timeslots (foreground and background). When SONET/SDH Intrusive is selected, the SS Bits are written on the foreground timeslots only.

S1

- Overwrite: The Overwrite check box when selected, allows the generation of the selected S1 bits. Overwrite is available with SONET/SDH Intrusive mode only.
- ▶ Bits 1-4: Bits 1 through 4 of the S1 byte are currently undefined but can be set from 0000 to 1111 if required.
- ➤ Bits 5-8 (Synchronization Status Message): Bits 5 through 8 of the S1 byte are used to convey synchronization status of the NE. The default setting is Synchronized Traceability Unknown (0000). Choices are:

Bits 5 to 8	Description	Bits 5 to 8	Description
0000	Quality Unknown	1000	SSU-B
0001	Reserved	1001	Reserved
0010	ITU G.811 (PRC)	1010	Reserved
0011	Reserved	1011	ITU-T G.813 Option I (SEC)
0100	SSU-A	1100	Reserved
0101	Reserved	1101	Reserved
0110	Reserved	1110	Reserved
0111	Reserved	1111	Do not use for synchronization

HOP TX (SDH)

Press TEST, HOP, and Path (under HOP TX).

Error Injection Manual Rate Burst	Type B3	Amount	Send	J1 Trace Format Message	
Alarm Generation C Continuous	Type AU-AIS		On/Off	Enable Trace Overwrite	
Path OH	Ptr Adj TCM				

Error Injection

Allows Manual, Rate, or Burst error injection methods.

Error Injection Manual Rate Burst	Type B3	Amount	Send	Error Injection C Manual C Rate O Burst	Type B3 • Mode Single •	Duration 1 Period	Unit Frames V Unit	On/Off
Error Injection C Manual C Rate C Burst	Type B3	Rate	On/Off					

► **Type**: The following errors are available: **B3** (BIP-8, Bit-Interleave Parity - 8 bits) and **HP-REI** (High Order path - Remote Error Indicator).

For Manual method:

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- ➤ Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.

For Rate method:

- Rate: Select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive errored frames, reprensenting the burst duration (M), over a specific event period (N).

- ► **Duration** and **Unit**: Select the number of consecutive errored frames or the number of consecutive seconds in error.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the error burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected error for the selected Duration and Period. For Single Mode, the injection will be active for the specified duration and will atuomatically stop (the On/Off button turns Off). For Repeat Mode the error injection will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Alarm Generation

Allows **Continuous** or **Burst** alarm generation methods.

Alarm Generation	_			Alarm Generation	Туре		Duration	Unit		
C Burst	Type	-	0.101	Burst	AU-AIS Mode	•	1 Period	Frames	-	0.105
	AUAD		Onyon •		Single	•			-	on/on

▶ Туре

AU-AIS (Administrative Unit - Alarm Indication Signal): Generates an all-ones patterns over the H1, H2, H3, and SPE.

HP-RDI (High Order Path - Remote Defect Indication): Generates a "100" pattern for bits 5, 6 and 7 of the G1 byte.

ERDI-SD (Enhanced RDI - Server Defect): Generates a "101" pattern for the bits 5, 6 and 7 of the G1 byte.

ERDI-CD (Enhanced RDI - Connectivity Defect): Generates a "110" pattern for the bits 5, 6 and 7 of the G1 byte.

ERDI-PD (Enhanced RDI - Payload Defect): Generates a "010" pattern for the bits 5, 6 and 7 of the G1 byte.

H4-LOM (H4 - Loss Of Multiframe) (available with TU-11,.TU-12 and TU-2): Generates a wrong H4 byte multiframe indicator sequence. Not supported on the FTB-8140.**AU-LOP** (Administrative Unit - Loss Of Pointer): Generates a non-valid pointer.

HP-UNEQ (High Order Path - Unequipped): Generates an all-ones pattern over POH and SPE.

For **Continuous** method:

 On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive alarmed frames, reprensenting the burst **Duration** (M), over a specific event **Period** (N).

- ► **Duration** and **Unit**: Select the number of consecutive alarmed frames or the number of consecutive seconds in alarm.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the alarm burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm for the selected Duration and Period. For Single Mode, the alarm generation will be active for the specified duration and will automatically stop (the On/Off button turns Off). For Repeat Mode the alarm generation will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

J1 Trace

- ➤ Format: Displays the J1 value in 16 or 64 bytes format. The default setting is 16 bytes.
- ➤ Message: Enter the J1 trace value in 16 or 64 bytes format as selected. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer high order path trace test message for 64 bytes. However, with VCAT/LCAS the default message will be EXFO followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example EXFO-VCG1-SQ0) for both 16 and 64 bytes formats.
- ➤ Enable Trace: Generates the defined J1 Trace message except for Intrusive mode (see Overwrite) when the Enable Trace check box is selected. The Enable Trace check box has to be selected to give access to the trace format and message. When the Enable Trace check box is not selected, the J0 1-byte format is used and can be configured from the HOP OH TX (SDH) on page 344.
- Overwrite: Available with SONET/SDH Intrusive through mode only (optional). Overwirte is not available on FTB-8105/FTB-8115. The Overwrite check box when selected, generates the defined J1 Trace message. The Enable Trace check box has to be selected to give access to the trace Format, Message, and Overwrite.
- **Note:** 16-bytes selection allows typing up to 15 bytes (a CRC-7 byte will be added in front for a total of 16 bytes). 64-bytes selection allows typing up to 62-bytes ($< C_R >$ and $< L_F >$ bytes will be added at the end for a total of 64 bytes).

HOP RX (SDH)

Press TEST, HOP, and Path (under HOP RX).

Error Analysis H C	Seconds	Count	Rate	1Г	Alar H	m A C	nalysis	Seconds	н	с		Seconds
B3					۲	۲	AU-AIS					
HP-REI					۲	۲	AU-LOP		۲	۲	ERDI-SD	
J1 Trace					۲	۲	H4-LOM		۲	۲	ERDI-CD	
Received Message	Received Message Expected Message						HP-RDI		0	۲	ERDI-PD	
					0	۲	HP-TIM					
	Exp	ected Format			0	۲	HP-PLM					
Enable HP-TIM			~		۲	۲	HP-UNEQ					
Path OH Ptr Adj TCM PM												

Error Analysis

- ➤ B3 (BIP-8, Bit-Interleave Parity 8 bits): The B3 error indicates a High Order Path parity error by performing an even-parity check over all bits of the previous VC-N.
- ➤ HP-REI (High Order Path Remote Error Indicator): The HP-REI error is declared when bits 1 through 4 of the G1 byte contain one pattern from the following binary range: "0001" through "1000" (1 to 8) (located in every STM-1 of an STM-n signal).

Alarm Analysis

- ➤ AU-AIS (Administrative Unit Alarm Indication Signal): The AU-AIS alarm is declared when the H1 and H2 bytes contain an all-ones pattern in three consecutive frames.
- ► AU-LOP (Administrative Unit Loss Of Pointer): The LOP alarm indicates that a valid pointer is not found in N consecutive frames (where 8 ≤ N ≤ 10), or that N consecutive NDFs ("1001" pattern) are detected (non-concatenated payloads).
- ► H4-LOM (H4 Loss Of Multiframe): For TU structured optical frames, the H4-LOM alarm indicates that the system loss track of the H4 byte multiframe indicator sequence.Not supported on the FTB-8140.
- ➤ HP-RDI (High Order Path Remote Defect Indication): The HP-RDI alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "100" or "111" pattern in five consecutive frames.
- HP-TIM (High Order Path Trace Identifier Mismatch): The HP-TIM defect indicates that the received J1 Trace doesn't match the expected message value. The HP-TIM alarm result is only available when Enable HP-TIM check box from J1 Trace section has been selected.
- ➤ HP-PLM (High Order Path Payload Label Mismatch): The HP-PLM is declared upon receipt of five consecutive frames with mismatched VC signal labels (C2 byte).
- ► **HP-UNEQ** (High Order Path Unequipped): HP-UNEQ is declared when the C2 bytes contain "00 H" in five consecutive frames.
- ERDI-SD (Enhanced RDI Server Defect): The ERDI-SD alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "101" pattern in five consecutive frames.

- ➤ ERDI-CD (Enhanced RDI Connectivity Defect): The ERDI-CD alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "110" pattern in five consecutive frames.
- ► ERDI-PD (Enhanced RDI Payload Defect): The ERDI-PD alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "010" pattern in five consecutive frames.

J1 Trace

- ➤ Received Message: Displays the J1 value in 16-bytes or 64-bytes format. The <crc7> represents the CRC-7 for a 16-bytes format. The last two bytes of a 64-bytes format, <C_R> and <L_F>, represent respectively a carriage return and a line feed.
- Enable HP-TIM: Enables the Trace Identifier Mismatch for the expected message defined when the Enable HP-TIM check box is selected. The Enable HP-TIM check box has to be selected to give access to the expected trace format and message. When the Enable HP-TIM check box is cleared, the J1 1-byte is available from the HOP OH RX (SDH) on page 344.
- Expected Message: Allows entering the message that is expected. J1 value should be ASCII suitable characters. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer high order path trace test message for 64 bytes. However, with VCAT/LCAS the default message will be EXFO followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example EXFO-VCG1-SQ0) for both 16 and 64 bytes formats.
- Expected Format: Allows the selection of the format expected. Choices are 16 or 64 bytes. The default setting is 16 bytes.

HOP OH TX/RX (SDH)

The **HOP OH TX** allows changing the high order path transport overhead information to be transmitted while the **HOP OH RX** allows verification of the high order path transport overhead information received.

Press TEST, HOP, and OH (under HOP TX/RX).

J1 🔽 Overwrite 00000000	Path Signal Label (C2)
<u>)1</u> 00 H4 00	Test signal, 0.181 specific mapping
B3 F3 00	
C2 FE K3 00	
G1 02 N1 00	Overwrite 🕥
F2 00	Disable All
Path OH Ptr Adj TCM	Overhead Path Signal Label (C2) 31 H4 B3 F3 Expected Path Signal Label C2 K3 Test signal, 0.161 specific mapping ¥ G1 N1 Enable HP-PLM/HP-UNEQ F2

Path Overhead

The following controls are available with **SONET/SDH Intrusive** through mode only (optional):

- The Overwrite check box when enabled, allows the generation of the selected byte. The byte can be selected by clicking on its blue label. The byte having its Overwrite check box selected will have its hexadecimal value on a yellow background. A byte having its hexadecimal value on a gray background cannot be overwritten.
- ➤ The **Overwrite** LED indicates if there is any byte in any timeslot having the **Overwrite** check box selected (LED is green) or not (LED is gray).
- Disable All allows to clear the Overwrite check box for all OH bytes in the HOP.

The following section overhead byte values are displayed in hexadecimal format. However, a common field allows to see the value of specific byte in binary format. Click on the blue label of a byte and its binary value will be displayed in the common field beside the **Timeslot** selection.

- ▶ J1: Trace. J1 is only available when Enable Trace from the HOP TX (SDH) on page 335 is disabled.
- **B3**: BIP-8. This byte is not programmable from the HOP OH TX tab.
- ► C2: Path Signal Label. Entering a C2 byte will automatically update the Path Signal Label (C2) selection and vice versa.
- ► G1: Path Status
- ► F2: User Channel
- ► H4: Multiframe Indicator. This byte is not programmable with LOP or VCAT.
- ► F3: User Channel
- **K3**: Automatic Protection Switching (APS)
- ► N1: (Network operator byte) Tandem Connection Monitoring (TCM)

Path Signal Label (C2)

The C2 byte is allocated to indicate the content of the VC, including the status of the mapped payloads.

C2 (Hex.)	Description	C2 (Hex.)	Description
00 ^a	Unequipped or supervisory-unequipped	17	Reserved (SDL self-synch scrambler)
01	Reserved (Equipped - Non-Specific)	18	Mapping of HDLC/LAPS
02	TUG Structure	19	Reserved (SDL set-reset scrambler)
03	Locked TU-n	1A	Mapping of 10 Gbps Ethernet (IEEE 802.3)
04	Asynchronous Mapping of 34M/45M in C-3	1B	GFP
05	Experimental Mapping	1C	Mapping 10 Gbps FC
12	Asynchronous Mapping of 140M in C-4	20	Asynchronous Mapping of ODUk
13	ATM Mapping	CF	Reserved (obsolete HDLC/PPP framed)
14	MAN DQDB	FE	Test Signal, ITU-T 0.181 specific mapping
15	FDDI [3]-[11] Mapping	FF ^a	VC-AIS (TCM)
16	Mapping of HDLC/PPP		

a. These values cannot be selected as Expected Path Signal Label.

For HOP OH RX tab only:

- Expected Path Signal Label: Allows selecting the expected Path Signal Label.
- Enable HP-PLM/HP-UNEQ (High Order Path Payload Label Mismatch / Unequipped): Enables the Payload Label Mismatch and Unequipped monitoring..

LOP TX (SDH)

Note: See LOP TX (SDH, TU-3 path) on page 358 for TU-3 path test case.

Press TEST, LOP, and Path (under LOP TX).

Error Injection Manual Rate Burst	Type BIP-2	Amount	Send	J2 Trace Format Message
Alarm Generation C Continuous C Burst	Type TU-AIS		On/Off	Enable Trace
Path OH	Ptr Adj TCM			

Error Injection

Allows Manual, Rate, or Burst error injection methods.

Error Injection Manual Rate Burst	Type BIP-2	Amount	Send	Error Injection C Manual C Rate C Burst	Type BIP-2	Rate	On/Off
Error Injection C Manual C Rate C Burst	Type BIP-2 V Mode Single V	Duration Unit 1 Frames Period Unit	On/Off				

► **Type**: The following errors are available: **BIP-2** (Bit-Interleave Parity - 2 bits) and **LP-REI** (Low Order Path - Remote Error Indicator).

For Manual method:

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- ➤ Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.

For Rate method:

- Rate: Select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive errored frames, reprensenting the burst duration (M), over a specific event period (N).

- ► **Duration** and **Unit**: Select the number of consecutive errored frames or the number of consecutive seconds in error.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the error burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected error for the selected Duration and Period. For Single Mode, the injection will be active for the specified duration and will atuomatically stop (the On/Off button turns Off). For Repeat Mode the error injection will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Alarm Generation

Allows **Continuous** or **Burst** alarm generation methods.

Alarm Generation	Trees			Alarm Gene	ration — ous	Туре		Duration	Unit		
C Burst	Триалс	-	0.1017	Burst		TU-AIS Mode	•	1 Period	Frames	-	
	TO-ALS	•	Un/Uff			Single	•			-	Un/Uff

Type: The following errors are available:

TU-AIS (Tributary Unit - Alarm Indication Signal): Generates an all-ones pattern for the V1 and V2 bytes of the TU path and payload.

LP-RDI (Low Order Path - Remote Defect Indication): Generates "1" for the bit 8 of the V5 byte and a "00" pattern for bits 6 and 7 of the K4 byte.

ERDI-SD (Enhanced RDI - Server Defect): Generates a **101** pattern for bits 5, 6, and 7 of the K4 byte, and **1** for bit 8 of the V5 byte.

ERDI-CD (Enhanced RDI - Connectivity Defect): Generates a **110** pattern for bits 5, 6, and 7 of the K4 byte, and **1** for bit 8 of the V5 byte.

ERDI-PD (Enhanced RDI - Path Payload Defect): Generates a "010" pattern for bits 5, 6, and 7 of the K4 byte, and "0" for bit 8 of the V5 byte.

LP-RFI (Low Order Path - Remote Failure Indication) (available with VC-11 only): Generates "1" for the bit 4 of the V5 byte.

TU-LOP (Tributary Unit - Loss of Pointer): Generates a non-valid pointer.

LP-UNEQ (Low Order Path - Unequipped): Generates unequipped LP signal label (bits 5 through 7 of V5 byte are set to "000").

For **Continuous** method:

 On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive alarmed frames, reprensenting the burst **Duration** (M), over a specific event **Period** (N).

- ► **Duration** and **Unit**: Select the number of consecutive alarmed frames or the number of consecutive seconds in alarm.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the alarm burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm for the selected Duration and Period. For Single Mode, the alarm generation will be active for the specified duration and will automatically stop (the On/Off button turns Off). For Repeat Mode the alarm generation will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

J2 Trace

- ➤ Enable Trace: Enable Trace, when enabled, generates the J2 Trace message defined. Enable Trace has to be enabled to give access to the trace format and message. When the J2 Trace is disabled, the J2 1-byte format is used and can be configured from the LOP OH TX/RX (SDH, TU-3 path) on page 367.
- ➤ Format: Select the display format for J2. Choices are 16 and 64 bytes. The default setting is 16-bytes.
- ➤ Message: Enter the J2 value in 16-bytes or 64-bytes format as selected. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer low order path trace test message for 64 bytes. However, with VCAT/LCAS the default message will be EXFO followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example EXFO-VCG1-SQ0) for both 16 and 64 bytes formats.
- **Note:** 16-bytes selection allows typing up to 15 bytes (a CRC-7 byte will be added in front for a total of 16 bytes). 64-bytes selection allows typing up to 62-bytes ($<C_R>$ and $<L_F>$ bytes will be added at the end for a total of 64 bytes). J1 value should be ASCII suitable characters including the ITU T.50 Characters on page 57.

LOP RX (SDH)

Note: See LOP RX (SDH, TU-3 path) on page 364 for TU-3 path test case.

Press TEST, LOP, and Path (under LOP RX).

Error Analysis

- BIP-2 (Bit-Interleave Parity 2 bits): The BIP-2 error indicates a Low Order Path parity error by performing a routine even-parity check over all bytes of the previous VC frame.
- ► LP-REI (Low Order Path Remote Error Indicator): The LP-REI error is declared when bit 3 of the V5 byte is set to "1".
- *Note: Refer to* Alarm/Error Measurements *on page 47 for H*/*C LEDs*, *Seconds*, *Count*, *and Rate information*.

Alarm Analysis

- ➤ **TU-AIS** (Tributary Unit Alarm Indication Signal): The TU-AIS alarm is declared when V1 and V2 bytes for the TU path contain an all-ones pattern in five consecutive superframes.
- ► TU-LOP (Tributary Unit Loss Of Pointer): The TU-LOP alarm indicates that a valid pointer is not found in N consecutive superframes (where 8 ≤ N ≤10), or if N consecutive NDFs ("1001" pattern) are detected.
- ► LP-RDI (Tributary Unit Remote Defect Indication): The LP-RDI alarm is declared when bit 8 of V5 byte contains "1" in five consecutive TU superframes while bits 6 and 7 of the K4 byte contain the "00" or "11" pattern.
- ► LP-RFI (Low Order Path Remote Failure Indication) (available with VC-11 only): The LP-RFI alarm is declared when bit 4 of V5 byte contains "1" in five consecutive superframes.
- ➤ LP-TIM (Low Order Path Trace Identifier Mismatch): The LP-TIM defect indicates that none of the sampled LP trace strings match the expected message value. The LP-TIM alarm result is only available when LP-TIM from J2 Trace section has been enabled.
- ► LP-PLM (Low Order Path Payload Label Mismatch): The LP-PLM is declared upon receipt of five consecutive superframes with mismatched LP Signal (bits 5 through 7 of the V5 byte are "000", "001" or "111")
- ► LP-UNEQ (Low Order Path Unequipped): LP-UNEQ is declared when bit 5 through 7 of the V5 byte contain "000" for five consecutive superframes.
- ERDI-SD (Enhanced RDI Server Defect): The ERDI-SD alarm is declared when bits 5, 6, and 7 of the K4 byte contain the "101" pattern, and bit 8 of the V5 byte contain "1", in five consecutive LP superframes.

- ERDI-CD (Enhanced RDI Connectivity Defect): The ERDI-CD alarm is declared when bits 5, 6, and 7 of the K4 byte contain the "110" pattern, and bit 8 of the V5 byte contain "1", in five consecutive LP superframes.
- ERDI-PD (Enhanced RDI Path Payload Defect): The ERDI-PD alarm is declared when bits 5, 6, and 7 of the K4 byte contain the "010" pattern, and bit 8 of the V5 byte contain "0", in five consecutive LP superframes.
- **Note:** Refer to Alarm/Error Measurements on page 47 for **H/C LEDs**, and **Seconds** information.

J2 Trace

- ➤ Received Message: Displays the J2 value in 16-bytes or 64-bytes format. The <crc7> represents the CRC-7 for a 16-bytes format. The last two bytes of a 64-bytes format, <C_R> and <L_F>, represent respectively a carriage return and a line feed.
- ➤ Enable LP-TIM (Low Order Path Trace Identifier Mismatch): Allows enabling the Trace Identifier Mismatch for the expected message defined. Enable LP-TIM has to be enabled to give access to the expected trace format and message. When Enable LP-TIM is disabled, the J2 1-byte is available from the LOP OH TX/RX (SDH) on page 356.
- Expected Message: Allows entering the message that is expected. J2 value should be ASCII suitable characters. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer high order path trace test message for 64 bytes. However, with VCAT/LCAS the default message will be EXFO followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example EXFO-VCG1-SQ0) for both 16 and 64 bytes formats.
- Expected Format: Allows the selection of the format expected. Choices are 16 or 64 bytes. The default setting is 16 bytes.

LOP OH TX/RX (SDH)

The LOP OH TX allows changing the low order path transport overhead information to be transmitted while the LOP OH RX allows verification of the low order path transport overhead information received.

Note: See LOP OH TX/RX (SDH, TU-3 path) on page 367 for TU-3 path test case.

Press TEST, LOP, and OH (under LOP TX/RX).

_Overhead _		Path Sign	al Label (V5)		
🕅 Binary	Einary Asynchronous				
V5 04 J2 00 N2 00 K4 01 Path	OH Pt	r Adj	Overhead Binary V5 J2 N2 K4	Path Signal Label (V5) Expected Path Signal Label Asynchronous Enable LP-PLM/LP-UNEQ	
Path			Path	DH Ptr Adj TCM PM	

Path Overhead

Enter the path overhead values in hexadecimal or binary.

- Binary allows either displaying all overhead values in binary (when enabled) or hexadecimal (when disabled). This setting is disabled by default.
- ► V5 (VC Path Overhead)
- ► J2 (Path Trace). J2 is only available when Enable Trace from the LOP TX (SDH) on page 347 is disabled.
- > N2 (Network operator byte) Tandem Connection Monitoring
- ► K4 (Extended signal label)

Path Signal Label (V5)

The V5 byte is allocated to indicate the content of the VC path, including the status of the mapped payloads.

Bits 5, 6, 7 of V5	Description
000 ^a	Unequipped or supervisory-unequipped
001	Reserved (Equipped - Non-specific)
010	Asynchronous
011	Bit Synchronous
100	Byte Synchronous
101	Extended Signal Label
110	Test Signal, ITU-T 0.181 specific mapping
111 ^a	VC-AIS (TCM)

a. These bytes cannot be selected in receive mode.

For HOP OH RX tab only:

- Expected Path Signal Label: Allows selecting the expected Path Signal Label.
- Enable LP-PLM/LP-UNEQ (Low Order Path Payload Label Mismatch / Unequipped): Allows enabling the Signal Label Mismatch for the expected message defined.

LOP TX (SDH, TU-3 path)

Press TEST, LOP, and Path (under LOP TX).

Error Injection Manual Rate Burst	Type B3	Amount	Send	J1 Trace Format Message
Alarm Generation C Continuous C Burst	Type TU-AIS		On/Off	Enable Trace
Path OH	Ptr Adj TCM			

Error Injection

Allows Manual, Rate, or Burst error injection methods.

Error Injection Manual Rate Burst	Type B3	Amount		Send	Error Injection C Manual © Rate C Burst	Туре В3	Rate	On/Off
Error Injection C Manual C Rate © Burst	Type B3 Mode Single	Duration 1 Period	Unit Frames Unit	On/Off				

► **Type**: The following errors are available: **B3** (BIP-8, Bit-Interleave Parity - 8 bits) and **LP-REI** (Low Order Path - Remote Error Indicator).
For **Manual** method:

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.

For Rate method:

- ► **Rate**: Select the injection rate for the selected error. The rate must be within the minimum and maximum values specified.
- Continuous: Generates the selected error to its theoretical maximum rate when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive errored frames, reprensenting the burst duration (M), over a specific event period (N).

- ► **Duration** and **Unit**: Select the number of consecutive errored frames or the number of consecutive seconds in error.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the error burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected error for the selected Duration and Period. For Single Mode, the injection will be active for the specified duration and will atuomatically stop (the On/Off button turns Off). For Repeat Mode the error injection will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

Alarm Generation

Allows **Continuous** or **Burst** alarm generation methods.

 Alarm Generation Continuous 	-			Alarm Generation	Туре		Duration	Unit	_	
C Burst	TU-AIS	•	On/Off	e Burst	TU-AIS Mode	-	1 Period	Frames Unit	-	On/Off
	,				Single	•			Ŧ	

Type: The following errors are available:

TU-AIS (Tributary Unit - Alarm Indication Signal): Generates an all-ones patterns for the path and payload.

LP-RDI (Low Order Path - Remote Defect Indication): Generates a "100" pattern for bits 5, 6 and 7 of the G1 byte.

ERDI-SD (Enhanced RDI - Server Defect): Generates a "101" pattern for the bits 5, 6 and 7 of the G1 byte.

ERDI-CD (Enhanced RDI - Connectivity Defect): Generates a "110" pattern for the bits 5, 6 and 7 of the G1 byte.

ERDI-PD (Enhanced RDI - Path Payload Defect): Generates a "010" pattern for the bits 5, 6 and 7 of the G1 byte.

TU-LOP (Tributary Unit - Loss of Pointer): Generates a non-valid pointer.

LP-UNEQ (Low Order Path - Unequipped): Generates samples of unequipped signal labels (C2 is set to "00 H").

For **Continuous** method:

➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

For **Burst** method:

The burst method injects the programmed number of consecutive alarmed frames, reprensenting the burst **Duration** (M), over a specific event **Period** (N).

- Duration and Unit: Select the number of consecutive alarmed frames or the number of consecutive seconds in alarm.
- Mode: Allows the selection of the burst mode that will determine if the burst will be repeated (Repeat) at the beginning of each period or not (Single).
- ► **Period** and **Unit**: When the **Mode** is set to **Repeat**, select the interval, either in frames or in seconds, the alarm burst will be repeated.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm for the selected Duration and Period. For Single Mode, the alarm generation will be active for the specified duration and will automatically stop (the On/Off button turns Off). For Repeat Mode the alarm generation will be active for the specified duration and will be repeated continuously at the beginning of each period until the On/Off button is turned Off. This setting is disabled (Off) by default.

J1 Trace

- ➤ Enable Trace: Enable Trace, when enabled, generates the J1 Trace message defined. Enable Trace has to be enabled to give access to the trace format and message. When the J1 Trace is disabled, the J1 1-byte format is used and can be configured from the LOP OH TX on page 356.
- ➤ Format: Displays the J1 value in 16-bytes or 64-bytes format. The default setting is 16-bytes.
- ➤ Message: Enter the J1 trace value in 16 or 64 bytes format as selected. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer low order path trace test message for 64 bytes. However, with VCAT/LCAS the default message will be EXFO followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example EXFO-VCG1-SQ0) for both 16 and 64 bytes formats.
- **Note:** 16-bytes selection allows typing up to 15 bytes (a CRC-7 byte will be added in front for a total of 16 bytes). 64-bytes selection allows typing up to 62-bytes ($<C_R>$ and $<L_F>$ bytes will be added at the end for a total of 64 bytes). J1 value should be ASCII suitable characters including the ITU T.50 Characters on page 57.

LOP RX (SDH, TU-3 path)

Press TEST, LOP, and Path (under LOP RX).

Error Analysis H C	Seconds	Count	Rate	Ala	rm A C	malysis	Seconds	н	с		Seconds
B3					۲	TU-AIS					
UP-REI					۲	TU-LOP				ERDI-SD	
J1 Trace									۲	ERDI-CD	
Received Message	Received Message Expected Message				۲	LP-RDI				ERDI-PD	
					۲	LP-TIM					
	'	Expected Format			۲	LP-PLM					
Enable LP-TIM	[-		۲	LP-UNEQ					
	,]
Path OH Ptr	Adj TCM	PM									

Error Analysis

- ➤ B3 (BIP-8, Bit-Interleave Parity 8 bits): The B3 error indicates a High Order Path parity error by performing a routine even-parity check over all High Order Path bits of the previous VC-N.
- ► LP-REI (Low Order Path Remote Error Indicator): The LP-REI error indicates the count of B3 errors detected.
- *Note: Refer to* Alarm/Error Measurements *on page 47 for H*/*C LEDs*, *Seconds*, *Count*, *and Rate information*.

Alarm Analysis

- ➤ TU-AIS (Tributary Unit Alarm Indication Signal): The TU-AIS alarm is declared when the H1 and H2 bytes contain an all-ones pattern in three consecutive frames
- ➤ TU-LOP (Tributary Unit Loss Of Pointer): For non-concatenated payloads, the TU-LOP alarm indicates that a valid pointer is not found in N consecutive frames (where 8 ≤ N ≤ 10), or N consecutive NDFs ("1001" pattern) are detected.
- ► LP-RDI (Tributary Unit Remote Defect Indication): The LP-RDI alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "100" or "111" pattern in five consecutive frames.
- ► LP-TIM (Low Order Path Trace Identifier Mismatch): The LP-TIM defect indicates that none of the sampled path trace strings match the expected message value. The LP-TIM alarm result is only available when LP-TIM from J1 Trace section has been enabled.
- ► LP-PLM (Low Order Path Payload Label Mismatch): The LP-PLM is declared upon receipt of five consecutive frames with mismatched VC signal labels.
- ► LP-UNEQ (Low Order Path Unequipped): LP-UNEQ is declared when the C2 bytes contain "00 H" in five consecutive frames.
- ERDI-SD (Enhanced RDI Server Defect): The ERDI-SD alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "101" pattern in five consecutive frames.

- ► ERDI-CD (Enhanced RDI Connectivity Defect): The ERDI-CD alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "110" pattern in five consecutive frames.
- ERDI-PD (Enhanced RDI Path Payload Defect): The ERDI-PD alarm is declared when bits 5, 6 and 7 of the G1 byte contain the "010" pattern in five consecutive frames.
- **Note:** Refer to Alarm/Error Measurements on page 47 for **H/C LEDs**, and **Seconds** information.

J1 Trace

- ➤ Received Message: Displays the J1 value in 16-bytes or 64-bytes format. The <crc7> represents the CRC-7 for a 16-bytes format. The last two bytes of a 64-bytes format, <C_R> and <L_F>, represent respectively a carriage return and a line feed.
- ➤ Enable LP-TIM (Trace Identifier Mismatch Path): Allows enabling the Trace Identifier Mismatch for the expected message defined. Enable LP-TIM has to be enabled to give access to the expected trace format and message. When Enable LP-TIM is disabled, the J1 1-byte is available from the LOP OH RX (SDH, TU-3 path) on page 367.
- Expected Message: Allows entering the message that is expected. J1 value should be ASCII suitable characters. The default message is EXFO SONET/SDH for 16 bytes and EXFO SONET/SDH Analyzer high order path trace test message for 64 bytes. However, with VCAT/LCAS the default message will be EXFO followed by the VCG number (VCAT and LCAS) and the SQ (VCAT only) number (for example EXFO-VCG1-SQ0) for both 16 and 64 bytes formats.
- Expected Format: Allows the selection of the format expected. Choices are 16 or 64 bytes. The default setting is 16 bytes.

LOP OH TX/RX (SDH, TU-3 path)

The **LOP OH TX** allows changing the low order path transport overhead information to be transmitted while the **LOP OH RX** allows verification of the low order path transport overhead information received.

Press TEST, LOP, and OH (under LOP TX/RX).

Overt	nead							
🗆 В	inary							
J1	00	H4	00					
B3		F3	00					
C2	FE	КЗ	00					
G1	02	N1	00					
F2	00		Overh	ead			Path Signal Label (C2)	_
Path	ОН	Ptr Adj	E Bir	nary				
			J1		H4		Expected Path Signal Label	
			B3		F3		Enable I B-DI MA D-I BIEO	
			C2		КЗ	••		
			G1		N1			
			F2					
			Path	ОН	Ptr Adj	TCM PM		

Path Signal Label (C2)

The C2 byte is allocated to indicate the content of the VC, including the status of the mapped payloads. See *Path Signal Label (C2)* on page 346 for available/possible choices.

For LOP OH RX tab only:

- Expected Path Signal Label: Allows selecting the expected Path Signal Label.
- Enable LP-PLM/LP-UNEQ (Low Order Path Payload Label Mismatch / Unequipped): Allows enabling the Signal Label Mismatch for the expected message defined.

Path Overhead

- Binary: Allows either displaying all overhead values in binary (when enabled) or hexadecimal (when disabled). This setting is disabled by default.
- ► J1: Trace
- **B3**: BIP-8. This byte is not programmable from the HOP OH TX tab.
- ► C2: Path Signal Label
- ► G1: Path Status
- ► F2: User Channel
- ► H4: Multiframe Indicator
- ► **F3**: User Channel
- **K3**: Automatic Protection Switching (APS)
- > N1: (Network Operator) Tandem Connection Monitoring (TCM)

14 PDH Tabs

The PDH tabs allow configuration of different test parameters and to view the test status and results.

Note: The available tabs listed are a function of the test path activated. Not available on the FTB-8140.

Signal	Tab	Page
E0/64K	E0/64K TX	370
	E0/64K RX	373
E1/2M	<i>E1/2M TX</i>	378
	<i>E1/2M RX</i>	378
	Performance Monitoring (PM) ^a	504
E2/8M	E2/8M TX	381
	E2/8M RX	383
	Performance Monitoring (PM) ^a	504
E3/34M	E3/34M TX	385
	E3/34M RX	387
	Performance Monitoring (PM) ^a	504
E4/140M	E4/140M TX	389
	E4/140M RX	391
	Performance Monitoring (PM) ^a	504

a. This tab is described in the Common Tabs section.

E0/64K TX

Press TEST, DSn-PDH, and E0 (under DSn-PDH TX).

Configuration	Payload	Content -							
C Enable E0		1 Pattern	2 Pattern	3 Pattern	4 Pattern	5 Pattern	6 Pattern	7 Pattern	Idle 7F Binary
64K 💌	8 Pattern	9 Pattern	10 Pattern	11 Pattern	12 Pattern	13 Pattern	14 Pattern	15 Pattern	Tone 1004 Hz 💌
None	16	17 Pattern	18 Pattern	19 Pattern	20 Pattern	21 Pattern	22 Pattern	23 Pattern	Payload Content
	24 Pattern	25 Pattern	26 Pattern	27 Pattern	28 Pattern	29 Pattern	30 Pattern	31 Pattern	Set All
E4 E3 E2	E1		:0						

Note: E0/64K TX configuration is not available when the selected framing from the E1/2M TX on page 375 is unframed. The framing structure PCM-30 and PCM30 CRC-4 have 30 channel timeslots while PCM-31 and PCM-31 CRC-4 have 31 channel timeslots.

Configuration

- ► Enable E0: Allows the activation of E0/64K testing. This setting is disabled (Off) by default unless otherwise set during the test setup.
- ➤ E0 Mode: Allows the selection of the channel timeslot data rate for the pattern payload content. Choices are 56K and 64K. The default setting is 64K.

56K: A timeslot data rate of 56 Kbps uses 7 bits to carry the payload information.

64K: A timeslot data rate of 64 Kbps uses 8 bits to carry the payload information.

➤ Zero Code Suppression: Allows the selection of the Zero Code Suppression (ZCS) method used to replace the all-zero bytes of all Idle and Tone payload contents. The ZCS mechanism is a global parameter meaning that all channel timeslots configured with Tone/Idle data, use the same ZCS method. Choices are None and Jammed Bit 8. The default setting is None.

None: No Zero Code Suppression

Jammed Bit 8: Every 8th (LSB) bit is forced to 1.

Note: Bit 8 is the Least-Significant Bit (LSB) and bit 1 is the Most-Significant Bit (MSB).

Payload Content

Select the payload content by pressing once or several times on each timeslot until the desired content appears (or use the Set All buttons). Choices are **Pattern**, **Idle**, and **Tone**. The default setting is **Pattern**.

- > Pattern: Uses the selected pattern from the *Pattern TX* on page 405.
- ➤ Idle: Uses the Idle code byte from the Idle field. Choices are 00 to FF. The selected Idle code applies to all timeslots set to Idle. The default setting is 7F.

Binary: Allows either displaying the Idle code values in binary (when enabled) or hexadecimal (when disabled). This setting is disabled by default.

- Tone: Allows the selection of a tone for digital milliwatt testing. The signal output power, when converted to analog, is 0 dBm. Choices are 1000 Hz and 1004 Hz. The selected Tone applies to all timeslots set to Tone. The default setting is 1004 Hz.
- Payload Content: Allows the selection of the payload content that will be applied when pressing Set All. Choices are Pattern, Idle, and Tone.
- ► Set All: Allows to set the payload content of all timeslots to the selected payload content with its Pattern, Idle, or Tone value.
- **Note:** The timeslots set to Idle or Tone can be changed from Idle to Tone and vice versa even when the test is running; the Idle and Tone values can also be changed.

E0/64K RX

Press TEST, DSn-PDH, and E0 (under DSn-PDH RX).

	· · ·								Davids and Constants
Enable E0 Mode		1 Pattern	2 Pattern	3 Pattern	4 Pattern	5 Pattern	6 Pattern	7 Pattern	Pattern
64K	8 Pattern	9 Pattern	10 Pattern	11 Pattern	12 Pattern	13 Pattern	14 Pattern	15 Pattern	Set All
	16	17 Pattern	18 Pattern	19 Pattern	20 Pattern	21 Pattern	22 Pattern	23 Pattern	
	24 Pattern	25 Pattern	26 Pattern	27 Pattern	28 Pattern	29 Pattern	30 Pattern	31 Pattern	
									1

Note: E0/64K RX configuration is not available when the selected framing from the E1/2M RX on page 378 is unframed. The framing structure PCM-30 and PCM30 CRC-4 have 30 channel timeslots while PCM-31 and PCM-31 CRC-4 have 31 channel timeslots.

Configuration

Note: See E0/64K TX on page 370 for more information on *Enable E0* and *E0 Mode*.

Payload Content

Note: Payload content configuration is only available for decoupled test mode, otherwise the payload content is coupled with the E0/64K TX configuration.

Select the payload content by pressing once or several times on each timeslot until the desired content appears (or use the Set All buttons). Choices are **None** and **Pattern**. The default setting is **Pattern**.

- > **Pattern**: Uses the pattern from the received signal.
- ► None: Does not use the pattern.
- ➤ Set All: Allows to set the payload content of all timeslots with (Pattern) or without (None) the selected Pattern.

E1/2M TX

Press TEST, DSn-PDH, and E1 (under DSn-PDH TX).

Configuration Framing PCM30	Alarm Generation Type AIS On/Off
Error Triection Manual Amount FAS 1 Automated Bate	Spare Bits Spare B
FAS I.0E-02 Continuous E4 E3 E2 E1 E0	

Configuration

Framing: Select the framing that will be used for transmission. Choices are **Unframed**, **PCM30**, **PCM30 CRC-4**, **PCM31**, and **PCM31 CRC-4**. The default setting is **PCM30**.

Alarm Generation

Type: Select the type of alarm to be generated. Choices are AIS, RAI, LOF, RAI MF, LOMF, CRC LOMF, and TS16 AIS. The default setting is AIS.

Note: Only AIS is available when the framing is set to Unframed. CRC LOMF is available when the framing is set to PCM30 CRC-4 or PCM31 CRC-4.

On/Off button: Press **On/Off** to enable/disable the alarm generation.

Error Injection

Allows manual or automated error injection.

➤ Type: The following error types are available with both manual and automated injection modes. Choices are FAS, CRC-4, and E-bit. The default setting is FAS.

Note: Available choices depend on the selected framing.

- Amount: Select the amount of error to be generated. Choices are 1 through 50. The default setting is 1.
- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 1.0E-2.
- Continuous: Generates the selected error to its theoretical maximum when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

Spare Bits

Note: Spare Bits are not available when Framing is set to Unframed.

Press the individual drop list and select the value for each spare bit.

- ➤ S_{i0} is located in the bit 1 of the frame containing the frame alignment signal (FAS). S_{i0} is reserved for national use and should be set to 1 when not used. Choices are 0 and 1. The default setting is 1.
- ➤ S_{i1} is located in the bit 1 of the frame not containing the frame alignment signal (FAS). S_{i1} is reserved for national use and should be set to 1 when not used. Choices are 0 and 1. The default setting is 1.
- ➤ S_{a4} to S_{a8} are located in bit 4 to 8 of frame number 1, 3, 5 and 7 of sub-multiframe 1 and 2. S_{a4} to S_{a8} is reserved for national use and should be set to 1 when not used. Choices are 0 and 1 or 0000 to 1111 depending on the selected framing. The default setting is 1 or 1111 depending on the selected framing.
- ➤ TS16 Frame 0 Bit 5, 7, 8 are located in bit 5, 7 and 8 from Timeslot 16 of frame 0 of a E1 signal. TS16 Frame 0 Bit 5, 7, 8 are reserved for national use and should be set to 1 when not used. Choices are 000 to 111. The default setting is 111.

E1/2M RX

Press TEST, DSn-PDH, and E1 (under DSn-PDH RX).

Configuration Framing	Error Analysis H C	Seconds	Count	Rate	Alar H	n Analysis	Seconds
	 CRC-4 				0	RAI	
	🕒 🍋 E-Bit]			AIS	
	Spare Bits					TS16 AIS	
	Si0 Sa4	5a6 5a8	-			RAI MF	
		-				LOMF	
	5i1 5a5		ame 0 Bit 5, 7, 8 		۲	CRC LOMF	
E4 E4 PM E3	E3 PM E2 E	PM E1	E1 PM E0				

Configuration

Note: See E1/2M TX on page 375 for more information on Framing.

Error Analysis

- ► FAS (Frame Alignment Signal): A FAS error indicates that bits 2 to 8 of the frame containing the FAS differ from 0011011.
- CRC-4 (Cyclical Redundancy Check): A CRC-4 error indicates that one or more bit errors are detected in a block of data through cyclical redundancy check.
- ➤ E-Bit (CRC-4 Error Signal): A E-Bit error indicates that bit 1 of sub-multiframe (SMF) II in frame 13 and/or 15 is set to 0 indicating a sub-multiframe error.

Alarm Analysis

Note: Only AIS is available when the Framing is set to Unframed.

- ► LOF (Loss Of Frame): The LOF alarm indicates that three consecutive incorrect frame alignment signals have been received.
- ▶ **RAI** (Yellow) (Remote Alarm Indication): The RAI alarm is declared when bit 3 in timeslot 0 is set to "1".
- ► AIS (Alarm Indication Signal): The AIS alarm is declared when an unframed all-ones signal is received.
- ➤ TS16 AIS (TimeSlot 16 Alarm Indication Signal): The TS16 AIS alarm is declared when timeslot 16 is received as all-ones for all frames of two consecutive multiframes.
- ▶ **RAI MF** (Remote Alarm Indication Multi-Frame): The RAI MF alarm is declared when bit 6 of timeslot 16 of frame 0 is set to "1".
- ➤ LOMF (Loss Of MultiFrame): The LOMF alarm indicates that two consecutive multiframes alignment signals (bits 1 through 4 of TS16 of frame 0) have been received with an error.
- ➤ CRC LOMF (CRC Loss Of MultiFrame): The CRC LOMF indicates that the first bit of the NFAS in frames 1, 3, 5, 7, 9 and 11 differ from 0, 0, 1, 0, 1 and 1 respectively. CRC LOMF is available when the framing is set to PCM30 CRC-4 or PCM31 CRC-4 and is based on CRC-4 errors.
- **Note:** In most cases the CRC LOMF will be reported at the same time as LOF since the CRC LOMF leads to a LOF as per ITU G.706.

Spare Bits

Note: Spare Bits are not available when Framing is set to Unframed.

- ► S_{i0} is located in the bit 1 of the frame containing the frame alignment signal (FAS). Possible values are 0 and 1.
- ➤ S_{i1} is located in the bit 1 of the frame not containing the frame alignment signal (FAS). Possible values are 0 and 1.
- ➤ S_{a4} to S_{a8} are located in bit 4 to 8 of frame number 1, 3, 5 and 7 of sub-multiframe 1 and 2. Possible values are 0 and 1 or 0000 to 1111.
- ➤ TS16 Frame 0 Bit 5, 7, 8 are located in bit 5, 7 and 8 from Timeslot 16 of frame 0 of a E1 signal. Possible values are 000 to 111.

E2/8M TX

Press TEST, DSn-PDH, and E2 (under DSn-PDH TX).

Configuration

Framing: Select the framing that will be used for transmission. Choices are **Unframed** and **Framed**. The default setting is **Framed**.

Alarm Generation

Type: Select the type of alarm to be generated. Choices are AIS, RAI, and LOF. The default setting is AIS.

Note: Only AIS is available when the framing is set to Unframed.

On/Off button: Press **On/Off** to enable/disable the alarm generation.

Error Injection

Allows manual or automated error injection.

- ► **Type**: Only the **FAS** error is available with both manual and automated injection modes.
- Amount: Select the amount of error to be generated. Choices are 1 through 50. The default setting is 1.
- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 1.0E-2.
- Continuous: Generates the selected error to its theoretical maximum when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

Spare Bits

Note: Spare Bits are not available when Framing is set to Unframed.

Press the drop list and select the value for the spare bit.

G.742 Bit 12 represents Bit 12 from Timeslot 1, 2, 3 and 4 respectively. Bit 12 is reserved for national use and should be set to 1 when not used. Choices are **0** and **1**. The default setting is **1**.

E2/8M RX

Press TEST, DSn-PDH, and E2 (under DSn-PDH RX).

Configuration Framing Framed	Error Analysis H C I FAS	Seconds	Count	Rate	Aları H	n Analysis C O LOF	Seconds
	Spare Bits G.742 Bit 12 				3	 RAI AIS 	
E4 E4 PM E3	E3 PM E2 E2	PM E1	E1 PM E0				

Configuration

Note: See E2/8M TX on page 381 for more information on *Framing*.

Error Analysis

FAS (Frame Alignment Signal): A FAS error indicates that bits 1 to 10 of the first frame differ from 1111010000.

Alarm Analysis

Note: Only AIS is available when the framing is set to Unframed.

- ► LOF (Loss Of Frame): The LOF alarm indicates that four consecutive incorrect frame alignment signals have been received.
- ► **RAI** (Remote Alarm Indication): The RAI alarm is declared when bit 11 of a framed E2 is set to "1".
- ► AIS (Alarm Indication Signal): The AIS alarm is declared when an unframed all-ones signal is received.

Spare Bits

Note: Spare Bits are not available when Framing is set to Unframed.

G.742 Bit 12 represent Bit 12 from Timeslot 1, 2, 3 and 4 respectively. Possible values are **0** and **1**.

E3/34M TX

Press TEST, DSn-PDH, and E3 (under DSn-PDH TX).

Configuration Framing Framed	Alarm Generation Type AIS	On/Off ● Soare Bits G.751 Bit 12 1 ▼	
Error Injection Manual Type Amount FAS 1 Automated	-	Send	
Type Rate	Continuous	On/Off	
E4 E3 E2	E1 E0		

Configuration

Framing: Select the framing that will be used for transmission. Choices are **Unframed** and **Framed**. The default setting is **Framed**.

Alarm Generation

Type: Select the type of alarm to be generated. Choices are **LOF**, **RAI**, and **AIS**. The default setting is **AIS**.

Note: Only AIS is available when the framing is set to Unframed.

On/Off button: Press **On/Off** to enable/disable the alarm generation.

Error Injection

Allows manual or automated error injection.

- ► **Type**: Only the **FAS** error is available with both manual and automated injection modes.
- Amount: Select the amount of error to be generated. Choices are 1 through 50. The default setting is 1.
- > Send button: Press Send to manually generate error(s)
- Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 1.0E-2.
- Continuous: Generates the selected error to its theoretical maximum when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

Spare Bits

Note: Spare Bits are not available when Framing is set to Unframed.

Press the drop list and select the value for the spare bit.

G.751 Bit 12 is reserved for national use and should be set to 1 when not used. Choices are **0** and **1**. The default setting is **1**.

E3/34M RX

Press TEST, DSn-PDH, and E3 (under DSn-PDH RX).

Configuration Framing Framed	Error Analysis H C I FAS	Seconds	Count	Rate	Alarn H	n Analysis C O LOF	Seconds
	Spare Bits G.751 Bit 12 				3	 RAI AIS 	- -
E4 E4 PM E3	E3 PM E2 E2	PM E1	E1 PM E0				

Configuration

Note: See E3/34M TX on page 385 for more information on Framing.

Error Analysis

FAS (Frame Alignment Signal): A FAS error indicates that bits 1 to 10 of the first frame differ from 1111010000.

Alarm Analysis

Note: Only AIS is available when the framing is set to Unframed.

LOF (Loss Of Frame): The LOF alarm indicates that four consecutive incorrect frame alignment signals have been received.

RAI (Remote Alarm Indication): The RAI alarm is declared when bit 11 of a framed E3 is set to "1".

AIS (Alarm Indication Signal): The AIS alarm is declared when an unframed all-ones signal is received.

Spare Bits

Note: Spare Bits are not available when Framing is set to Unframed.

G.751 Bit 12 is reserved for national use. Possible values are **0** and **1**. The default setting is **1**.

E4/140M TX

Press TEST, DSn-PDH, and E4 (under DSn-PDH TX).

Configuration

Framing: Select the framing that will be used for transmission. Choices are **Unframed** and **Framed**. The default setting is **Framed**.

Alarm Generation

Type: Select the type of alarm to be generated. Choices are AIS, RAI, and LOF. The default setting is AIS.

Note: Only AIS is available when the framing is set to Unframed.

On/Off button: Press **On/Off** to enable/disable the alarm generation.

Error Injection

Allows manual or automated error injection.

- ➤ Type: Only FAS is available with both manual and automated injection modes.
- Amount: Select the amount of error to be generated. Choices are 1 through 50. The default setting is 1.
- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate to select the injection rate for the selected error. The rate must be within the minimum and maximum values specified. The default setting is 1.0E-2.
- Continuous: Generates the selected error to its theoretical maximum when the Continuous check box is selected. The Continuous check box is cleared by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or at its theoretical maximum rate when the Continuous check box is selected. This setting is disabled (Off) by default.

Spare Bits

Note: Spare Bits are not available when Framing is set to Unframed.

Press the drop list and select the value for the spare bit.

G.751 Bit 14, 15, 16 are reserved for national use and should be set to 1 when not used. Choices are **000** to **111**. The default setting is **111**.

E4/140M RX

Press TEST, DSn-PDH, and E4 (under DSn-PDH RX).

Configuration Framing Framed	Error Analysis H C I FAS	Seconds	Count	Rate	Aları H	n Analysis C O LOF	Seconds
	Spare Bits G.751 Bit 14, 15, 16				9	RAIAIS	
E4 E4 PM E3	E3 PM E2 E2	PM E1	E1 PM E0				

Configuration

Note: See E4/140M TX on page 389 for more information on *Framing*.

Error Analysis

FAS (Frame Alignment Signal): A FAS error indicates that bits 1 to 12 of the first frame differ from 111110100000.

Alarm Analysis

Note: Only AIS is available when the framing is set to Unframed.

- ► LOF (Loss Of Frame): The LOF alarm indicates that four consecutive incorrect frame alignment signals have been received.
- ► **RAI** (Remote Alarm Indication): The RAI alarm is declared when bit 13 of a framed E4 is set to "1".
- ► AIS (Alarm Indication Signal): The AIS alarm is declared when an unframed all-ones signal is received.

Spare Bits

Note: Spare Bits are not available when Framing is set to Unframed.

G.751 Bit 14, 15, 16 are reserved for national use. Possible values are **000** to **111**.

15 Ethernet Tabs

This section describes the Ethernet, Gb Ethernet, and 10G Ethernet tabs.

Tab	Page
Configuration	393
Error/Alarm TX	396
Error/Alarm RX	399
Statistics TX	401
Statistics RX	402
Client Offset TX ^a	513
Client Offset RX ^a	515

- a. These tabs are described in Common Tabs.
- **Note:** For Gb Ethernet, the auto-negotiation is automatically activated for a test in **Normal** mode, and deactivated for a test in **Through** mode. The auto-negotiation is not configurable.

Configuration

Allows the configuration and activation of one stream.

Press TEST, Ethernet / Gb Ehternet / 10G Ethernet, and Configuration.

Note: The **Stream** and **Frame Configuration** parameters are only available for editing when the **Enable** check box is cleared.

Stream

- ► Enable: Allows enabling the stream. The stream will be generated only when the test is started.
- **Note:** The stream can be enabled/disabled even when the test is started and running. A stream cannot be enabled if its MAC address is not valid.
- **Note:** The stream is automatically enabled when the test is started and automatically disabled when the test is stopped.
 - ➤ TX Rate: Allows the selection of the stream rate. The default TX rate is 100%. TX Rate is only available when the stream is not enabled.

Unit choices are %, bps, Kbps, Mbps, Gbps, Bps, KBps, MBps, GBps, fps, and IFG. The default setting is %.

Frame Configuration

- **Note:** The following frame configuration parameters are only available when the stream is not enabled.
 - **Frame Size (Bytes)**: Select the frame size for the stream.

VLAN	Frame Size		
	Minimum	Maximum	
None 1 Tag	48 52	16000 16000	

Note: Sending traffic with frame size >1518 in switched network may result in losing all frames.
- ➤ Source MAC Address: A default and unique Source Media Access Control (MAC) address of the module is automatically given to the stream. Press the Source MAC address field if the stream MAC address has to be changed and enter the new MAC address.
- ► Destination MAC Address: Enter the destination MAC address of the stream. The default setting is FE:FE:FE:FE:FE:FE:FE.
- ► VLAN: When enabled, allows the configuration of VLAN. This setting is disabled by default.

Note: Enabling/disabling VLAN will affect the Frame Size value.

➤ ID: Enter the VLAN ID. Choices are 0 through 4095. The value 4095 is reserved while 0 and 1 have specific utility; refer to VLAN on page 646 for more information.

Binary: When selected, allows entering the VLAN ID in binary. The **Binary** check box is cleared by default.

- **Type**: Indicates the supported VLAN Ethernet Type (**8100**).
- Priority: Select the VLAN user priority. Choices are 0 to 7; refer to VLAN on page 646 for more information. The default setting is 0 (000 Low Priority).

Error/Alarm TX

Allows Ethernet alarm/error generation.

Press TEST, Ethernet / Gb Ehternet / 10G Ethernet, and Error/Alarm TX.

PHY Error Injection

- **Note:** PHY error generation is not available with Ethernet in ODUflex, or when 10G Ethernet is mapped in GFP.
 - ► **Type**: The following error is available with both manual and automated injection modes: **Symbol** for Gb Ethernet and **Block** for 10G Ethernet.
 - ➤ Amount: Allows the selection of the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
 - Send button: Press Send to manually generate error(s) according to the error type and the amount of error.
 - Rate: Press the Rate field to select the rate for the automated error. Choices are: 1.0E-02, 1.0E-03, 1.0E-04, 1.0E-05, 1.0E-06, 1.0E-07, 1.0E-08, 1.0E-09 or user definable from 1.0E-09 to 1.0E-02. The default setting is 1.0E-04.
 - ➤ Continuous: Generates the selected error for each generated frame when the Continuous check box is selected while the On/Off button is enabled (On). The Continuous check box is cleared by default.
 - On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or continuously. This setting is disabled (Off) by default.

PHY Alarm Generation

Type: The following alarms are available:

Туре	Avaialble with				
	Ethernet	Gb Ethernet	10G Ethernet		
Local Fault Generates a local fault sequence.	Х		Х		
Remote Fault : Generates a remote fault sequence.	Х	Х	Х		
Link Down : Generates a continuous PCS error (block error). Not available with 10G Ethernet mapped in GFP.			Х		

➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

MAC Error Injection

- ► **Type**: The following error is available with both manual and automated injection modes: **FCS**.
- ➤ Amount: Allows the selection of the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- Send button: Press Send to manually generate error(s) according to the error type and the amount of selected error.
- Rate: Press the Rate field to select the rate for the automated error. Choices are: 1.0E-02, 1.0E-03, 1.0E-04, 1.0E-05, 1.0E-06, 1.0E-07, 1.0E-08, 1.0E-09 or user definable from 1.0E-09 to 1.0E-02. The default setting is 1.0E-04.

- ➤ Continuous: Generates the selected error for each generated frame when the Continuous check box is selected while the On/Off button is enabled (On). The Continuous check box is cleared by default.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or continuously. This setting is disabled (Off) by default.

Error/Alarm RX

The alarm/errors statistics are gathered on all received frames, independently of the destination MAC address.

Press TEST, Ethernet / Gb Ehternet / 10G Ethernet, and Error/Alarm RX.

Configuration

Oversize Monitoring: Enables the monitoring of the Oversize error.

Alarm Analysis

- ➤ Link Down: Indicates that the Ethernet connection is down. The Ethernet connection is down when there is a local or a remote fault condition.
- **Remote Fault**: Indicates that a Remote Fault event is detected.
- ► Local Fault: Indicates that impairments such as LOS, AIS, and OCI are affecting the traffic. Available with Ethernet and 10G Ethernet only.

Note: Alarms/Errors are updated only during test execution.

Error Analysis

- **FCS**: The number of received frames with an invalid FCS.
- ► Jabber/Giant: The number of received frames larger than 1518 (no VLAN tag), or 1522 (1 VLAN tag) bytes with an invalid FCS.
- ➤ Oversize: The number of received frames larger than 1518 (no VLAN tag), or 1522 (1 VLAN tag) bytes with a valid FCS. Oversize error analysis is only available when Oversize Monitoring is enabled (see page 399).
- ► **Runt**: The number of received frames that are smaller than 64 bytes with an invalid FCS.
- ► Undersize: The number of received frames smaller than 64 bytes with a valid FCS.

For Gb Ethernet only:

- Symbol: A Symbol Error is declared when an invalid code-group in the code is detected.
- ► Idle: An Idle Error is declared when an error is detected between the end of a frame and the beginning of the next frame.
- ► False Carrier: A False Carrier is declared when data is being received with no valid start of frame.

For Ethernet and 10G Ethernet only:

► **Block**: The number of frames received with an errored block condition. Not available with 10G Ethernet in GFP.

Total Error Count: Indicates the total number of errors including all the above errors at the exception of **Oversize** when the **Oversize Monitoring** check box is not selected.

Statistics TX

Frame statistics are gathered for all Ethernet frames transmitted with a valid FCS.

Press TEST, Ethernet / Gb Ehternet / 10G Ethernet, and Statistics TX.

└ Valid Frame Co	unts	
	TX Count	
Multicast	-	
Broadcast		
Unicast		
N-Unicast		- Total Frame Counts
Total		TX Count
Configuration	Error/Alarm	Statistics

Valid Frame Counts

- Multicast: The number of Multicast frames transmitted without any FCS errors. Broadcast frames are not counted as multicast frames.
- Broadcast: The number of Broadcast frames transmitted without any FCS errors. Broadcast frames have a MAC address equal to FF-FF-FF-FF-FF.
- ► Unicast: The number of Unicast frames transmitted without any FCS errors.
- N-Unicast (Non-Unicast): The sum of Multicast and Broadcast frames transmitted without any FCS errors.
- **Total**: The number of frames transmitted without any FCS error.

Total Frame Counts

TX Count: Gives the total of all transmitted valid and invalid frames.

Statistics RX

Frame statistics are gathered for all Ethernet frames received with a valid FCS.

Press TEST, Ethernet / Gb Ehternet / 10G Ethernet, and Statistics RX.

								_
Valid Frame Co	unts	Frame Size	- Count		Throughput			
	RX Count	< 64		0.000%				
Multicast		64		0.000%	Bandwidth		Mbps	
Broadcast		65 - 127		0.000%	Utilization		%	
Unicast		128 - 255		0.000%	Frame Rate		fps	
N-Unicast		256 - 511		0.000%				
Total		512 - 1023		0.000%				
	,	1024 - 1518		0.000%	Total Frame Cou	unts		
		> 1518		0.000%	RX Count			
Error/Alarm	Statistics							
Error/Alarm	Statistics							

Valid Frame Counts

- ► Multicast: The number of Multicast frames received without any FCS errors. Broadcast frames are not counted as multicast frames.
- Broadcast: The number of Broadcast frames received without any FCS errors. Broadcast frames have a MAC address equal to FF-FF-FF-FF-FF.
- ► Unicast: The number of Unicast frames received without any FCS errors.
- N-Unicast (Non-Unicast): The sum of Multicast and Broadcast frames received without any FCS errors.
- ► Total: The number of frames received without any FCS error.

Frame Size

- > Count: Gives the count of each received frame size (valid and invalid).
- ► Total: Gives the percentage ratio of each received frame size based on the total count of frames.
- ► < 64: frames with less than 64 bytes.
- ▶ **64**: frames equal to 64 bytes.
- ▶ 65 127: frames from 65 to 127 bytes.
- ▶ 128 255: frames from 128 to 255 bytes.
- ▶ 256 511: frames from 256 to 511 bytes.
- ▶ **512 1023**: frames from 512 to 1023 bytes.
- ▶ 1024 1518: frames from 1024 to 1518 or 1522 (VLAN Tag) bytes.
- > > 1518: frames with more than 1518 or 1522 (VLAN Tag) bytes.

Throughput

- **Bandwidth**: Gives the received data rate expressed in Mbps.
- ► Utilization: Gives the percentage of line rate utilization.
- Frame Rate: Gives the received number of frames (including bad frames, Broadcast frames and Multicast frames) in fps (Frame Per Second).

Total Frame Count

RX Count: Gives the total of all received valid and invalid frames.

16 BERT Tabs

This section describes the BERT tabs.

Tab	Page
Pattern TX	405
Pattern RX	409
Performance Monitoring (PM) ^a	504
Client Offset TX ^a	513
Client Offset RX ^a	515

a. This tab is described in the Common Tabs section.

Pattern TX

Note: This tab is not used when **Through** mode is enabled.

Press TEST, and BERT.

Configuration □ Overwrite TX Rate □ Overwrite 1.2441819649382977 □ Coupled TX/RX 1.2441819649382977	Alarm Generation Type Pattern Loss On/Off	•
Test Pattern PRBS 2^31-1 Tinvert User Pattern Pattern #	Error Injection Manual Type Amount Bit Error V 1 Send	
Value Binary	Rate Rate Type Rate [Bit Error] 1.0E-02 Continuous On/Off	•
Pattern Client Offset		

Configuration

➤ Overwrite: Available with SONET/SDH Intrusive through mode down to HOP mapping level only; not supported with DSn/PDH, LOP, and Next Generation mapping levels. Not available on FTB-8105/FTB-8115. The Overwrite check box when selected, allows the termination of the RX pattern and the insertion (TX) of the selected PRBS test pattern.

- Coupled TX/RX: Allows coupling both TX and RX signal with the same pattern configuration. This setting is enabled by default and only configurable when the **Overwrite** check box is selected.
- **Test Pattern**: Select the test pattern from the list. Choices are:

PRBS 2 ^ 31-1, PRBS 2 ^ 23-1, PRBS 2 ^ 20-1, PRBS 2 ^ 15-1, PRBS 2 ^ 11-1, PRBS 2 ^ 9-1, 1100, 1010, 1111, 0000, QRSS¹, 1in8, 1in16, 3in24¹, T1 DALY¹, 55 OCTET¹, NULL CLIENT¹, and User Pattern. Only PRBS 2 ^ 31-1 is available for GFP. Choices depend on the selected test case.

➤ Invert: The generated test pattern will be inverted if the Invert check box is selected meaning that every 0 will be changed for 1 and every 1 for 0. For example, the pattern 1100 will be sent as 0011. When the Invert check box is selected, its label becomes Invert (Non-ITU) indicating that the pattern is inverted compared to the standard definition. The Invert check box is cleared by default.

► User Pattern

User Pattern is available when **User Pattern** is selected as the test pattern.

Pattern #: Up to 10 patterns can be programmed. Select the pattern number to configure. The default setting is **1**.

Value: Enter the pattern value (4 bytes). The default setting is **00 00 00 00**.

Binary: Allows displaying the pattern value either in binary (when the **Binary** check box is selected) or hexadecimal (when the **Binary** check box is cleared). The **Binary** check box is cleared by default.

Note: The User Pattern for TX and RX tabs share the same pattern list.

^{1.} Not available on the FTB-8140.

► TX Rate

Allows the selection of the transmission rate. TX Rate is only available when ODUflex is directly mapped to pattern.

Unit choices are %, **Gbps**, **Mbps**, and **Kbps**. The default setting is **Gbps**. The default TX rate is **100%**.

Alarm Generation

Note: Alarm generation is not available with GFP.

Type: The only available type of pattern alarm is Pattern Loss.

On/Off button: Press the On/Off button to enable/disable the pattern alarm generation. This setting is disabled (Off) by default.

Error Injection

Allows selection and configuration of a manual or automated pattern error that will be generated.

Note: Only manual error injection is available with GFP.

Type: The only available type of pattern error is Bit Error.

Amount: Select the amount of error to be generated. Choices are 1 through50. The default setting is 1.

Send button: Press **Send** to manually generate the pattern error according to the pattern error type and the amount.

Rate: Press the **Rate** field to select the rate for the selected pattern error. The rate must be within the minimum and maximum values specified.

Continuous: Generates the selected error to its theoretical maximum when the **Continuous** check box is selected while the **On/Off** button is enabled (On). The **Continuous** check box is cleared by default.

On/Off button: The On/Off button is used to activate/deactivate the selected automated pattern error at the rate specified or at its theoretical maximum rate when the **Continuous** check box is selected. This setting is disabled (Off) by default.

Note: Manual and Automated error injection can run simultaneously.

Pattern RX

Press TEST, and BERT.

Configuration Live Traffic Goupled RX/TX	Alarm Analysis H C Pattern Loss	Seconds H C Seconds V No Traffic
Test Pattern	Error Analysis	Seconds Count Data
User Pattern	H C Bit Error	
Pattern #	Mismatch '0'	
Value	Mismatch '1'	
E Binary		, , , , , , , , , , , , , , , , , , , ,
Pattern		

Configuration

- **Note:** See Configuration on page 405 for more information on **Test Pattern**, **Invert**, and **User Pattern**.
 - Live Traffic: When enabled, Live Traffic analyzes the line traffic without test pattern thus squelching the pattern loss, bit error, and no traffic (10G Ethernet only) indications. Live Traffic is not available when the Unframed is selected.
 - Coupled RX/TX: Allows coupling both TX and RX signal with the same pattern configuration. This setting is enabled by default and only configurable when the **Overwrite** check box is selected (see *Pattern TX* on page 405).

Alarm Analysis

Pattern Loss is declared when the bit error ratio is ≥ 0.20 during an integration interval of 1 second, or it can be unambiguously identified that the test sequence and the reference sequence are out of phase.

No Traffic is declared when no BERT traffic has been received in the last second. Only available when **10G Ethernet** is selected.

Error Analysis

Bit Error: A Bit Error indicates that there are logic errors in the bit stream (i.e., zeros that should be ones and vice versa).

Note: The following errors are only available for 10G Ethernet.

Mismatch '0': A Mismatch '0' Error indicates a bit error on a binary "0" (for example ones that should be zeros) found in the test pattern only.

Mismatch '1': A Mismatch '1' Error indicates a bit error on a binary "1" (for example zeros that should be ones) found in the test pattern only.

17 Advanced Tabs

Note: The available tabs listed are a function of the test path activated. Advanced tabs are not available with Unframed, VCAT, LCAS, and GFP.

Tab	Page
Service Disruption Time (SDT)	411
Service Disruption Time (SDT) - Monitor ^a	415
Service Disruption Time (SDT) - Results ^a	421
Round Trip Delay (RTD)	425

a. Only available with Multi-Channel SDT test mode.

Service Disruption Time (SDT)

The Service Disruption Time (SDT) corresponds to the time during which there is a disruption of service typically due to the network switching from the active channels to the backup channels or vice versa.

Press TEST and SDT/RTD.

Layer	Total Disruption Count		Alarm	n Analysis	
Port 🗸	Disruption Time		нс		Seconds
Defect Selection	Shortest			Service Disruption	
LOS	Longest				
No Defect Time	Last				
Test Period	Average				
5.0 min 💌	Total				
On/Off ●	Unit	ms 🔽			

Configuration

Select the criteria that will be used for the SDT measurement.

- **Note:** The service disruption measurements are cleared when changing the criteria.
 - ➤ Layer: Select on which layer the service disruption time test will be performed. Choices are Port, FEC, OTUk, ODUk, OPUk, OTU-1e¹, ODU-1e¹, OPU-1e¹, OTU-2e¹, ODU-2e¹, OPU-2e¹, OTU-1f¹, ODU-1f¹, ODU-1f¹, ODU-2f¹, ODU-2f¹, Section/Regenerator, Line/Multiplex, HOP, LOP¹, DS1¹, DS3¹, E1¹, E2¹, E3¹, E4¹, and Pattern. Where k is either 1, 2, or 3. With ODU MUX, ODU1 and OPU1 are not available. Choices depend on the selected test path.
 - ► **Defect Selection**: Choices depend on the selected layer. Refer to the specific layer tab for possible alarms/errors.
- **Note:** The Service Disruption Time measurement supports a parent defect approach where the SDT measurement is triggered when the selected defect or a higher defect in the signal structure hierarchy is detected. For example, if Bit Error is selected, an OPU-AIS error will raise the SDT trigger.
- **Note:** No defect is available with the layer Pattern when Live Traffic from the Pattern RX on page 409 is enabled.
 - No Defect time: Represents the period without any defects before stopping SDT measurement. Choices are from 5 μs to 1999999 μs. The maximum value is adjusted with respect to the test period (the max No Defect time is obtained when the Test Period value is set to its maximum value: 5 min). The default setting is 1000 μs. Unit measurement selections are μs, ms, and s.

^{1.} Not available on FTB-8140.

- Test Period: Represents the period of time used to calculate the SDT measurement. Choices are 6 μs to 5 minutes. Unit choices are μs, ms, s, and min. The default setting is 5 minutes.
- ➤ On/Off button: Press On/Off to enable/disable the disruption time measurements. However, the measurement will only start if the test is already started, or when the test will be started.
- **Note:** Stopping the SDT test will stop the measurement without clearing the results. The SDT test is automatically stopped without clearing results when the test is stopped. However, starting the test again while the STD is still On (enabled) will reset the results before restarting.

Statistics

- ► Total Disruption Count: Indicates the number of disruptions that happened since the beginning of the SDT test.
- > Shortest: Indicates the shortest measured disruption time.
- **Longest**: Indicates the longest measured disruption time.
- **Last**: Indicates the length of the last measured disruption time.
- Average: Indicates the average length of all measured disruption times.
- **Total**: Indicates the total length of all measured disruption times.
- Unit: Select the unit for the statistics. Choices are μs, ms, s, and min. The default setting is ms.
- **Note:** When the measured SDT is equal or longer than the Test Period, then the SDT equals the **Test Period time**.

➤ Service Disruption: Indicates the time (in seconds) during which there is a disruption of service due to the absence of traffic or to the detection of defects. The H and C LEDs indicate respectively the current (C) and history (H) SDT measurement states.

The **C** (Current) LED is green when there is no SDT. The **C** LED is red if there is an SDT, and last until the next No Defect Time has been met or the test period is elapsed.

The **H** (History) LED indicates if any SDT occurred in the past (LED is red) or not (LED is green).

Service Disruption Time (SDT) - Monitor

Note: The SDT - Monitor tab is available with Multi-Channel SDT test mode.

The Service Disruption Time (SDT) corresponds to the time during which there is a disruption of service due to the network switching from the active channels to the backup channels or vice versa.

Press TEST, SDT, and Monitor.

The channel grid is used to indicate the monitoring status of each channel and also to select channels for SDT monitoring when using the channel selector controls (see *Channel Selector* on page 418).

The channel grid provides the following monitoring information:

- ► Current alarm/error for all channels.
- Pass/Fail verdict and defect for each channel if global SDT threshold is enabled.
- Triggered on the selected defect for each channel selected if SDT threshold is enabled.
- > The longest measured disruption time for each channel selected.

Different border and background colors are used to indicate the status of each channel.

	Color	Indicates	
Monitoring	Red border	Any alarm/error is currently active.	
	Red background ^a	At least one measured SDT value is bigger than the configured threshold (Fail).	
	Green background ^a	All measured SDT values are smalle or equal to the configured threshold (Pass).	
Channel selection	Light blue background	Channel selected for SDT measurement.	
	Gray background	Channel not selected for SDT measurement.	
	Dark blue background	Channel selected to display its detail analysis. Currently selected channel has its detail information presented in the Analysis tab.	

a. Only available when the SDT threshold is enabled

For FTB-8140, the channels are divided in 4 groups of 192 channels. Clicking on a group will zoom the view allowing the selection of a specific channel and display the monitoring status of these channels. The longest measured disruption time is only displayed in the zoomed view. Use the magnifying glass to close the zoomed view.

Channel Selector

- Edit Mode: Allows to add or remove channels on which SDT measurement will take place. Click on each channel to be added or removed. Only channels with blue background are selected for SDT measurement. All channels are selected by default.
- > Select All selects all channels for SDT measurement.
- > Deselect All deselects all channels.

Config Tab

The config tab displays and allows configuration of the global SDT parameters.

- **Note:** The service disruption measurements are cleared when changing the criteria. The test needs to be stopped to change the SDT parameters.
 - ► Layer: Select the protocol layer. Choices are HOP for SONET/SDH, ODU0 and OPU0 for OTN.
 - Defect Selection: Select the defect which will be used to trigger the SDT measurement. Choices depend on the selected layer. Refer to the specific layer tab for possible alarms/errors (see *Errors/Alarms:* on page 420).
- **Note:** The Service Disruption Time measurement supports a parent defect approach where the SDT measurement is triggered when the selected defect or a higher defect is detected in the signal structure hierarchy is detected. For example, if Bit Error is selected, an OPU-AIS error will activate the SDT trigger.

- ▶ No Defect time: Represents the required period of time without defect that it is needed to collect one disruption time value. Choices are from $10 \,\mu s$ to $2 \, s$ in steps of $10 \,\mu s$. The maximum value is adjusted with respect to the test period (the max No Defect time is obtained when the Test Period value is set to its maximum value: $5 \, \text{min}$). The default setting is $300 \, \text{ms}$. Unit choices are μs , ms (default), s, and min.
- Test Period: Represents the maximum period of time allowed for SDT measurement. If this time is reached during a defect, the time measured is logged as an event and a new disruption measurement event is started. Choices are 20 μs to 5 minutes in steps of 10 μs. Unit choices are μs, ms, s, and min (default). The default setting is 5 min.

In the case where the duration of a defect is longer than the test period, more than one disruption event will be reported. Increasing the test period may ovoid this situation. In the following example, the duration of the defect is longer than the test period.

- Shortest disruption = 0.75 second
- SDT Threshold allows to enabled and enter the SDT threshold value that will be used to declare the pass/fail verdict: 0.001 to 299999.94 ms. The SDT Threshold check box is cleared by default and set to 50 ms. Unit choices are μs, ms (default), s, and min.
- **Note:** Stopping the SDT test will stop the measurement process without clearing the results. However, starting the test again while the STD is still On (enabled) will reset the results.

Analysis Tab

► **Port**: Available with OC-n, STM-n, and OTU1/OTU2/OTU3 signal levels. Refer to *Port RX (Optical Interfaces)* on page 150 for more information.

► Errors/Alarms:

	Refer to
Section/Line	<i>Section RX (SONET)</i> on page 219 <i>Line RX (SONET)</i> on page 228
STS-1 Channel	HOP RX (SONET) on page 251
RS/MS	<i>Regenerator Section RX (SDH)</i> on page 311 <i>Multiplex Section RX (SDH)</i> on page 320
AU-4 Channel	HOP RX (SDH) on page 341
OTU	<i>OTU RX</i> on page 163
ODU1/ODU2/ODU3	<i>ODU RX</i> on page 189
ODU0 Channel	<i>ODU RX</i> on page 189 <i>OPU RX</i> on page 203 <i>GMP RX</i> on page 209

- ➤ SDT Analysis: Available for each channel, indicates the pass/fail verdict and the longest measured disruption time when enabled (see SDT Threshold on page 419).
- ➤ Path Signal Label (C2): Available for each high order path channel, indicates the received Path Signal Label. Refer to Path Signal Label (C2) on page 256 for more information.
- ➤ Payload Type PSI[0]: Available for each ODU channel, indicates the received payload type. Refer to OPU RX on page 203 for more information.

Service Disruption Time (SDT) - Results

Note: The SDT - Results tab is available with Multi-Channel SDT test mode.

The Service Disruption Time (SDT) corresponds to the time during which there is a disruption of service due to the network switching from the active channels to the backup channels or vice versa.

hannels	Monitor	ed	48		oppert Discuption	100.0	1	00:00:00	.000.000	1	
hannel	▲ C	isruption ount	Shortest (ms)	Longest (ms)	Last (ms)		Average (ms)	Total Dura (ms)	tion	rdict	T
	2	29	100.0	100.0	100.	0	100.0	2290	0.0 🖌	,	Т
	2	29	100.0	100.0	100.	0	100.0	2290	0.0 🇳	1	
	2	29	100.0	100.0	100.	0	100.0	2290	0.0 🇳		Т
	2	29	100.0	100.0	100.	0	100.0	2290	0.0 🇳	·	
	2	29	100.0	100.0	100.	0	100.0	2290	0.0 🇳	,	Т
	2	29	100.0	100.0	100.	0	100.0	2290	0.0	1	
	2	29	100.0	100.0	100.	0	100.0	2290	0.0 🇳	,	Ъ
	2	29	100.0	100.0	100.	0	160.0	2290	0.0		
	2	29	100.0	100.0	100.	0	100.0	2290	0.0 🏅		ъ
)	2	29	100.0	100.0	100.	0	100.0	2290	0.0		
1	2	29	100.0	100.0	100.	0	100.0	2290	0.0		T
2	2	29	100.0	100.0	100.	0	100.0	2290	0.0	1	
3	2	29	100.0	100.0	100.	0	100.0	2290	0.0		ъ
1	2	29	100.0	100.0	100.	0	100.0	2290	0.0		-Ľ
5	2	29	100.0	100.0	100.	0	100.0	2290	0.0 🇳		٦.
6	2	29	100.0	100.0	100.	0	100.0	2290	0.0 🗸		
ardict Th	nreshold	i (ms)	10000.0			Channel	Time Stamp		Units	ms	_
hannels	with Dis	sruptions	48		Last Disruption	48	00:00:00.180.00	0	Time Stamp	None	_

Press TEST, SDT and Results.

- **Note:** Stopping the SDT test will stop the measurement process without clearing the results. However, starting the test again while the STD is still On (enabled) will reset the results.
- **Note:** When the measured disruption is equal or longer than the Test Period, then the disruption time equals the **Test Period time**.

Summary

- Channel Above Threshold: Indicates the number of channels that experience a disruption time above the defined threshold since the beginning of the SDT test.
- Channel Monitored: Indicates the number of channels that are monitored.
- ► Longest Disruption:
 - Duration indicates the duration of the longest measured disruption time.
 - Channel indicates the channel number on which the longest disruption time happened.
 - **Time Stamp** indicates when the longest disruption time happened.

Table

SDT statistics are displayed for each channel monitored.

- > Channel indicates the channel number.
- **Disruption Count** indicates the number of disruption events detected.
- > Shortest indicates the shortest measured disruption time event.
- Longest indicates the longest measured disruption time event and time stamp.
- ► Last indicates the duration of the last measured disruption time event and time stamp.
- Average indicates the average duration of all measured disruption time events.
- ► Total Duration indicates the total duration of all measured disruption time events.

Verdict indicates the pass/fail verdict when SDT threshold is enabled, otherwise the column is not displayed. The Pass/Fail verdict is represented by the following icons:

lcon	Verdict	Description
0	PASS	The measured SDT values is smaller or equal to the configured threshold.
8	FAIL	The measured SDT value is bigger than the configured threshold.

- **Note:** The time stamp is also displayed for each channel when enabled. See Time Stamp on page 1.
- **Note:** The table offers sorting capabilities, an arrow next to the column label name, indicates the sorting column field and the sorting order. Pressing again on the selected sort column label will change the sort order. Pressing another column label allows to sort using a different field. Sorting on the **Last** column label will list the events based on their time stamp.
 - ► Verdict Threshold (ms) indicates the selected global SDT threshold value when enabled, otherwise this field is not displayed.
 - Channels with Disruptions indicates the number of channels that experienced disruptions.
 - Last Disruption indicates the channel that experienced the last disruption.
 - **Channel** indicates the channel number.
 - **Time Stamp** indicates the date/time.

Units

Select the unit that will be used for all statistics on the **Results** tab. Choices are μ **s**, **ms** (default), **s**, and **min**.

Time Stamp

Displays either the date & time, only the time, or no date & time (None) for each channel statistic in the table. Choices are **None** (default), **Time**, and **Date/Time**. In the table, an extra line will be added for each channel to display the time, and two lines to displayed the time and date. To change the time format refer to *Test Time Display Mode* on page 529.

Round Trip Delay (RTD)

Press TEST, and SDT/RTD.

Configuration Mode	Statistics Delay ——		Count				
Single	Last		Successful				
On/Off 🕚	Minimum		Failed				
	Maximum						
Status	Average						
	Units	ms 💌		Reset			

Round Trip Delay (RTD) measurements are needed to quantify the time it takes for the signals to reach their destination. Usually, transport delay is due to two factors: long configured paths and transit times through the network elements along the path. Therefore, RTD measurements are significant in systems that require two-way interactive communication, such as voice telephony, or data systems where the round-trip time directly affects the throughput rate.

- **Note:** To do Round Trip Delay test, the remote NE should be configured to provide a loopback. However a local DSn test can be configured to use loopback codes allowing RTD testing.
- **Note:** Be aware that RTD requires error free operation conditions to provides reliable results. Therefore, RTD results could be affected by error injection or error introduced by the network.

Configuration

➤ Mode: Allows the selection of the round trip delay test mode. Choices are Single and Continuous. The default setting is Single.

Single allows testing the round trip delay once when pressing On/Off.

Continuous allows testing the round trip delay continuously in a repetitive manner (one RTD measurement every 2 seconds) when pressing **On/Off**.

> On/Off button: Allows enabling the round trip delay measurement.

For **Single** mode, the test is performed once and stops (the On/Off button turns Off by itself). The On/Off button is only available when the test is running.

For **Continuous** mode, the test is performed continuously until the RTD test or the test case itself is stopped. However, the measurement will only start if the test is running or when it will be started. The On/Off button turns Off by itself when the auto-calibration fails.

Note: The Round Trip Delay (RTD) auto-calibration generates some bit errors when turning On the RTD while the test is running or when starting the test case while the On/Off button is On. A far end testing equipment will detect those bit errors.

Status

Indicates the test status of the RTD test. The status is only available when the test case is running.

- Ready indicates that the last calibration sequence has been successful and the test is now ready to perform RTD measurement.
- **Running** indicates that the RTD test is running.
- Cancelled indicates that the RTD test has been stopped before its completion.
- Calibration Failed indicates that the test calibration failed due to at least one of the following conditions:
 - Internal errors.
 - ► Bit error/alarm injection like Pattern Loss.

Therefore the RTD statistics becomes unavailable since the test does not allow RTD testing.

- Disabled: Indicates that the RTD feature is disabled. For example, this condition occurs for DS0/E0 test case having all its timeslots set to Idle/Tone.
- ▶ --: Indicates the the RTD measurement is not ready.

Statistics

► **Delay**: Indicates the time required for a bit to travel from the transmitter back to its receiver after crossing a far-end loopback.

Last indicates the result of the last Round Trip Delay measurement.

Minimum indicates the minimum Round Trip Delay recorded.

Maximum indicates the maximum Round Trip Delay recorded.

Average indicates the average Round Trip Delay value.

Unit measurement selections are \mathbf{ms} and $\boldsymbol{\mu s}$. The default setting is \mathbf{ms} .

➤ Count

Indicates the total number of **Successful** and **Failed** measurements.

A measurement is declared **Successful** when the RTD is smaller or equal to 2 seconds.

A measurement is declared **Failed** when the RTD is > 2 seconds.

Reset button: Resets the RTD results and measurement counts.

18 Next-Generation Tabs

The Next-Generation tabs include GFP, VCAT and LCAS tabs allowing configuration and to view the test status and results.

Note: The available tabs listed are a function of the test path activated. GFP, VCAT, and LCAS are available with **ODU2**, **ODU1**, and **optical SONET/SDH** interfaces on FTB-8120NG, FTB-8120NGE, FTB-8130NG, and FTB-8130NGE only. Refer to OTN/SONET/DSn Interface Path/Mapping on page 60 and OTN/SDH/PDH Interface Path/Mapping on page 61 for more information. Next-Generation tabs are not available with Decoupled test mode.

	Tab	Page	
GFP (GFP-F) or GFP-T	GFP Overview TX	431	
	GFP Frame TX	435	
	GFP Channel TX	435	
	GFP Channel Stats TX	439	
	GFP OH TX	440	
	GFP Client TX	444	
	GFP Overview RX	447	
	GFP Frames RX	449	
	GFP Channel RX	451	
	GFP Channel Stats RX	454	
	GFP OH RX	455	
	GFP Client RX	457	

	Tab	Page
VCAT	VCAT TX - Overview	459
	VCAT TX - Diff Delay	461
	VCAT RX - Overview	463
	VCAT RX - Diff Delay	466
	LCAS - Source	468
	LCAS Sink	481
GFP Overview TX

Press TEST, GFP, and Overview (under GFP TX).

Statistics	Count	Pata	Unit	Transport Layer
Client Data Frames		Rate		Bandwidth Osage (%)
			Frames	
Client Management Frames			Frames 🔻	Mapping Efficiency (%)
Idle Frames			Frames 💌	-
Total Frames			Frames	
L				Superblock Statistic
				Total
Overview Frame Channel OH				

Statistics

Indicates the count and the rate of the transmitted **Client Data Frames**, **Client Management Frames**, **Idle Frames**, and **Total Frames**.

Transport Layer

- ► Bandwidth Usage (%): Indicates the transmitted transport layer bandwidth in the last second, excluding the Idle bytes.
- ➤ Mapping Efficiency (%): Indicates the transmitted transport layer mapping efficiency (Client Payload Bytes divided by Client Data Bytes multiplied by 100) in the last second.

Superblock Statistic

Only available when Gb Ethernet is mapped into ODU0 via GFP.-T

Total: Indicates the total transmitted valid and invalid superblocks.

GFP Frame TX

Press TEST, GFP, and Frame (under GFP TX).

Configuration UPI Frame-Mapped Ethernet	Alam Generation Type ILFD On/Off O
EXI Null	Error Injection Manual Type Amount dHEC Correctable V 1 Send
	Automated Type Rate CHEC Correctable 1.0E-01 Continuous On/Off •
Overview Frame Channel	Channel Stats OH Client

Configuration

➤ UPI (User Payload Identifier): Indicates the type of payload conveyed in the GFP Payload Information field. When not in through mode, the UPI is set to Framed Ethernet (0000 0001), Transparent GbE (0000 0110) for Gb Ethernet, or Framed 64B/66B Ethernet (0001 0011) for ODU2 to 10G Ethernet test case. In through mode the following UPI choices are available from the test setup only.

UPI	Description for PTI = 000	Description for PTI = 100
0000 0001	Frame-Mapped Ethernet	Client Signal Fail (Loss of Client Signal)
0000 0010	Mapped PPP Frame	Client Signal Fail (Loss of Character Synchronization)

UPI	Description for PTI = 000	Description for PTI = 100
0000 0011	Transparent Fibre Channel	
0000 0100	Transparent FICON	-
0000 0101	Transparent ESCON	-
0000 0110	Transparent GbE	-
0000 1000	Frame-Mapped Multiple Access Protocol over SDH (MAPOS)	
0000 1001	Transparent DVB ASI	-
0000 1010	Framed-Mapped IEEE 802.17 Resilient Packet Ring	
0000 1011	Frame-Mapped Fibre Channel FC-BBW	Reserved for future use
0000 1100	Asynchronous Transparent Fibre Channel	-
0000 1101	Framed MPLS Unicast	-
0000 1110	Framed MPLS Multicast	-
0000 1111	Framed IS-IS	-
0001 0000	Framed IPv4	-
0001 0001	Framed IPv6	-
0001 0010	Framed DVD-ASI	
0001 0011	Framed 64B/66B Ethernet	
0001 0100	Framed 64B/66B Ethernet Ordered Set	

➤ EXI (Extension Header Identifier): Allows the selection of the type of GFP Extension Header. Choices are Null (0000) and Linear (0001). The default setting is Null. EXI is not configurable and set to Null for ODU2 to 10G Ethernet or Pattern via GFP-F, and Gb Ethernet in OPU0 via GFP-T test cases.

Alarm Generation

➤ Type

LFD (Loss of Frame Delineation): Generates a sufficient number of cHEC uncorrectable errors to avoid synchronization.

 On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

Error Injection

Allows manual or automated error injection.

► **Type**: The following errors are available with both manual and automated injection modes:

cHEC Correctable: Generates a "Walking 1" pattern to hit all applicable bits covered by the cHEC and PLI.

cHEC Uncorrectable: Generates a "Walking 11" pattern to hit all consecutive 2 bits applicable to the bits covered by the cHEC and PLI.

> Amount: Select the amount of manual errors to be generated.

Choices are 1 through 50. The default setting is 1.

- Send button: Click on the Send button to manually generate errors according to the Error Type and the Amount of Errors selected.
- Rate: Click on the Rate field to select the injection rate for the automated error. Choices are from 9.9E-6 to 1.0E-1 for correctable cHEC and 9.9E-6 to 1.0E-2 for uncorrectable cHEC.
- Continuous: When activated, generates the selected error for each frame to its theoretical maximum. This setting is disabled by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or continuously. This setting is disabled (Off) by default.

GFP Channel TX

Press TEST, GFP, and Channel (under GFP TX).

Configuration	Alarm Generation Type Period (ms) User-defined UPI
Client Data Frames FCS	CSF-Loss of Client Signal 100 On/Off
Client Management Frames FCS	Error Injection Manual
CID	Type Amount THEC Correctable 1 On/Off
	Automated
	Type Rate HEC Correctable ▼ 1.0E-01 □ Conkinuous On/Off ●
Overview Frame Char	nel Channel Stats OH Client

Configuration

- Client Data Frames FCS enables the presence of the payload FCS for the client frames. This setting is enabled by default. Not supported with GFP-F over OPU2 and GFP-T over OPU0.
- Client Management Frames FCS enables the presence of the payload FCS for the management frames. This setting is disabled by default.
- CID (Channel IDentifier) selects the communication channel used for the signal transmission. Choices are from 00000000 through 11111111 (0 to 255). The default value is 0 when EXI is set to Linear. CID not available when EXI is set to Null (see *GFP Frame TX* on page 432).
- **Note:** The CID value is the same for both the Client Management and Data Frames. CID is not available with GFP over OPU2.

Alarm Generation

Allows the generation of client management frames alarms.

- **Note:** The PTI value will be automatically set to 100 when generating a CMF alarm.
 - ▶ Туре

LOCS (CSF-Loss of Client Signal): Generates a LOCS by setting the UPI field to "0000 0001".

LOCCS (CSF-Loss of Client Character Synchronization): Generates a LOCCS by setting the UPI field to "0000 0010".

User Defined CMF (Client Management Frame): Allows to set the User-defined UPI for the CMF value. Refer below for more information on User-defined UPI field.

FDI (Forward Defect Indication): Generates a client FDI by setting the UPI field to "0000 0100". Not available with GFP-T.

RDI (Reverse Defect Indication): Generates a client RDI by setting the UPI field to "0000 0101". Not available with GFP-T.

DCI (Defect Clear Indication): Generates a client DCI by setting the UPI field to "0000 0011". Not available with GFP-T.

Period: Allows to set the alarm period associated with the client management frames. Choices are from 10 ms to 1200 ms. The default setting is 100 ms. ► User-defined UPI: Allows entering the Client Management Frame UPI value when User Defined CMF is selected.

UPI	Description for PTI = 100	
0000 0000	Reserved	
1111 1111		
0000 0001	Client Signal Fail (Loss of Client Signal)	
0000 0010	Client Signal Fail (Loss of Client Character Synchronization)	
0000 0011 through 1111 1110	Reserved for future use	

➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

Error Injection

► **Type**: The following errors are available with both manual and automated injection modes. The default setting is **tHEC correctable**.

tHEC Correctable: Generates a "Walking 1" pattern to hit all applicable bits covered by the tHEC, PTI, PFI, EXI and UPI

tHEC Uncorrectable: Generates a "Walking 11" pattern to hit all consecutive 2 bits applicable to the bits covered by the tHEC, PTI, PFI, EXI and UPI.

eHEC Correctable: Generates a "Walking 1" pattern to hit all applicable bits covered by the eHEC, CID and Spare. Only available with Linear frames (EXI is set to Linear).

eHEC Uncorrectable: Generates a "Walking 11" pattern to hit all consecutive 2 bits applicable to the bits covered by the eHEC, CID and Spare. Only available with Linear frames (EXI is set to Linear).

pFCS: Generates a "Walking 1" pattern to hit all 32 bits of the pFCS only. Only available when **Client Data Frames FCS** is enabled.

Next-Generation Tabs GFP Channel TX

- **Note:** *eHEC Correctable and Uncorrectable are only available when EXI from the GFP Frame TX* on page 432 *is set to Linear.*
- Note: The following error type are only available with GFP-T.

SB Correctable (Pre): Generates a "Walking 1" pattern to include a single bit error in the CRC-16 word of the superblock.

SB Correctable (Post): Generates in the payload of the superblock, a "Walking 1" pattern to include two separate errors in one superblock separated by 43 bits.

SB Uncorrectable: Generates a "Walking 11" pattern to include two consecutive errors in the CRC-16 word of the superblock.

10B_ERR: Generates a 10B_ERR code over the payload of the superblock as defined in ITU G.7041.

- ➤ Amount: Select the amount of manual error to be generated. Choices are 1 through 50. The default setting is 1.
- Rate: Click on the Rate field to select the injection rate for the automated error. Choices are from 9.9E-6 to 1.0E-1.
- ► **Continuous**: When activated, generates the selected error for each frame to its theoretical maximum. This setting is disabled by default.
- ► **On/Off** buttons:

For Manual Error: The On/Off button is used to activate/deactivate the selected manual error for the amount specified. The On/Off button is automatically deactivated once the amount of error has been injected.

For Automated Error: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or continuously when continuous is enabled.

This setting is disabled (Off) by default.

Note: Error injection is not possible when there is no traffic transmitted.

GFP Channel Stats TX

Note: This tab is only available for Pattern or External Ethernet in GFP-F over SONET/SDH, and Ethernet in GFP-F over ODUflex test cases.

Press TEST, GFP, and Channel Stats (under GFP TX).

Statistics Client Data Frames Client Management Frames	Count 	Rate 	Unit	
Overview Frame Ch	annel Channel S	itats OH	Client	

Statistics

Indicates the count and rate of the transmitted **Client Data Frames** and **Client Management Frames**. These statistics are calculated before the overwrite function.

Units are Frames, Bytes, and Payload Bytes. The default setting is Frames.

GFP OH TX

Press TEST, GFP, and OH (under GFP TX).

Frame Type Client data frame	
Overwrite Type Header PTI PFI EXI UPI 0000 1 0000	Extension Header
	Default
Overview Frame Channel Chan	el Stats OH Client

Frame Type

Allows the selection of the frame type. Choices are **Client data frame** and **Client management frame**. For 10G Ethernet over GFP over OPU2, two types of **Client data frames** are available: **Framed 64B/66B Ethernet** and **Framed 64B/66B Ethernet Ordered Set**.

Overwrite

Allows overwriting fields in the GFP frame type selected (Frame Type Selection). Only the value of the overhead field is overwritten, the frame structure is not changed.

► Type Header

► **PTI** (Payload Type Identifier): Allows overwriting the Payload Type Identifier for the selected frame type.

PTI	Description
000	Client Data Frame
100	Client Management Frame
001, 010, 011, 101, 110, and 111	Reserved

► **PFI** (Payload Frame Check Sequence Identifier): Allows overwriting the Payload FCS Indicator.

PFI	Description	
0	FCS Absent	
1	FCS Present	

EXI (Extension Header Identifier): Allows overwriting the Extension Header Identifier.

EXI	Description
0000	Null Extension Header
0001	Linear Frame
0010	Ring Frame
From 0011 to 1111	Reserved

► UPI (User Payload Identifier): Allows overwriting the User Payload Identifier.

UPI	Description for PTI = 000	Description for PTI = 100
0000 0000	Reserved and not available	Reserved
1111 1111		
0000 0001	Frame-Mapped Ethernet	Client Signal Fail (Loss of Client Signal)
0000 0010	Mapped PPP Frame	Client Signal Fail (Loss of Character Synchronization)
0000 0011	Transparent Fibre Channel	
0000 0100	Transparent FICON	-
0000 0101	Transparent ESCON	
0000 0110	Transparent GbE	
0000 0111	Reserved for future use	
0000 1000	Frame-Mapped Multiple Access Protocol over SDH (MAPOS)	
0000 1001	Transparent DVB ASI	
0000 1010	Framed-Mapped IEEE 802.17 Resilient Packet Ring	Reserved for future use
0000 1011	Frame-Mapped Fibre Channel FC-BBW	
0000 1100	Asynchronous Transparent Fibre Channel	
0000 1101	Framed MPLS Unicast	
0000 1110	Framed MPLS Multicast	
0000 1111	Framed IS-IS	
0001 0000	Framed IPv4	
0001 0001	Framed IPv6	

UPI	Description for PTI = 000	Description for PTI = 100
0001 0010	Framed DVD-ASI	
0001 0011	Framed 64B/66B Ethernet	
0001 0100	Framed 64B/66B Ethernet Ordered Set	
0001 0101 through 1110 1111	Reserved for future standardization	Reserved for future use
1111 0000 through 1111 1110	Reserved for proprietary use	

► Extension Header

- **Note:** CID and Spare are only available when EXI from GFP Frame TX on page 432 is set to Linear.
 - CID (Channel IDentifier) allows to overwrite the communication channel used for the signal transmission set from *GFP Channel TX* on page 435. Choices are from 00000000 through 11111111 (0 to 255). The default setting is 00000000.
 - ➤ Spare allows to set the extension header Spare field. Choices are from 00000000 through 11111111 (0 to 255).

Default Button

Click on **Default** to return to default configuration defined in the test case for the selected GFP frame type (Frame Type Selection). The Default button is only available when at least one overwrite is active.

GFP Client TX

Note: Not supported with 10G Ethernet in GFP over ODU2, Gb Ethernet in GFP over ODU0, and Ethernet in GFP over ODUflex.

Press TEST, GFP, and Client (under GFP TX).

The following tab is available when using internal pattern generator.

Pattern Configuration PRBS Payload Information Size (Bytes) 1500	
Overview Frame Channel Channel Stats OH	Client

The following tab is available when using External Ethernet.

External Configuration	Statistics
Electrical	
Rate	
1000BaseT Full-Duplex 💌	
Enable Auto-Negotiation	
Overview Frame Channel	Channel Stats OH Client

Note: Idle frames will be inserted to match the transport layer rate when packets are smaller or equal to 40 bytes, or to adjust the rate when required.

Pattern Configuration

- **Note:** Pattern Configuration is only available when Pattern has been selected during test setup.
- **Note:** The internal PRBS Generator does not support a full Ethernet frame (no Source Address and Destination Address are configurable) but it allows the creation of a basic frame of configurable size with a fixed pattern that offers the capability to fill the maximum payload value supported by a GFP frame.

PRBS Payload Information Size (Bytes): Allows the selection of the size of the data structure (payload information size) that carries the PRBS.

Choices	For
1 through 65523 bytes	Linear Extension with pFCS
1 through 65527 bytes	Linear Extension without pFCS, or
	Null Extension with pFCS
1 through 65531 bytes	Null Extension without pFCS

The default setting is **1500 bytes**.

Note: The PRBS 2 ^ 31-1 pattern will be used. Refer to Pattern TX on page 405 for more information.

External Configuration

- **Note:** External Configuration is only available when External Ethernet has been selected during test setup.
- **Note:** External Configuration parameters for both GFP Client TX and RX tabs are coupled.
 - ➤ Interface allows the Ethernet interface type selection. Choices are Electrical and Optical. The default setting is Electrical unless otherwise set during the test setup.
- **Note:** Selecting the optical interface automatically turn the interface laser On. To turn it off, select the electrical interface.
 - ➤ Rate allows the interface rate selection. Choices are 1000BaseT Full Duplex, 100BaseT Full Duplex, and 10BaseT Full Duplex for electrical interface and, 1000BaseX Full-Duplex for optical interface. The default setting is 1000BaseT Full Duplex for electrical interface and 1000BaseX Full Duplex for optical interface.
 - Enable Auto-Negotiation: Allows the auto-negotiation of the port speed when the rate is set to 100BaseT or 10BaseT. Auto-negotiation is always enabled for 1000BaseT.

Statistics

- **Note:** Statistics is only available when External Ethernet has been selected during test setup.
 - Discarded Frames indicates the number of frames that have been discarded for one of the following reasons:
 - > when there is an overflow of the Adapter Function buffer.
 - ▶ when generating a LOCS alarm or a user defined CMF.

GFP Overview RX

Press TEST, GFP, and Overview (under GFP RX).

Frame Statistics	Count	Rate	Unit	Alarm An	nalysis	Transport Layer
Client Data Frames			_		Frama	Bandwidth Usage (%)
Client Management Frames			_		Channel	Mapping Efficiency (%)
Idle Frames			_			-
Reserved PLI Frames 💌				Superblo	ck Statistic	Data
Invalid Frames				Valid		
Discarded Frames				Invalid		-
Total Frames			_	Total		
Overview Frame Cha	annel OH					

Statistics

- ► Client Data Frames: Indicates the received Client Data Frames without uncorrectable cHEC, tHEC, and eHEC errors.
- Client Management Frames: Indicates the received Client Management Frames without uncorrectable cHEC, tHEC, and eHEC, and pFCS errors.
- ► Idle Frames: Indicates the received Idle frames.
- ► Reserved PLI Frames or Reserved PTI Frames
 - ➤ Reserved PLI Frames: Indicates the number of reserved control frames (PLI=1, 2, or 3 while in Synchronization state) received.
 - ➤ Reserved PTI Frames: Indicates the received client data and management frames with a Payload Type Identifier different of 000 and 100 without uncorrectable cHEC, tHEC, and eHEC, and pFCS errors. For PRBS in SONET/SDH via GFP-F, External Ethernet in SONET/SDH via GFP-F, and Ethernet in ODUflex via GFP-F test cases, Reserved PTI Frames is available on GFP Channel Stats RX on page 454.
- Invalid Frames: Indicates the number of frames corresponding at least to one of the following conditions:
 - ► EXI=0000 while PFI=1 and PLI < 8

- ► EXI=0001 while PFI=0 and PLI <8
- ► EXI=0001 while PFI=1 and PLI<12
- ► **Discarded Frames**: Indicates the number of frames with uncorrectable tHEC, eHEC errors, or Invalid Frames.
- ► Total Frames: Indicates the received frames including Idle, Client Data, Client Management, and frames with a reserved PTI.

Alarm Analysis

Indicates Frame, Channel, or Client alarms.

Transport Layer

- ► Bandwidth Usage (%): Indicates the received transport layer bandwidth in the last second, excluding the Idle bytes.
- ➤ Mapping Efficiency (%): Indicates the received transport layer mapping efficiency (Client Payload Bytes divided by Client Data Bytes multiplied by 100) in the last second.

Superblock Statistic

Only available with ODU0 to Gb Ethernet over GFP.

- Valid: Indicates the received superblocks without any uncorrectable error.
- > Invalid: Indicates the received superblocks with uncorrectable error.
- > Total: Indicates the total received valid and invalid superblocks.

GFP Frames RX

Press TEST, GFP, and Frames (under GFP RX).

Configuration UPI Frame-Mapped Ethernet	Mismatch Count EXI UPI	Alarm Analysis H C Seconds			
Null v Delta		H C C CHEC Correctable CHEC Uncorrectable	Seconds 	Count	Rate
Overview Frame Channel	Channel Stats OH	J			,

Configuration

- ➤ UPI (User Payload Identifier): Indicates the type of payload conveyed in the GFP Payload Information field. UPI is only selectable from the test setup. See *Configuration* on page 432 for more information.
- **Note:** For 10G Ethernet in GFP over OPU2, when through mode is not selected, both **Framed 64B/66B Ethernet** and **Framed 64B/66B Ethernet Ordered Set** payload types are used as the expected UPI.
 - ➤ EXI (Extension Header Identifier): Allows the selection of the type of GFP Extension Header. Choices are Null (0000) and Linear (0001). The default setting is Null. EXI is not configurable and set to Null for ODU2 to 10G Ethernet or Pattern over GFP, and ODU0 to Gb Ethernet over GFP test cases.
 - Delta: Indicates the GFP state machine synchronization parameter. Delta is set to 1.

Mismatch

- **EXI** (Extension Header Identifier): Indicates the number of frames with EXI field not matching the expected EXI.
- ► UPI (User Payload Identifier): Indicates the number of frames UPI field not matching the expected UPI.

Alarm Analysis

LFD (Loss of Frame Delineation): Indicates that GFP engine is out of synchronization.

Note: Refer to Alarm/Error Measurements on page 47 for H/C LEDs and Seconds information.

Error Analysis

- cHEC Correctable: Indicates that only one bit error has been detected on Core header (PLI and cHEC).
- cHEC Uncorrectable: Indicates that two or more bit errors have been detected on Core header (cHEC and PLI).
- **Note:** Refer to Alarm/Error Measurements on page 47 for H/C LEDs, Seconds, Count, and Rate information.

GFP Channel RX

Press TEST, GFP, and Channel (under GFP RX).

Configuration	Alarm Analysis		Ern	or A	nalysis			
Client Data	нс	Seconds	н	С		Seconds	Count	Rate
Client	LOCS			0	eHEC Correctable			
Management	LOCCS			0	eHEC Uncorrectable			
CID CID	🖲 🖲 RDI		۲	0	tHEC Correctable			
- Mismatch	FDI		0	0	tHEC Uncorrectable			
Count	DCI			0	pFCS			
PFI	Other CMF							
CID								
Overview Frame	Channel Channel S	tats OH	J					

Configuration

- Client Data Frames FCS enables detecting the presence of the expected payload FCS for the client frames. This setting is enabled by default. Not supported with GFP-F over OPU2 and GFP-T over OPU0.
- Client Management Frames FCS enables detecting the presence of the expected payload FCS for the management frames. This setting is disabled by default.
- CID (Channel IDentifier) selects the communication channel used for the signal reception. Choices are from 00000000 through 11111111 (0 to 255). Only available when EXI is set to Linear.
- **Note:** The CID value is the same for both the Client Management and Data Frames. CID is not available with GFP over OPU2.

Mismatch

- ► **PFI** (Payload FCS Identifier): Indicates the number of frames with PFI field not matching the expected PFI.
- ► CID (Channel IDentifier): Indicates the number of frames CID field not matching the expected CID. Only available when EXI is set to Linear.

Alarm Analysis

- ► LOCS (CSF-Loss of Client Signal): A LOCS alarm is declared when CMF frame is received while UPI is set to "0000 0001".
- ► LOCCS (CSF-Loss of Client Character Synchronization): The LOCCS alarm is declared when CMP frame is received with an UPI set to "0000 0010".
- ➤ FDI (Forward Defect Indication): The FDI alarm is declared when CMF frame is received with an UPI set to "0000 0100". Not available with GFP-T.
- RDI (Reverse Defect Indication): The RDI alarm is declared when CMF frame is received with an UPI set to "0000 0101". Not available with GFP-T.
- ➤ DCI (Defect Clear Indication): The DCI alarm is declared when CMF frame is received with an UPI set to "0000 0011". Not available with GFP-T.
- ► Other CMF (Client Management Frame): Other CMF alarms other than the ones described above.

Error Analysis

- ➤ eHEC Correctable: Indicates that only one bit error has been detected in the Extension header (eHEC, CID and Spare). Only available with Linear frames (EXI is set to Linear).
- ➤ eHEC Uncorrectable: Indicates that two or more bit errors have been detected in the Extension header (eHEC, CID and Spare). Only available with Linear frames (EXI is set to Linear).
- ► **tHEC Correctable**: Indicates that only one bit error has been detected in the Type header (tHEC, PTI, PFI, EXI and UPI).
- ➤ tHEC Uncorrectable: Indicates that two or more bit error have been detected in the Type header (tHEC, PTI, PFI, EXI and UPI).
- pFCS: Indicates that at least one bit error has been detected in the payload.
- ➤ SB Correctable: Indicates that bit error has been detected in the CRC-16 word of the superblock. A received SB Correctable (Pre) error counts as one error while SB Correctable (Post) counts as two errors.
- ➤ SB Uncorrectable: Indicates that two or more bit errors have been detected in the CRC-16 word of the superblock. Note that if two errors are spaced by exactly 43 bits, they will not be reported as uncorrectable.
- ▶ 10B_ERR: Indicates that a10B_ERR code has been detected in the payload of the superblock.

GFP Channel Stats RX

Note: This tab in only available for PRBS in SONET/SDH via GFP-F, External Ethernet in SONET/SDH via GFP-F, and Ethernet in ODUflex via GFP-F test cases.

Press TEST, GFP, and Channel Stats (under GFP RX).

Statistics	Count	Rate	Unit	
Client Data Frames			_	
Client Management Frames			_	
Reserved PTI Frames		-	-	
Quantian Erama Ch	chappel	State OH		

Statistics

- Client Data Frames: Indicates the count and rate of received Client Data Frames.
- Client Management Frames: Indicates the count and rate of received Client Management Frames.
- ► **Reserved PTI Frames**: Indicates the count and rate of frame having a reserved Payload Type Identifier (PTI is different of **000** and **100**).

Units are Frames, Bytes, and Payload Bytes. The default setting is Frames.

GFP OH RX

Press TEST, GFP, and OH (under GFP RX).

	Core Head	ler	Type Header				Extension Header			
	PLI	CHEC	PTI	PFI	EXI	UPI	thec	CID	Spare	eHEC
Client Data Frames										
Client Management Frames										
Reserved PTI Frames							••			
Overview Frame	Thannel	Channel	5tats	ОН						

Note: The following Core, Type and Extension Header values are available for Client Data Frames, Client Management Frames and Reserved PTI Frames.

Core Header

- ► PLI (Payload Length Indicator): Indicates the number of octets in the GFP payload area.
- cHEC (Core Header Error Control): Indicates the CRC-16 error control code that protects the integrity of the contents of the core header by enabling both single-bit error correction and Multi-bit error detection.

Type Header

Note: See GFP OH TX on page 440 for PTI, PFI, EXI, and UPI possible values.

- **PTI** (Payload Type Identifier): Displays the type of GFP client frame.
- ► **PFI** (Payload Frame Check Sequence Indicator): Displays the Payload FCS Indicator.
- ► EXI (Extension Header Identifier): Displays the Extension Header Identifier.
- ► UPI (User Payload Identifier): Displays the User Payload Identifier.
- ➤ tHEC (Type Header Error Control): Indicates the CRC-16 error control code that protects the integrity of the contents of the type field by enabling both single-bit error correction and multi-bit error detection.

Extension Header

- **Note:** CID, Spare, and eHEC are only available when EXI from GFP Frame TX on page 432 is set to Linear.
 - ➤ CID (Channel IDentifier): Displays the communication channel used by the signal. Possible values are 00000000 through 11111111 (0 to 255).
 - ➤ Spare: Displays the extension header Spare field. Possible values are 00000000 through 11111111 (0 to 255).
 - eHEC (Type Header Error Control): Indicates the CRC-16 error control code that protects the integrity of the contents of the extension header by enabling both single-bit error correction (optional) and multi-bit error detection.

GFP Client RX

Note: This tab is only available when using External Ethernet.

Press TEST, GFP, and Client (under GFP RX).

External Configuration Interface	Alarm Analysis Statistics H C Seconds Discarded Frames
Electrical	Unk Loss
Rate	
1000BaseT Full-Duplex 💌	
Enable Auto-Negotiation	
Signal Analysis Link Status	
Overview Frame Channel	Channel Stats OH Client

External Configuration

- **Note:** External Configuration parameters for both GFP Client TX and RX tabs are coupled.
 - ➤ Interface allows the Ethernet interface type selection. Choices are Electrical and Optical. The default setting is Electrical unless otherwise set during the test setup.
- **Note:** Selecting the optical interface automatically turn the interface laser On. To turn it off, select the electrical interface.
 - Rate allows the interface rate selection. Choices are 1000BaseT Full Duplex, 100BaseT Full Duplex, and 10BaseT Full Duplex for electrical interface and, 1000BaseX Full-Duplex for optical interface. The default setting is 1000BaseT Full Duplex for electrical interface and 1000BaseX Full Duplex for optical interface.
 - Enable Auto-Negotiation: Allows the auto-negotiation of the port speed when the rate is set to 100BaseT or 10BaseT. Auto-negotiation is always enabled for 1000BaseT.

Signal Analysis

Link Status indicates that the Ethernet connection is down. The link status is available regardless if the test is running or not.

Alarm Analysis

Link Loss indicates a loss of connectivity with the externally connected Ethernet interface (Packet Blazer). This alarm is only available when the test is running.

Note: Refer to Alarm/Error Measurements on page 47 for H/C LEDs and Seconds information.

Statistics

Discarded Frames indicates the number of frames that have been discarded when there is an overflow of the Adapter Function buffer.

VCAT TX - Overview

Press TEST, VCAT, and Overview (under VCAT TX).

Group Size STS-1-3v = 145.152 Mbps	Group Members Alan Member SQ	rm Generation Type
LCAS Configuration CAS Configuration Enable LCAS	1, 1	
SQ Controls Apply SQ	9, 2	
Resequence SQ		
Overview Diff Delay		

Group Size

Group Size indicates the type and size of the VCG members as well as the bandwidth used by the VCG group. For example **STS-1-21v** = **145.152 Mbps** indicates **STS-1** as the VCG type, **21v** for the size, and **145.152 Mbps** for the bandwidth of the VCG group.

LCAS Configuration

Enable LCAS allows enabling LCAS configuration. See *LCAS* - *Source* on page 468 and *LCAS Sink* on page 481 for more information.

Note: Enable LCAS from TX and RX tabs are coupled.

SQ Controls

- ➤ Apply SQ button: Validates and applies the SQ number for each member. Available only when at least one SQ number has been changed. Not available when Enable LCAS is enabled.
- Resequence SQ button: Assigns SQ number sequentially following the timeslot order. SQ number starts at 0. Not available when Enable LCAS is enabled.

Group Members

- > Member indicates the timeslot number.
- SQ (Sequence Indicator): Indicates the member's selection order from the test setup. The first member bears the sequence indicator "0" by default. The SQ number of each member can be changed when
 Enable LCAS is disabled. Click on a specific member SQ number and enter the new number. Possible values are from 0 to 63.
- **Note:** The SQ number(s) changed will only take effect when the Apply SQ button is pressed.

► Alarm Generation

► **Type** for HOP

LOM (Loss of Multiframe): Generates and maintains a corrupted OOM1 alignment process.

OOM1 (Out-Of-Multiframe of stage 1): Generates a continuous error in the MFI1 sequence.

OOM2 (Out-Of-Multiframe of stage 2): Generates a continuous error in the MFI2 sequence.

► **Type** for LOP

LOM (Loss of Multiframe): Generates and maintains a corrupted OOM1 alignment process.

OOM1 (Out-Of-Multiframe of stage 1): Generates an error in the Z7/K4 bit (MFAS).

OOM2 (Out-Of-Multiframe of stage 2): Generates an error in Z7/K4 bit 2 Frame Count.

- ► **On/Off** button: Click on the On/Off button to enable/disable the alarm generation.
- Arrows: Single arrows move one position up or down in the list.
 Double arrows move one page up or down in the list.

VCAT TX - Diff Delay

Press TEST, VCAT, and Diff Delay (under VCAT TX).

Group Members Member	SQ	Absolute Delay	Differential Delay		Enable Delay	Delay Control
1, 1	0	0		0		Enable All Disable All
5,1	1.	<u>10</u>		Ū		Reference Member
						Measurement Unit
Overview Di	ff Dela;	·				

Group Members

- > Member indicates the timeslot number.
- ▶ SQ (Sequence Indicator): Indicates the member sequence indicator.
- Absolute Delay: Enter the absolute delay for each required member. Choices are from 0 to 256000 μs configurable in steps of 125 μs for HOP and 500 μs for LOP except for TU-3 which is configurable in steps of 125 μs, meaning that the value will be rounded to the closest multiple of 125 (HOP) or 500 (LOP).
- ➤ Differential Delay: Indicates the differential delay value for each member according to the absolute delay values entered for members. The graphical representation shows the differential positive and negative delays for each member. A delay value bar at the left side of the vertical line represents a negative delay while the one on the right side represents a positive delay. A member having a negative delay compare to another one having a positive delay indicates that this member is faster than the other one. The differential delay is calculated from the reference member.
- **Enable Delay**: Allows enabling the absolute delay for each member.
- Arrows: Single arrows move one position up or down in the list.
 Double arrows move one page up or down in the list.

Delay Control

- On/Off button: The On/Off button is used to activate/deactivate the delay control insertion for all VCG members. This setting is disabled (Off) by default.
- **Reset All**: Resets all members' absolute delay to 0.
- **Enable All**: Allows enabling the absolute delay for all members.
- **Disable All**: Allows disabling the absolute delay for all members.

Reference Member

Allows the selection of the reference member from the list or automatically when **Auto** is enabled.

Auto: Performs automatic selection of the fastest member having the smallest differential delay. The member having the smallest SQ will be selected when more than one member have the smaller differential delay.

The default setting is **Auto** enabled.

Measurement Unit

Allows the selection of unit for both the differential delay threshold. Choices are **ms** and μ **s**. The default setting is μ **s**.

VCAT RX - Overview

Press TEST, VCAT and Overview (under VCAT RX).

LCAS Configuration Member ExcQ SQ Seconds Seconds	Group Size STS-3c-2v	Group Members	,		LOM H U	l C	OI H	DM1 C		OC H	M2 C		SC H)M C		Pa H	th C	
Enable LCAS 1, 1 0	CLCAS Configuration	Member	ExSQ	SQ		Seconds	. 🕲	.0	Seconds	۲	۲	Seconds		۲	Seconds		۲	
- SQ Control	Enable LCAS	1, 1	0			•		۲			0		۲	۲		۲		
	SQ Control Apply ExSQ Resequence ExSQ Copy SQ to ExSQ	5, 1	1		9	•	٢	9		٥	9		9	9		9	۲	

Group Size

Group Size indicates the type and size of the VCG members as well as the bandwidth used by the VCG group. For example **STS-1-21v** = **145.152 Mbps** indicates **STS-1** as the VCG type, **21v** for the size, and **145.152 Mbps** for the bandwidth of the VCG group.

LCAS Configuration

Allows enabling LCAS configuration. See *LCAS* - *Source* on page 468 and *LCAS Sink* on page 481 for more information.

Note: Enable LCAS from TX and RX tabs are coupled.

SQ Controls

- ➤ Apply ExSQ button: Validates and applies the ExSQ number for each member. Available only when at least one SQ number has been changed. Not available when Enable LCAS is enabled.
- ► **Resequence ExSQ** button: Assigns SQ number sequentially following the timeslot order. Not available when **Enable LCAS** is enabled.
- Copy SQ to ExSQ button: Replaces the ExSQ with the SQ number. Not available when Enable LCAS is enabled.

Group Members

- > Member indicates the timeslot number.
- ExSQ (Expected Sequence Indicator): Indicates the member's selection order from the test setup. The first member selected bears the sequence indicator "0". The ExSQ number of each member can be changed when Enable LCAS is disabled. Click on a specific member ExSQ number and enter the new number. Possible values are from 0 to 63.
- **Note:** The ExSQ number(s) changed will only take effect when the Apply ExSQ button is pressed.
 - ► SQ (Sequence Indicator): Indicates the received member sequence indicator.
 - ► Alarm Analysis for HOP
 - ► LOM (Loss Of Multiframe): A LOM is declared when a OOM1 or OOM2 is present while the whole H4 is not recovered within 48 STS-1/STS-3c or VC-3/VC-4 frames. The LOM state is cleared when both multiframe alignment processes are in the in-multiframe state IM1 (Stage 1) and IM2 (Stage 2).
 - ➤ OOM1 (Out-Of-Multiframe of stage 1): A OOM1 is declared when an error is detected in the MFI1 sequence. The OOM1 state is cleared when error-free MFI1 sequences are found in four consecutive STS-1/STS-3c or VC-3/VC-4 frames, then a IM1 state is declared.
 - ➤ OOM2 (Out-Of-Multiframe of stage 2): A OOM2 is declared when an error is detected in the MFI2 sequence or the first multiframe stage is in the OOM1 state. The OOM2 state is cleared when IM1 state is declared while error-free MFI2 sequences are found in two consecutive first-stage multiframes, then a IM2 state is declared.

- SQM (Sequence Indicator Mismatch): A SQM is declared when the accepted sequence indicator (SQ) does not match the expected sequence indicator (ExSQ). The SQM state is cleared when SQ matches ExSQ.
- ▶ **Path**: A Path alarm is declared when there is at least one near-end path type alarm or a B3 error.
- ► Alarm Analysis for LOP
 - ➤ LOM (Loss Of Multiframe): A LOM is declared when the two multiframe alignment processes is in the out-of-multiframe (OOM1 or OOM2) state and the whole Z7/K4 (bits 1 and 2) two-stage multiframe is not recovered within 256 VT1.5/VT2 or VC-11/12 frames.
 - ➤ OOM1 (Out-Of-Multiframe of stage 1): A OOM1 is declared when two consecutive Frame Alignment Signals (FAS) are detected in error (i.e. one error in each FAS). The OOM1 state is cleared when one non-errored FAS is found.
 - OOM2 (Out-Of-Multiframe of stage 2): An OOM2 is declared when either the frame alignment process is in out-of-multiframe (OOM1) state or when an error is encountered in the received and expected frame count from bits 1-5 of the Z7/K4 bit 2 sequence. The OOM2 state is cleared when the extended overhead multiframe process is in the IM state and two consecutive error-free frames are recovered.
 - SQM (Sequence Indicator Mismatch): A SQM is declared when the accepted sequence indicator (SQ) does not match the expected sequence indicator (ExSQ). The SQM state is cleared when SQ matches ExSQ.
 - ▶ **Path**: A Path alarm is declared when there is at least one near-end path type alarm, or a B3 error for TU-3 or BIP-2 for TU-11/TU-12.
- Arrows: Single arrows move one position up or down in the list.
 Double arrows move one page up or down in the list.

VCAT RX - Diff Delay

Press TEST, VCAT and Diff Delay (under VCAT RX).

Group Members Member	SQ	Differential Delay	Differential Delay	Fastest Member	Relative Delay
1, 1	1				
5, 1	1		Alarm Analysis		
			нс	Seconds	LOA Threshold
			LOA	-	100000
			Reference Member		leacurament Linit
			Reference Member	Auto	
			J		
Overview Diff	f Delay				

Group Members

- > Member indicates the timeslot number.
- ► SQ (Sequence Indicator): Indicates the received member sequence indicator.
- ➤ Differential Delay: Indicates the differential delay value for each member. The graphical representation shows the differential positive and negative delays for each member. A delay value bar at the left side of the vertical line represents a negative delay while the one on the right side represents a positive delay. A member having a negative delay compare to another one having a positive delay indicates that this member is faster than the other one. The differential delay is measured compared to the reference member.
- **Note:** The differential delay measurement accuracy is $\pm 125 \ \mu s$ for HOP and $\pm 500 \ \mu s$ for LOP except for TU-3, which has an accuracy of $\pm 125 \ \mu s$.

► Arrows

Single arrows move one position up or down in the list. Double arrows move one page up or down in the list.
Differential Delay

- ➤ Slowest Member: Indicates the member having the largest differential delay. The member having the largest SQ will be selected when more than one member has the largest differential delay.
- ► Fastest Member: Indicates the member having the smallest differential delay. The member having the smallest SQ will be selected when more than one member has the smallest differential delay.
- Relative Delay: Indicates the differential delay that exists between the slowest and fastest members.

Alarm Analysis

- ► LOA (Loss Of Alignment): The LOA alarm is declared when the alignment process cannot perform the alignment of the individual member within the defined threshold.
- ► LOA Threshold (Loss Of Alignment Threshold): Allows to specify the value at which an LOA alarm will be declared.

Choices are from **125** to **255375** μ s for HOP and to **254000** μ s for LOP except for TU-3. The default setting is **100000** μ s.

Reference Member

Allows the selection of the reference member from the list or automatically when **Auto** is enabled.

Auto: Performs automatic selection of the fastest member having the smallest differential delay. The member having the smallest SQ will be selected when more than one member has the smaller differential delay.

The default setting is Auto enabled.

Measurement Unit

Allows the selection of unit for both the differential delay and LOA Threshold. Choices are **ms** and μ **s**. The default setting is μ **s**.

LCAS - Source

Note: The test must be started and Enable LCAS has to be enabled from either VCAT TX - Overview on page 459 or VCAT RX - Overview on page 463 in order to access the LCAS Source functionality. Alternatively, LCAS functionality can be enabled via the test setup, as the test case is being mounted.

Press TEST and LCAS.

Member	SQ	Command	MST	State	CTRL	Group
1, 1						Provisioned Member Active Member
5, 1			_			RS-Ack Status Timeout Count Received Count
	Add All	Apply	Remove All			Alarm Analysis H C Disable All Overwrite(s)
LCAS Over	view	Alarm Error	SQ/CTRL Cor	ntrol	MST/RS-Ack Control	Configuration

The LCAS Source tab gives access to the following tabs:

- ► LCAS Source LCAS Overview on page 469
- ► LCAS Source Alarm on page 471
- ► LCAS Source Error on page 473
- ► LCAS Source SQ/CTRL Control on page 475
- ► LCAS Source MST/RS-Ack Control on page 477
- ► LCAS Source Configuration on page 479

Note: The default selected tab is LCAS Overview.

► Arrows

Single arrows move one position up or down in the list. Double arrows move one page up or down in the list.

LCAS Source - LCAS Overview

Press TEST, LCAS and LCAS Overview (under LCAS Source).

Member	SQ Command	MST	State	CTRL	Group
1, 1					Provisioned Member Active Member
5, 1		V			RS-Ack
					Status Timeout Count Received Count
	Add All App	ly Remove All			Alarm Analysis H C Disable All Overwrite(s)
LCAS Over	view Alarm E	Error SQ/CTRL Co	ntrol	MST/RS-Ack Contr	rol Configuration

- > Member indicates the timeslot number.
- ➤ SQ (Sequence Indicator): Indicates the member sequence indicator. The SQ for members in IDLE state will be automatically set to 63 for LOP or 255 for HOP.
- Command: Allows the selection of the command to by applied to the member. Choices are None, Add, and Remove. The default setting is None. The selected command(s) will only take effect once the Apply button is pressed.
- Add All: Click on the Add All button to set the Add command for all members. The command(s) will be sent only when Apply is pressed.
- Apply: Applies the selected command(s). The Apply button is not available while all commands are set to none.
- Remove All: Click on the Remove All button to set the Remove command for all members. The command(s) will be sent only when Apply is pressed.
- ► MST (Member STatus): Indicates the member status. Possible statuses are OK (0) and Fail (1).
- ➤ State: Indicates the status of the source state machine. Possible states are NORM, ADD, REMOVE, DNU, and IDLE.
- ► **CTRL** (Control): Indicates the CTRL transmitted by the LCAS state machine. See *CTRL* on page 476 for the list of possible CTRL.

Group

- ➤ Provisioned Member: Indicates the members that can be used for payload transmission. For example VT1.5v-4v, 4v indicates that 4 members are available for payload transmission.
- ➤ Active Member: Indicates the members that are used for payload transmission (not in error). For example VT1.5v-3v indicates that 3 members are used for payload transmission.

RS-Ack (Re-Sequence Acknowledge)

- ► Status: Indicates the status of the re-sequence acknowledge. Possible statuses are Received and Pending.
- **Timeout Count**: Indicates the RS-Ack timeout count.

Alarm Analysis

LCAS: The LCAS alarm is declared when any related LCAS alarm or error is active.

Overwrite Control

Disable All Overwrite(s): Allows disabling all overwrite settings from the **SQ/CTRL Control** and **MST/RS-Ack Control** tabs. This button is not available when there is no overwrite value applied.

LCAS Source - Alarm

Press TEST, LCAS and Alarm (under LCAS Source).

Member	SQ	Alarm Generation Type	Alarm Analysis H C	Seconds	н	с	Seconds
1, 1		On/Off ●	TLCT			۲	UMST
5, 1		🔽 On/Off 🌑	PLCT]		SQ in UMST
			FOPT]		-
LCAS Over	view	Alarm Error SQ/CTRL Control MS	T/RS-Ack Control Co	nfiguration			

Note: Not available in **Through** mode.

- > Member indicates the timeslot number.
- ➤ SQ (Sequence Indicator): Indicates the member sequence indicator. The SQ for members in IDLE state will be automatically set to 63 for LOP or 255 for HOP.
- ► Alarm Generation
 - ► Type

GID Mismatch (Group Identifier Mismatch): Generates an inverted PRBS-15 pattern.

➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

Alarm Analysis

- ➤ TLCT (Total Loss of Capacity Transmit): The TLCT alarm is declared when the number of active member equal zero while the number of provisioned member is bigger than zero.
- ► PLCT (Partial Loss of Capacity Transmit): The PLCT alarm is declared when the PLCT Threshold is reached while both numbers of active member and provisioned member are bigger than zero.
- ► FOPT (Failure of Protocol Transmit): The FOPT alarm is declared when a UMST alarm is present.
- ► UMST (Unexpected Member Status) The UMST alarm is declared when a persistent detection of the MST (MST=OK), while no RS-Ack is pending, for a member that carries the IDLE Control (CTRL).
- ► SQ in UMST (Sequence Indicator in Unexpected Member Status): Lists the SQ number(s) in the UMST.
- **Note:** Refer to Alarm/Error Measurements on page 47 for H/C LEDs and Seconds information.

LCAS Source - Error

Press TEST, LCAS and Error (under LCAS Source).

			Manual -		- Automated			_
Member	SQ	Туре	Amount		Rate	Continuous		
1, 1			-	Send		Г	On/Off	
5, 1			v	Send			On/Off	
LCAS Overvie	ew l	Alarm	Error SQ/	CTRL Control	MST/RS-Ack	Control	Configuration	J

Note: Not available in **Through** mode.

- > Member indicates the timeslot number.
- ➤ SQ (Sequence Indicator): Indicates the member sequence indicator. The SQ for members in IDLE state will be automatically set to 63 for LOP or 255 for HOP.
- ► **Type**: The following error is available with both manual and automated injection modes: **CRC-3** for LOP or **CRC-8** for HOP.
- ► Manual
 - > Amount: Select the amount of manual error to be generated.

Choices are 1 through **50**. The default setting is 1.

 Send button: Click on the Send button to manually generate error(s) according to the Error Type and the Amount of Errors selected.

► Automated

- Rate: Click on the Rate field to select the injection rate for the automated error. Choices are from 1.0E-03 to 9.9E-01. The default setting is 1.0E-02.
- Continuous: When activated, generates a CRC error in all control packets. This setting is disabled by default.
- On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or continuously when continuous is enabled. This setting is disabled (Off) by default.

LCAS Source - SQ/CTRL Control

Press TEST, LCAS and SQ/CTRL Control (under LCAS Source).

	5Q		CTRL		
Member	SQ Overwrite Enable	Generated	CTRL	Overwrite Enable	Generated
1, 1					
5, 1					v
	Enable All	Appl	y Overwrite Value(s)	Enable A	,
LCAS Overview	Alarm Error	SQ/CTRL Contro	MST/RS-Ad	Control Configuration	on

Note: Not available in Through mode.

- > Member indicates the timeslot number.
- ► SQ

SQ (Sequence Indicator): Indicates the member sequence indicator. The SQ for members in IDLE state will be automatically set to 63 for LOP or 255 for HOP.

Overwrite Enable: Allows overwriting the SQ number. The SQ number of each member having the **Overwrite Enable** checked can be overwritten. Click on a specific member's SQ number and enter the new number. Possible values are from **0** to **63** for LOP and from **0** to **255** for HOP. The number(s) changed will only take effect when the **Apply Overwrite Value(s)** button is pressed.

Generated: The SQ value generated by the state machine.

Enable All: Allows enabling the SQ overwrite for all members.

► CTRL

CTRL: Indicates the Control value for each VCG member.

Overwrite Enable: Allows overwriting the Control. The CTRL value of each member having the **Overwrite Enable** checked can be overwritten. Click on a specific member CTRL value and select a new value from the list. Possible values are listed below. The value(s) changed will only take effect when the **Apply Overwrite Value(s)** button is pressed.

CTRL	Description	CTRL	Description
ADD (0001)	The member is about to be added to the group	Reserved (0111)	Reserved
NORM (0010)	Normal transmission	Reserved (1000)	Reserved
EOS (0011)	End of Sequence indication and Normal transmission	Reserved (1001)	Reserved
IDLE (0101)	The member is not part of the group or about to be removed	Reserved (1010)	Reserved
DNU (1111)	Do Not Use the payload, the Sink side reported FAIL status	Reserved (1011)	Reserved
FIXED (0000)	This is an indication that this end uses fixed bandwidth (non-LCAS mode)	Reserved (1100)	Reserved
Reserved (0100)	Reserved	Reserved (1101)	Reserved
Reserved (0110)	Reserved	Reserved (1110)	Reserved

- **Generated**: The Control value generated by the state machine.
- **Enable All**: Allows enabling the CTRL overwrite for all members.
- ➤ Apply Overwrite Value(s): Allows applying the new overwrite value(s) for both SQ and CTRL.

LCAS Source - MST/RS-Ack Control

MST MST SQ Overwrite Enable Received RS-Ack Status 1, 1 Г 5, 1 гΙ -Timeout Count Unexpected Count Manual Toggle Count Г Toggle RS-Ack Enable All MST/RS-Ack Control Configuration Alarm Error SQ/CTRL Control LCAS Overview

Press TEST, LCAS and MST/RX-Ack Control (under LCAS Source).

Note: Not available in Through mode.

- ▶ Member indicates the timeslot number.
- **SQ** (Sequence Indicator): Indicates the member sequence indicator. The SQ for members in IDLE state will be automatically set to 63 for LOP or 255 for HOP.

LCAS - Source

- ► MST
 - ► MST: Indicates the current MST value that is applied to the state machine. Possible values are OK (0) and Fail (1).
 - ➤ Overwrite Enable: Allows overwriting the member status. The status of each member having the Overwrite Enable checked can be overwritten. Click on a specific member drop list and select the new status. Possible statuses are OK and Fail. The status(es) changed will only take effect when the Apply Overwrite Value(s) button is pressed.
 - **Enable All**: Allows enabling the MST overwrite for all members.
 - ► Apply Overwrite Value(s): Allows applying the new overwrite value(s).
- **Received**: Indicates the member status received at the source.

RS-Ack (Re-Sequence Acknowledge)

- Status: Indicates the status of the RS-Ack. Possible statuses are Received and Pending.
- ➤ Received Value: Toggle every time a RS-Ack is received. The value toggle either from 0 to 1 or 1 to 0.
- **Received Count**: Indicates the number of RS-Ack received.
- ➤ Timeout Count: Indicates the RS-Ack timeout count based on the configuration of the *RS-Ack Timeout* on page 480.
- > Unexpected Count: Indicates the number of unexpected RS-Ack.
- > Manual Toggle Count: Indicates the number of manual toggle.
- Manual Control: Allows blocking the RS-Ack received from reaching the state machine.
- **Toggle RS-Ack** button: Allows to forced a received RS-Ack.

LCAS Source - Configuration

Press TEST, LCAS and Configuration (under LCAS Source).

Member	Auto Add at Startup	Remote DUT	RS-Ack Timeout
1, 1	Г	Non-LCAS	Enabled
5, 1	Г	Alarm PLCT Threshold	Duretion (s) 9
LCAS Overvie	ew Alarm Error	SQ/CTRL Control	MST/RS-Ack Control Configuration

Note: Not available in Through mode.

- > Member indicates the timeslot number.
- Auto Add at Startup: Allows enabling the members that will be automatically added (applied) when the test is started.

Remote DUT

Non-LCAS: Specifies that the remote device connected to the FTB-8100 Series is LCAS (when disabled) or Non-LCAS (when enabled). Remote DUT, when Non-LCAS is enabled, is used to test the interoperability between an LCAS and a VCAT device that does not support LCAS.

Alarm

Note: Not available when Non-LCAS from the Remote DUT group is enabled.

PLCT Threshold (Partial Loss of Capacity Transmit Threshold): Allows the selection of the PLCT threshold value. Choices are from **1** to the provisioned member minus 1. The default setting is **1**.

RS-Ack Timeout

Note: Not available when **Non-LCAS** from the **Remote DUT** group is enabled.

- ► Enabled: Allows enabling the re-sequence acknowledge timeout value. This setting is enabled by default.
- Duration (s): Allows selecting the timeout duration. Choices are from 1 to 10 seconds. The default setting is 1 second.

LCAS Sink

Note: The test must be started and Enable LCAS has to enabled from either VCAT TX - Overview on page 459 or VCAT RX - Overview on page 463 in order to access the LCAS Sink functionality.

Press **TEST** and **LCAS**.

Member	SQ	Command	MST	State	CTRL	Group
1, 1			-			Provisioned Member Active Member
5, 1			~			RS-Ack
						Transmitted Count
	Add All	Apply	Remove All			Alarm Analysis H C Disable All Overwrite(s)
LCAS Over	view 4	Alarm Error	MST/RS-Ack	Control	Configuration	

The LCAS Sink tab gives access to the following tabs:

- ► LCAS Sink LCAS Overview on page 482
- ► LCAS Sink Alarm on page 484
- ► LCAS Sink Error on page 486
- ► LCAS Sink MST/RS-Ack Control on page 487
- ► LCAS Sink Configuration on page 489
- **Note:** The default selected tab is **LCAS Overview**.
 - ➤ Arrows: Single arrows move one position up or down in the list. Double arrows move one page up or down in the list.

LCAS Sink - LCAS Overview

Press TEST, LCAS and LCAS Overview (under LCAS Sink).

Member	SQ	Command	MST	State	CTRL	Group
1, 1		V				Provisioned Member Active Member
5, 1		Y				R5-Ack Transmitted Count
	Add All	Apply F	Remove All			Alarm Analysis H C Disable Ali Overwrite(s)
LCAS Ove	erview 4	larm Error	MST/RS-Ack	Control	Configuration	

- > Member indicates the timeslot number.
- ➤ SQ (Sequence Indicator): Indicates the member sequence indicator. The SQ for members in IDLE state will be automatically set to 63 for LOP or 255 for HOP.
- Command: Allows the selection of the command to be applied to the member. Choices are None, Add, and Remove. The default setting is None. The selected command(s) will only take effect once the Apply button is pressed.
- Add All: Click on the Add All button to set the Add command for all members. The command(s) will be sent only when Apply is pressed.
- Apply: Applies the selected command(s). The Apply button is not available while all commands are set to none.
- Remove All: Click on the Remove All button to set the Remove command for all members. The command(s) will be sent only when Apply is pressed.
- ► MST: Indicates the current member status for each VCG member. Possible statuses are OK (0) and Fail (1).
- State: Indicates the status of the Sink state machine. Possible states are FAIL, OK and IDLE.
- ➤ CTRL (Control): Indicates the CTRL transmitted by the LCAS state machine. See CTRL on page 476 for the list of possible CTRL.

Group

- Provisioned Member: Indicates the members that can be used for payload transmission. For example VT1.5-4v, 4v indicates that 4 members are available for payload transmission.
- ➤ Active Member: Indicates the members that are used for payload transmission (not in error). For example VT1.5-3v indicates that 3 members are used for payload transmission.

RS-Ack

Transmitted Count: Indicates the count of the transmitted RS-Ack.

Alarm Analysis

LCAS (Link Capacity Adjustment Scheme): The LCAS alarm is declared when any related LCAS alarm or error is active.

Overwrite Control

Disable All Overwrite(s): Disables all overwrite settings from the **MST/RS-Ack Control** tab. This button is not available when there is no overwrite value applied.

LCAS Sink - Alarm

Press TEST, LCAS and Alarm (under LCAS Sink).

Member	5Q	Persistent CRC H C ම ම Seconds	GID Mismatch H C Seconds	Alarm Analysis H C	Seconds	Alarm Generation Type SQ
1, 1 5, 1		00 00	3 3 3 3	PLCRFOPR		On/off
				SQNC		
LCAS Overview		Alarm Error	MST/RS-Ack Control	Configuration		

Note: Not available in Through mode.

- > Member indicates the timeslot number.
- ➤ SQ (Sequence Indicator): Indicates the member sequence indicator. The SQ for members in IDLE state will be automatically set to 63 for LOP or 255 for HOP.
- Persistent CRC: Persistent CRC indicates that more than 20% CRC errors are detected in one second in the control packets.
- ► GID Mismatch: Indicates GID Mismatch alarm.
- **Note:** Refer to Alarm/Error Measurements on page 47 for H/C LEDs and Seconds information.

Alarm Analysis

- ➤ TLCR (Total Loss of Capacity Receive): The TLCR alarm is declared when the number of active member equal zero while the number of provisioned member is bigger than zero.
- ▶ PLCR (Partial Loss of Capacity Receive): The PLCR alarm is declared when the PLCR Threshold is reached while both numbers of active member and provisioned member are bigger than zero.
- ► FOPR (Failure of Protocol Receive): The FOPR alarm is declared when persistent CRC or SQNC is present.
- SQNC (Sequence Indicator Non-Consistent): The SQNC alarm is declared when the members that carry the NORM, DNU or EOS message do not have a unique sequence indicator.
- **Note:** Refer to Alarm/Error Measurements on page 47 for H/C LEDs and Seconds information.

Alarm Generation

► Туре

UMST (Unexpected Member Status): The UMST is generated by constantly forcing a MST = OK for the selected SQ that is not currently used in the VCG.

➤ SQ (Sequence Indicator): Allows selecting the SQ number for the selected alarm to be generated. Possible values are from 0 to 63 for LOP or 0 to 255 for HOP. The default setting is 1.

Note: Only SQ members not currently used in the VCG are available.

➤ On/Off button: The On/Off button is used to activate/deactivate the selected alarm. This setting is disabled (Off) by default.

LCAS Sink - Error

Press TEST, LCAS and Error (under LCAS Sink).

		CRC H	Erro	or Summary			
Member	SQ		õ	Seconds	Count	Rat	
1, 1			0				
5, 1							
				,			
LCAS Over	rview A	larm	I	Error	MST/RS-Ack Con	trol	Configuration

- Note: Not available in Through mode.
 - > Member indicates the timeslot number.
 - ➤ SQ (Sequence Indicator): Indicates the member sequence indicator. The SQ for members in IDLE state will be automatically set to 63 for LOP or 255 for HOP.

CRC-3/CRC-8 Error Analysis

Indicates respectively a CRC-3 (for LOP) or CRC-8 (for HOP) error.

Note: Refer to Alarm/Error Measurements on page 47 for H/C LEDs, Seconds, Count, and Rate information.

LCAS Sink - MST/RS-Ack Control

Press TEST, LCAS and MST/RS-Ack Control (under LCAS Sink).

Note: Not available in Through mode.

- > Member indicates the timeslot number.
- ➤ SQ (Sequence Indicator): Indicates the member sequence indicator. The SQ for members in IDLE state will be automatically set to 63 for LOP or 255 for HOP.

- ► MST
 - **MST**: Indicates the MST generated by the state machine.
 - ➤ Overwrite Enable: Allows overwriting the member status. The status of each member having the Overwrite Enable checked can be overwritten. Click on a specific member's drop list and select the new status. Possible statuses are OK and Fail. The status(es) changed will only take effect when the Apply Overwrite Value(s) button is pressed.
 - **Enable All**: Allows enabling the MST overwrite for all members.
 - ➤ Apply Overwrite Value(s): Allows applying the new overwrite value(s). This button is only available when there are overwrite values that have not been applied.
- Generated: Indicates the actual value that is sent in the control packets.

RS-Ack (Re-Sequence Acknowledge)

- ➤ Transmitted Value: Toggle every time a RS-Ack is transmitted. The value toggle either from 0 to 1 or 1 to 0.
- **Transmitted Count**: Indicates the number of RS-Ack transmitted.
- Generated Count: Indicates the number of RS-Ack generated by the LCAS state machine.
- > Manual Toggle Count: Indicates the number of manual toggle.
- Manual Control: Allows blocking the RS-Ack transmitted by the state machine.
- **Toggle RS-Ack** button: Allows sending a RS-Ack.

LCAS Sink - Configuration

Press TEST, LCAS and Configuration (under LCAS Sink).

Member	Auto Add at Startup	Remote DUT	Hold-Off Timer
1, 1	Г	Non-LCAS	Enabled
5, 1	Г	Alarm PLCR Threshold	Duration (s)
			Wait-to-Restore Timer
			Enabled
			Duration (s)
LCAS Overv	view Alarm Error	MST/RS-Ack Control	Configuration

- > Member indicates the timeslot number.
- ➤ Auto Add at Startup: Allows enabling the members that will be automatically added (applied) when the test is started.

Remote DUT

Note: Not available in Through mode.

Non-LCAS: Specifies that the remote device connected to the FTB-8100 Series is LCAS (when disabled) or Non-LCAS (when enabled).

Alarm

Note: Not available when Non-LCAS from the Remote DUT group is enabled.

PLCR Threshold (Partial Loss of Capacity Receive Threshold): Allows the selection of the PLCR threshold value. Choices are from **1** to the provisioned member minus 1. The default setting is **1**.

Hold-Off Timer

Note: Not available when Non-LCAS from the Remote DUT group is enabled.

- Enabled: Allows enabling the Hold-Off Timer. This setting is disabled by default.
- Duration (s): Allows selecting the timer duration. Choices are from 0.1 to 10 seconds. The default setting is 1 second.

Wait-to-Restore Timer

- ► Enabled: Allows enabling the Wait-to-Restore Timer. This setting is disabled by default.
- Duration (s): Allows selecting the timer duration. Choices are from 1 to 1000 seconds. The default setting is 300 seconds.

19 Common Tabs

Note: The available tabs listed are a function of the test path activated. Common tabs are not available with VCAT, LCAS and GFP.

Tab	Page
HOP/LOP Pointer Adjust TX (SONET/SDH) ^a	492
HOP/LOP Pointer Adjust RX (SONET/SDH) ^a	495
TCM TX ^a	497
TCM RX ^a	500
Performance Monitoring (PM)	504
Client Offset TX	513
Client Offset RX	515

a. LOP Pointer Adjust TX is not available on the FTB-8140.

HOP/LOP Pointer Adjust TX (SONET/SDH)

Note: This tab is not available with VCAT, LCAS and GFP.

Press TEST, HOP/LOP, and Ptr Adj (under HOP/LOP TX).

Pointer Current Value Increment Increment Increment Increment Increment Send Decrement Send Send Increment Increment Send Incr	Pointer Jung New Pointer Value D New Data Flag
Path OH Pr Adj TCM	

Pointer

Current Value indicates the current pointer value.

Pointer Steps

► Increment

For HOP: Select the number of positive pointer adjustment to include into the STS-n (SONET) or AU-n (SDH). For multiple pointer adjustments, the pointer adjustment rate is 1 adjustment at every 4 frames. Choices are **1** to **1000**. The default setting is **1**.

For LOP: Select the number of positive pointer adjustment to include into the VTn (SONET) or TU-n (SDH). For multiple pointer adjustments, the pointer adjustment rate is 1 adjustment at every 4 multiframes. Choices are **1** to **1000**. The default setting is **1**.

► Decrement

For HOP: Select the number of negative pointer adjustments to include into the STS-n (SONET) or AU-n (SDH). For multiple pointer adjustments, the pointer adjustment rate is 1 adjustment at every 4 frames. Choices are **1** to **1000**. The default setting is **1**.

For LOP: Select the number of negative pointer adjustments to include into the VTn (SONET) or TU-n (SDH). For multiple pointer adjustments, the pointer adjustment rate is 1 adjustment at every 4 multiframes. Choices are **1** to **1000**. The default setting is **1**.

 Send buttons: Press the corresponding Send button to send positive or negative pointer adjustments.

Pointer Jump

> New Pointer Value: The default setting is **0**. Choices are:

For high order path: 0 to 782

For low order path:

Path	Range
VT1.5	0 to 103
VT2	0 to 139
VT6	0 to 427
TU-3	0 to 764
TU-2	0 to 427
TU-12	0 to 139
TU-11	0 to 103

- **Send** button: Allows to send the new pointer value.
- > New Data Flag (NDF): Allows enabling the New Data Flag.

For HOP: When NDF is enabled, bits 1 to 4 of the pointer word (H1 and H2 bytes) are set to "1001" when executing a pointer jump.

For LOP: When NDF is enabled, bits 1 to 4 of the pointer word (V1 and V2 bytes) are set to "1001" when executing a pointer jump.

HOP/LOP Pointer Adjust RX (SONET/SDH)

Press TEST, HOP/LOP, and Ptr Adj (under HOP/LOP RX).

Pointer Current Value Cumulative Offset 	Statistics Pointer Increment Pointer Decrement NDF No NDF	Count 	Seconds 		
Path OH Pr Adj TCM PM					

Pointer

- **Current Value** displays the value of the pointer:
 - ➤ For HOP: Displays the value for the pointer, H1 and H2, indicating the offset in bytes between the pointer and the first byte of the STS-n (SONET) or AU-n (SDH).
 - For LOP: Displays the value of the pointer, V1 and V2, indicating the offset in bytes between the pointer and the first byte of the VTn (SONET) or TU-n (SDH) of the high order path. However, TU-3 considered a low order path, uses the H1, H2, H3 bytes for its location.
- Cumulative Offset indicates the difference between the pointer increment and the pointer decrement. A pointer jump will reset this value to 0.

Statistics

- Pointer Increment gives statistics on positive pointer adjustment detected.
- Pointer Decrement gives statistics on negative pointer adjustment detected.
- NDF (New Data Flag) gives statistics on pointer jumps containing a New Data Flag.

For HOP: Bits 1 to 4 of the pointer word (H1 and H2) detected are "1001".

For LOP: Bits 1 to 4 of the pointer word (V1 and V2) detected are "1001".

► No NDF (No New Data Flag) gives statistics on normal pointer jumps containing no NDF.

For HOP: Bit 1 to 4 of the pointer word (H1 and H2) detected are "0110".

For LOP: Bit 1 to 4 of the pointer word (V1 and V2) detected are "0110".

тсм тх

Press TEST, HOP/LOP, and TCM (under TCM TX).

Configuration	Eror Injection Manual Type Amount [TC-IEC] Automated Type Rate [TC-IEC] [1.3E-03 Continuous	Alarm Generation Type Send TC Access Point Identifier Message EXFO TCMIMIN
Path OH Ptr	Adj TCM	

Note: This tab is not available with VCAT, LCAS and GFP.

The TCM Generator tab allows generating alarms and errors for the Tandem Connection sub-layer providing the capability to better identify the source of a problem or of a failure when travelling through more than one independently operated networks.

Configuration

Enable TCM: Allows the activation of the Tandem Connection Monitoring (TCM). This setting is disabled by default.

Error Injection

Allows manual or automated error injection.

➤ Type: The following error types are available with both manual and automated injection modes. The default setting is TC-IEC for HOP and TC-BIP for LOP.

TC-IEC (Tandem Connection - Incoming Error Count): Available for HOP only. Bits 1 to 4 of the N1 byte.

TC-BIP (Tandem Connection - Bit Interleaved parity): Available for LOP only. Bits 1 and 2 of the Z6/N2 byte contain the BIP-2 computation of the payload.

TC-REI (Tandem Connection - Remote Error Indication): Bit 5 of N1 or Z6/N2 byte is set to **1**.

OEI (Outgoing Error indication): Bit 6 of the N1 or Z6/N2 byte is set to **1**.

- Amount: Select the amount of error to be generated. Choices are 1 through 50. The default setting is 1.
- Send button: Press Send to manually generate error(s) according to the Error Type and the Amount of Errors selected.
- Rate: Press Rate to select the injection rate for the selected error. Choices and default setting depend on the test path.
- ➤ Continuous: When activated, generates the selected error to its theoretical maximum rate. This setting is disabled by default.
- ➤ On/Off button: The On/Off button is used to activate/deactivate the selected automated error at the rate specified or continuously when continuous is enabled. This setting is disabled (Off) by default.

Alarm Generation

- ► **TC-RDI** (Tandem Connection Remote Defect Indication): Generates a TC-RDI defect. Bit 8 of the N1/Z6/N2 byte multiframe 73 is set to "1".
- ➤ ODI (Outgoing Defect Indication): Generates a ODI defect. Bit 7 of the N1/Z6/N2 byte frame 74 is set to "1".
- TC-IAIS (Tandem Connection Incoming Alarm Indication Signal): Generates an incoming AIS defect.
 For HOP: Bits 1 through 4 of the N1 byte are set to "1110".
 For LOP: Bit 4 of the Z6/N2 byte is set to "1".
- ► **TC-LTC** (Tandem Connection Loss of Tandem Connection): Generates a wrong FAS multiframe indicator sequence.
- TC-UNEQ (Tandem Connection Unequipped): For HOP: Generates an all "0"s pattern in the higher order path signal label byte (C2), the TCM byte (N1) and the path trace byte (J1), and a valid BIP-8 bytes (B3).

For LOP: Generates an all "0"s pattern in the lower order path signal label (bit 5, 6, 7 of byte V5), the TCM byte (Z6/N2) and the path trace byte (J2), and a valid BIP-2 (bits 1, 2 of V5 byte).

TC Access Point Identifier

Message allows the selection of the APId (Access Point Identifier) message to be generated. Up to 15 characters are allowed (a CRC-7 byte will be added in front for a total of 16 bytes). The default setting is **EXFO TCM**.

Note: The message value should be ACSII suitable characters.

TCM RX

Press TEST, HOP/LOP, and TCM (under TCM RX).

Configuration	Error Analysis H C O TC-REI	Seconds	Count	Rate [{0}]	Alarm Analysis H C O TC-RDI	Seconds
	TC-VIOL				ODI	
	OEI				TC-IAIS	
	TC-IEC	-			TC-LTC	
TC Access Point Identifier Received Message Expected Message					 TC-TIM TC-UNEQ 	
				Enable TC-TIM	Enable TC-UNE	Q
Path OH	Ptr Adj TCM PM					

Note: This tab is not available with VCAT, LCAS and GFP.

The TCM Analyzer tab gives alarms and errors status for the Tandem Connection sub-layer.

Configuration

Enable TCM: Allows the activation of the Tandem Connection Monitoring (TCM). This setting is disabled by default.

Error Analysis

- TC-REI (Tandem Connection Remote Error Indication): The TC-REI indicates errored blocks caused within the Tandem Connection (bit 5 of the N1/Z6/N2 byte).
- TC-VIOL (Tandem Connection Violations): For HOP: TC-VIOL indicates the number of B3 parity violation within the tandem connection for STS-1 SPE/VC-3 and above. For LOP: TC-VIOL indicates the number of violation within the tandem connection for VT6 SPE/VC-2 and below.

- ➤ OEI (Outgoing Error Indication): The OEI indicates errored blocks of the outgoing VTn/VC-n (bit 6 of the N1 byte).
- ➤ TC-IEC (Tandem Connection Incoming Error Count): The TC-IEC indicates the number of B3 parity violations detected at the TC Source for STS-1 SPE/VC-3 and above (bits 1 to 4 of the N1 byte). Available for HOP only.

Number of BIP-8 violations	Bit 1	Bit 2	Bit 3	Bit 4
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
0	1	0	0	1
0	1	0	1	0
0	1	0	1	1
0	1	1	0	0
0	1	1	0	1
0 (IAIS)	1	1	1	0
0	1	1	1	1

Alarm Analysis

- TC-RDI (Tandem Connection Remote Defect Indication): For SONET: The TC-RDI is declared when bit 8 of the N1/Z6 byte frame 73 is set to "1". For SDH: The TC-RDI is declared when bit 8 of the N1/N2 byte multiframe 73 is set to "1".
- ODI (Outgoing Defect Indication): For SONET: The ODI is declared when bit 7 of the N1/Z6 byte frame 74 is set to "1". For SDH: The ODI is declared when bit 7 of the N1/N2 byte multiframe 74 is set to "1".
- TC-IAIS (Tandem Connection Incoming Alarm Indication Signal): For HOP: The TC-IAIS is declared when bits 1 through 4 of the N1 byte are set to "1110". For LOP: The TC-IAIS is declared when bit 4 of the Z6/N2 byte is set to "1".
- ► **TC-LTC** (Tandem Connection Loss of Tandem Connection): The TC-LTC is declared when receiving a wrong FAS multiframe.
- ➤ TC-TIM (Tandem Connection Trace Identifier Mismatch): The TC-TIM is declared when the received message differs from the defined expected message. The TC-TIM is also declared when receiving invalid ASCII characters or when errors are detected with CRC-7.
- ➤ TC-UNEQ (Tandem Connection Unequipped): For HOP: TC-UNEQ is declared when receiving an all "0"s pattern in the higher order path signal label byte (C2), the TCM byte (N1) and the path trace byte (J1), and a valid BIP-8 bytes (B3). For LOP: TC-UNEQ is declared when receiving an all "0"s pattern in the lower order path signal label (bit 5, 6, 7 of byte V5), the TCM byte (Z6/N2) and the path trace byte (J2), and a valid BIP-2 (bits 1, 2 of V5 byte).
- **Note:** The VT SPE / VC payload and the remaining path overhead bytes are unspecified.
TC-Access Point Identifier

- Received Message displays the APId (Access Point Identifier) message received.
- *Note: The <crc7> string represents the CRC-7 byte.*
 - ➤ Expected Message allows the edition of the expected APId (Access Point Identifier) message. Up to 15 characters are allowed (a CRC-7 byte will be added in front for a total of 16 bytes). The default setting is EXFO TCM.
- **Note:** The message value should be ACSII suitable characters.
 - ► Enable TC-TIM has to be enabled to give access to the edition of the expected message and to enable the TC-TIM alarm analysis.

Performance Monitoring (PM)

Note: This tab is not available with VCAT, LCAS and GFP.

The Performance Monitoring tab gives error performance events and parameters for the DSn/PDH or SONET/SDH circuit under test.

For SONET/SDH Section/RS: Press **TEST**, **Sec-Line**, and **Section/RS PM** (under **Sec-Line/RS-MS RX**).

For SONET/SDH Line/MS: Press **TEST**, **Sec-Line**, and **Line/MS PM** (under **Sec-Line/RS-MS RX**).

For SONET/SDH HOP: Press **TEST**, **HOP**, and **PM** (under **HOP RX**). For SONET/SDH LOP: Press **TEST**, **LOP**, and **PM** (under **LOP RX**). For DSn-PDH: Press **TEST**, **DSn-PDH**, and **DS1/DS3/E1/E2/E3/E4 PM** (under **DSn-PDH RX**).

For Pattern: Press TEST, Pattern, and PM (under Pattern RX).

G.828	rd ISM	•						
Near-E	nd	1			Far-En	d	-	
EB		UAS		SEP	 EB		UAS	
ES		ESR		SEPI	 ES		ESR	
SES		SESR		1	SES		SESR	
BBE		BBER		1	BBE		BBER	
Path	OH Ptr Adj	ТСМ	РМ					

Standard

Select the desired standard from the list. The default setting is **G.826 ISM** for FTB-8105/15/20/30 and **G.828 ISM** for FTB-8140. Choices are **G.821**, **G.826 ISM**¹, **G.828 ISM**, **G.829 ISM**, **M.2100 ISM**¹, **M.2100 OOSM**, and **M.2101 ISM**.

Note: G.821 and M.2100 OOSM are only available when receive Live Traffic from the Pattern RX on page 409 is not activated.

Analyzed Signal	G.821	G.826 ISM ¹	G.828 ISM	G.829 ISM	M2100 ISM ¹	M2100 OOSM	M2101 ISM
Pattern	Х					Х	
DS1/DS3 / E1/E2/E3/E4		Х			Х		
STS-Ne/VTn / STM-Ne/AU-n/ TU-n			Х				Х
OC-N Section / STM-N RS				Х			
OC-N Line / STM-N MS				Х			Х

Standard's availability

^{1.} Not available on the FTB-8140.

Near-End

- ► EFS (Error Free Second) (G.821, G.826, G.828, and G.829): Gives the number of seconds within which no error occurred.
- **EC** (Error Count) (**G.821** only): Gives the number of bit errors.
- ► EB (Errored Block) (G.826, G.828, and G.829): Gives the count of blocks in which one or more bits are in error.
- ► ES (Errored Second):

For G.821, and M.2100 OOSM: Gives the number of seconds within which one or more bit error occurred, or during which Loss Of Signal (LOS) or AIS is detected.

For G.826, G.828, G.829, M.2100 ISM, and M.2101: Gives the number of seconds within which one or more anomalies (FAS, EB, etc.) occurred, or at least one defect occurred.

► SES (Severely Errored Second)

For G.821, and M.2100 OOSM: Gives the number of seconds within which a bit error ratio is $\geq 10^{-3}$, or during which one defect (LOS/AIS) is detected.

For G.826, G.828, G.829 and M.2101: Gives the number of seconds within which anomalies (FAS, EB, etc.) are $\geq X\%$ or at least one defect occurred. X = 30% for DSn/PDH signals; see the following table for SONET/SDH signals SES threshold.

	STS-1 STM-0	OC-3 STM-1	OC-12 STM-4	OC-48 STM-16	OC-192 STM-64	OC-768 STM-256
Path	30%	30%	30%	30%	30%	30%
Line/MS	15%	15%	25%	30%	30%	30%
Section/RS	10%	30%	30%	30%	30%	30%

For **M.2100 ISM**: Gives the count of the seconds within which anomalies (frame bit errors, CRC block errors, etc.) are \geq Y or at least one defect occurred. Y depends on the type of DSn/PDH signal as described in the following table.

Signal	SES Threshold
DS1 (SF)	8 frame bit errors (Near-End)
DS1 (ESF)	320 CRC-6 block errors (Near-End) 320 CRC-6 block errors (Far-End, if FDL enabled)
E1 (Framed without CRC-4)	28 frame bit errors (Near-End)
E1 (Framed with CRC-4)	805 CRC-4 block errors (Near-End) 805 E-bit errors (Far-End)
DS3 (M13)	2444 P-bit errors (Near-End) or 5 F-bit errors (Near-End)
DS3 (C-bit Parity)	2444 P-bit errors (Near-End) or 5 F-bit errors (Near-End) 2444 FEBE errors (Far-End)
E2 (Framed)	41 frame bit errors (Near-End)
E3 (Framed)	52 frame bit errors (Near-End)
E4 (Framed)	69 frame bit errors (Near-End)

- ► **BBE** (Background Block Error) (**G.826**, **G.828**, **G.829**, and **M.2101**): Gives the count of Errored Block not occurring as part of a SES.
- ➤ UAS (Unavailable Second): Gives the count of the seconds corresponding to the periods of unavailable time that begins at the onset of 10 consecutive SES events, including these 10 seconds. A period of available time shall begin at the onset of 10 consecutive non-SES events, including these 10 seconds.

► ESR (Errored Second Ratio) (G.821, G.826, G.828, and G.829): Gives the ratio of the number of ES in available time (AS) during a fixed measurement interval.

 $ESR = ES \div AS$

SESR (Severely Errored Second Ratio) (G.821, G.826, G.828, and G.829): Gives the ratio of the number of SES in available time (AS) during a fixed measurement interval.

 $SESR = SES \div AS$

BBER (Background Block Error Ratio) (G.821, G.826, G.828, and G.829): Gives the ratio of BBE in available time (AS) to total blocks in available time during a fixed measurement interval. The count of total blocks excludes all blocks during SESs.

- ➤ DM (Degraded Minutes) (G.821 only): A Degraded Minute is the number of minutes in which the estimated error rate exceeds 10⁻⁶ but does not exceed 10⁻³. DM is determined by collecting all of the Available Seconds, removing any SES grouping the result in 60-second long groups and counting a 60-second long group as degraded if the cumulative errors during the seconds present in the group exceed 10⁻⁶.
- ➤ SEP (Severely Errored Period) (G.828 only): A sequence between 3 to 9 consecutive SES. The sequence is terminated by a second which is not a SES.
- SEPI (Severely Errored Period Intensity) (G.828 only): Gives the count of SEP events in available time, divided by the total available time in seconds.

Far-End

- ► EFS (Error Free Second): Gives the count of the seconds within which no error occurred or when a defect is detected on the near-end.
- **EC** (Error Count) (**G.821** only): Gives the number of bit errors.
- ► **EB** (Errored Block) (**G.826**, **G.828**, and **G.829**): Gives the count of blocks in which one or more bits are in error.
- ES (Errored Second): For G.826, G.828, G.829, M.2100 ISM, and M.2101: Gives the count of the seconds within which one or more anomalies (FAS, EB, etc.) occurred or at least one defect occurred.
- **SES** (Severely Errored Second):

For **G.826**, **G.828**, **G.829**, and **M.2101**: Gives the count of the seconds within which anomalies (FAS, EB, etc.) is $\geq X\%$ or at least one defect occurred. X = 30% for DSn/PDH signals; see the following table for SONET/SDH signals.

	STS-1 STM-0	OC-3 STM-1	OC-12 STM-4	OC-48 STM-16	OC-192 STM-64	OC-768 STM-256
Path	30%	30%	30%	30%	30%	30%
Line/MS	15%	15%	25%	30%	30%	30%
Section/RS	10%	30%	30%	30%	30%	30%

For M.2100 ISM: Gives the count of the seconds within which anomalies (frame bit errors, CRC block errors, etc.) are \geq Y or at least one defect occurred. Y depends on the type of DSn/PDH signal as described in the following table.

Signal	SES Threshold
DS1 (SF)	8 frame bit errors (Near-End)
DS1 (ESF)	320 CRC-6 block errors (Near-End) 320 CRC-6 block errors (Far-End, if FDL enabled)
E1 (Framed without CRC-4)	28 frame bit errors (Near-End)
E1 (Framed with CRC-4)	805 CRC-4 block errors (Near-End) 805 E-bit errors (Far-End)
DS3 (M13)	2444 P-bit errors (Near-End) or 5 F-bit errors (Near-End)
DS3 (C-bit Parity)	2444 P-bit errors (Near-End) or 5 F-bit errors (Near-End) 2444 FEBE errors (Far-End)
E2 (Framed)	41 frame bit errors (Near-End)
E3 (Framed)	52 frame bit errors (Near-End)
E4 (Framed)	69 frame bit errors (Near-End)

► **BBE** (Background Block Error) (G.828 and G.829 Line): Gives the count of Errored Blocks not occurring as part of an SES.

► UAS (Unavailable Second): Gives the count of the seconds corresponding to the period of unavailable time that begins at the onset of 10 consecutive SES events, including these 10 seconds. A period of available time shall begin at the onset of 10 consecutive non-SES events, including these 10 seconds.

 ESR (Errored Second Ratio): Gives the ratio of the number of ES in available time to total seconds in available time during a fixed measurement interval.

 $ESR = ES \div AS$

➤ SESR (Severely Errored Second Ratio): Gives the ratio of the number of SES in available time to total seconds in available time during a fixed measurement interval.

 $SESR = SES \div AS$

➤ BBER (Background Block Error Ratio): Gives the ratio of BBE in available time to total blocks in available time during a fixed measurement interval. The count of total blocks excludes all blocks during SESs.

Client Offset TX

Note: Available with ODUflex CBR and Gb Ethernet client. Not available in Through mode.

For ODUflex CBR, press **TEST**, **BERT**, and **Client Offset**. For Gb Ethernet, press **TEST**, **Gb Ethernet**, and **Client Offset**.

Frequency

➤ Frequency Offset (ppm): Allows entering a positive or a negative client frequency offset in ppm. The default setting is 0.

On/Off button: Allows enabling the frequency offset generation. This setting is disabled (Off) by default.

Actual Frequency (bps): Indicates the frequency (Nominal fequency + port frequency offset + client frequency offset) used for transmission fo the client signal. Refer to *Frequency* on page 149 for the port frequency offset. ► Nominal Frequency (bps): Indicates the nominal frequency of the signal.

Client	Frequency Offset ^a	Nominal Frequency
Gb Ethernet	± 115 ppm	1250000000 bps
ODUflex CBR	± 115 ppm ^b	TX Rate configured (Refer to <i>TX Rate</i> on page 407).

- a. The Client frequency offset range is guaranteed for a clock source signal at 0 ppm offset. In the event that the clock source signal already has an offset then, the output signal may exhibit an offset larger than the range specified. For example, if the clock source signal has an offset of +20 ppm then, the Client frequency offset could be up to 135 ppm (115 ppm + 20 ppm).
- b. The Client offset function does not allow the generation of a signal with a rate above 100% of the TX rate. For example, if the TX Rate is set to 100%, the allowed offset range will be -115 ppm to 0 ppm.

Client Offset RX

Note: Available with ODUflex CBR and Gb Ethernet client.

For ODUflex CBR, press **TEST**, **BERT**, and **Client Offset**. For Gb Ethernet, press **TEST**, **Gb Ethernet**, and **Client Offset**.

Alarm H	Configuration ✓ Frequency Offset Analysis Expected Frequency (bps) [1241181964 ✓ Alarm Analysis H C Seconds ✓ Frequency	Frequency Analyss Frequency (bps) Frequency Offset Max. Negative Offset Max. Positive Offset 	Offset Unit	- BERT
	Pattern PM Client Offset			
Error/	Alarm Statistics Client Offset			 🗕 Gb Ethernet

Configuration

Note: The configuration of the expected frequency offset is available with ODUflex CBR test only.

► Frequency Offset Analysis

Allows to enable the frequency offset measurements. This setting is enabled by default for normal mode, and disabled for Through mode.

► Expected Frequency (bps)

For normal mode, the frequency is set to the configured TX Rate (Refer to *TX Rate* on page 407) and the **Frequency Offset Analysis** check box is selected.

For Through mode (refer to *Creating an OTN (OTU1 and OTU2) Test Case* on page 92), enter the expected frequency in bps and then select the **Frequency Offset Analysis** check box.

Alarm Analysis

Frequency alarm indicates that the received client signal rate meets the standard rate specifications (green) or not (red). Not available with ODUflex CBR when **Frequency Offset Analysis** is disabled.

Client	Standard Rate Specification
Gb Ethernet	1250000000 ± 131875 bps (±105.5 ppm)
ODUflex CBR	Expected RX rate ±105.5 ppm (See <i>Expected Frequency (bps)</i> on page 515)

Frequency Analysis

The FTB-8100 Series allows the following frequency monitoring range.

Client	Measurement range
Gb Ethernet	1250000000 ± 150000 bps (±120 ppm)
ODUflex CBR	Expected RX rate ±120 ppm (See <i>Expected Frequency (bps)</i> on page 515)

Frequency (bps) indicates the frequency of the input signal in bps.

Note: The following frequency measurements are not available with ODUflex CBR when **Frequency Offset Analysis** is disabled.

Frequency Offset indicates the offset between the expected rate specification and the rate of the input signal.

Max. Negative Offset indicates the offset between the expected rate specification and the smallest rate recorded from the received signal.

Max. Positive Offset indicates the offset between the expected rate specification and the largest rate recorded from the received signal.

Offset Unit allows the selection of the frequency offset unit. Choices are **bps** and **ppm**. The default setting is **ppm**.

20 System Tab

The System tab gives access to tabs containing general functions related to the FTB-8100 Series operation.

Tab		
Clock Synchronization	Clock Synchronization	520
Preferences	Application Preferences	528
	Default Test Preferences	530
Module Information	Module Information	544
Software Options	Software Options	546
Remote Control	Remote Control	549

Clock Synchronization

Press System and Clock Synchronization.

Clock Synchronization TX Configuration Clock Mode Une Coding	Interface Type LEO None Franing Gradient Content of Co
RX Configuration Interface Type None Line Coding	Termination Mode Alarm Analysis LO5 Alarm Analysis Frequency (bps) Alarm Analysis Frequency (bps) Frequency Offset Frequency Offset Frequency Fr
Backplane Configuration Clock Mode Internal	Enable Alarm Analysis LOC
Configuration Divider Ratio	Signal Analysis Frequency (MHz)

Note: *TX and RX clock configuration is not available when the test mode is set to* **Dual RX**. *Refer to* Test Configuration *on page 126 for more information.*

ТΧ

Note: *TX* clock configuration is only possible when the RX clock is set to None.

Configuration: Allows the configuration of the clock that will be generated. First select the Interface Type then, the other parameters will become accessible for configuration.

 Interface Type: Allows the selection of the clock interface signal (DS1/E1/2M) that will be generated. Choices are: None, DS1, E1, and 2 MHz. The default setting is None.

- ➤ LBO (Line Build Out): Allows the selection of the interface Line Build Out that meets the interface requirements over the full range of cable lengths. Available with DS1 interface only. Choices are: +3.0 dBdsx (533-655 ft), +2.4 dBdsx (399-533 ft), +1.8 dBdsx (266-399 ft), +1.2 dBdsx (133-266 ft), and +0.6 dBdsx (0-133 ft).
- ► Line Coding: Allows the selection of the interface line coding. Choices are AMI and B8ZS for DS1; AMI and HDB3 for E1.
- Note: Line Coding is not available with 2 MHz interface.
 - ➤ Framing: Allows the selection of the interface framing. Choices are SF and ESF for DS1; PCM 30, PCM 30 CRC-4, PCM 31, and PCM 31 CRC-4 for E1.
- **Note:** Framing is not available with 2 MHz interface.
 - Clock Mode: Allows the selection of the source clock that will be used to generate the clock on the selected interface type. Choices are:

Internal: Internal clock of the unit (STRATUM 3).

Recovered: Clock from the test optical/electrical port input signal.Not available on the FTB-8140.

Backplane: 8 kHz clock from another module on the FTB-500. Note that the other module must support the backplane clock feature and must be enabled (refer to *Backplane* on page 526 for more information).

Signal Analysis

 Output Presence: Indicates the presence of a signal at the output interface/port (green) or not (gray).

Alarm Analysis

► LOC (Loss Of Clock): Indicates if the module is able to synchronize with the selected clock mode and generates a valid synchronization signal at the AUX output port (green) or not (red; no signal is generated at the AUX output port).

RX

Note: RX clock configuration is only possible when the TX clock is set to None.

Configuration: Allows the selection and configuration of the input clock. This clock will be used for test synchronization if External clock has been selected during test setup.

- Interface Type: Allows the configuration of the clock that will be received. First select the Interface Type then, the other parameters will become accessible for configuration. Choices are: None, DS1, E1, and 2 MHz.
- ► **Termination Mode**: Specifies how the unit is connected to the synchronization signal. Choices are:

For DS1:

Term: Provides an input that terminates the DS1 signal. **Mon**: Provides high-input impedance and compensation for resistive loss. This setting is useful for monitoring DS1 signals at DSX monitor points, which are resistor-isolated.

Bridge: Provides high-input impedance for bridging lines that are already terminated. This setting is useful for bridging directly across copper cable pairs.

For E1:

Term: Provides an input that terminates the E1 signal. **Monitor**: Provides high-input impedance and compensation for resistive loss. This setting is useful for monitoring E1 signals at monitor points, which are resistor-isolated.

Bridge: Provides high-input impedance for bridging lines that are already terminated. This setting is useful for bridging directly across copper cable pairs.

► Line Coding: Allows the selection of the interface line coding. Line Coding is not available with 2 MHz interface. Choices are:

For DS1: AMI and B8ZS. The default setting is B8ZS.

For E1: AMI and HDB3. The default setting is HDB3.

► **Framing**: Allows the selection of the interface framing. Framing is not available with 2 MHz interface. Choices are:

For DS1: SF, and ESF. The default setting is SF.

For E1: PCM30, PCM30 CRC-4, PCM31, and PCM31 CRC-4. The default setting is PCM30.

Alarm Analysis

Note: AIS and LOF alarms are not available for 2MHz clock.

- ► LOS (Loss Of Signal): The LOS alarm indicates absence of an input signal or an all-zeros signal is received.
- ► AIS (Alarm Indication Signal): The AIS alarm is declared when an unframed all-ones signal is received.
- ► LOF (Loss Of Frame):

For DS1: The LOF alarm indicates that there was no valid framing pattern for 40 milliseconds and there was at least one OOF error during this period.

- ➤ With SF Framing: The Loss-of-Frame condition will be assumed when 2 terminal frame and/or signaling frame errors in 5 consecutive frames have been received.
- ➤ With ESF Framing: The Loss-of-Frame condition will be assumed when 2 FPS frame errors in 5 consecutive frames have been received.

For E1: The LOF alarm indicates that three consecutive incorrect frame alignment signals have been received.

► **Frequency**: The Frequency alarm indicates if the received signal rate meets (green) or not (red) the following rate specifications.

Signal	Rate specification
DS1	1544000 ±15 bps (±9.2 ppm)
E1	2048000 ±19 bps (±9.2 ppm)
2MHz	2048000 ±19 Hz (±9.2 ppm)

Frequency Analysis

- ► **Frequency (bps)** displays the received signal rate in bps for DS1 and E1 interfaces and in Hz for 2 MHz interface.
- ➤ Frequency Offset displays the positive or negative frequency offset between the standard rate specification and the rate from the received signal. Frequency unit can be set to bps, or ppm for DS1/E1 and is set to Hz for 2 MHz. The default setting is bps for DS1/E1 and Hz for 2 MHz.

Backplane

The backplane feature allows sharing the same backplane 8 kHz clock for synchronization group purposes. The other module must support the backplane clock feature to be able to use the generated backplane clock.

Configuration: Allows the selection and configuration of the backplane 8 kHz clock that will be generated when enabled.

 Clock Mode: Allows the clock source selection. The default setting is Internal.

Internal: Internal clock of the unit (STRATUM 3).

External: Clock received from the connected DS1/E1/2M external clock signal (AUX port). See *Clock Synchronization - RX* on page 522 to complete the external clock settings.

Recovered: Clock from the test optical/electrical port input signal. Not available with OTU1e/OTU2e/OTU1f/OTU2f.

Enable: Allows enabling the selected backplane clock.

Alarm Analysis

LOC (Loss Of Clock): Indicates if the module is able (green) or unable (red) to synchronize with the selected test clock.

REF OUT/Ref Output

Note: REF OUT is only available with the FTB-8130, FTB-8130NGFTB-8130NGE, and 8140 models. The REF OUT signal is automatically enabled on the REF OUT port (SMA connector) when the laser of the **10G/11.3G** port is turned ON.

Configuration

➤ Divider Ratio: Allows the selection of the transmit test clock divider. Choices are 16, 32, and 64. The following table shows the corresponding output frequency in MHz.

Clock	Output frequency for						
divider	OC-192/ STM-64	ΟΤU2	OTU1e	OTU2e	OTU1f	OTU2f	
16	622.08 MHz	669.33 MHz	690.57 MHz	693.48 MHz	704.38 MHz	707.35 MHz	
32	311.04 MHz	334.66 MHz	345.29 MHz	346.74 MHz	352.19 MHz	353.68 MHz	
64	155.52 MHz	167.33 MHz	172.64 MHz	173.37 MHz	176.10 MHz	176.84 MHz	

For OC-192/STM-64/OTU2/OTU1e/OTU2e/OTU1f/OTU2f

For OC-768/STM-256/OTU3, there is no clock divider. The clock output frequency is set as follow.

Output frequency for OC-768/STM-256	Output frequency for OTU3
2488.32 MHz	2688.65 MHz

Signal Analysis

- **Frequency (MHz)**: Displays the generated signal frequency in MHz.
- Output Presence: Indicates the presence of a signal at the REF OUT port (green) or not (gray).

Application Preferences

Press System, and Preferences.

Preferences	
Application Preferences	
Time Options	Display Options
Time Format Time Zone	Reset To Display Default Pages Layout
Test Time Display Mode Relative	SONET Hierarchical Notation

Note: The application preferences are saved per slot on the FTB-500 meaning that the configuration will not follow the module when changing the module from one slot to another. However, a configuration on a specific slot will remain when replacing a module by another module of the same model.

Time Options

► **Time Format**: Sets the absolute time format of the GUI (current time and timers). The default setting is **ISO**. Choices are:

ISO displays the time and timers with the yyyy-mm-dd hh:mm:ss format.

USA displays the time and timers with the mm/dd/yy hh:mm:ss AM/PM format.

➤ Time Zone: Allows the selection of the time zone source. The default setting is Local.

UTC/GMT displays the time base on the UTC time zone.

Local displays the time from the FTB-500 unit or from the PC when using **Visual Guardian Lite**.

► **Test Time Display Mode**: Allows the selection of the test time mode displayed in the Logger panel. The default setting is **Relative**.

Relative displays the time elapsed since the beginning of the test for a test event.

Absolute displays the date and time of a test event.

Display Options

- ► **Reset to Display Default Pages Layout** when enabled, resets the page layout to its default layout each time a test is modified.
- ➤ SONET Hierarchical Notation when enabled sets the test setup grid to present STS-3 and STS-1 [STS-3#,STS-1#] numbers for the OC-n interface. Refer to *Hierarchical Notation* on page 616 for more information.

Default Test Preferences

Press System and Preferences.

Laser Control Claser On STS-1 Fixed Stuff Columns SmartMode - Launch Test Test Pattern PRBS 2^2-3-1 Invert RX Live Traffic De tal. of Live	Badgowud Traffic LCAS Auto-Add at Startup OTN (Mux Type PT 21) LCAS Auto-Add at Startup A15 V OTN (Mux Type PT 20) Source/Sink Enable PR8531 Pattern CO-192/STM 46 REIL/MS-REI SONET/SOH HOP M1 Only Equipped SOURT/SOH UP Equipped Source/Sink Enable SoNET/SOH UP Source/Sink Enable Equipped Source/Sink Enable SoNET/SOH TOP Source/Sink Enable Equipped Source/Sink Enable Als Source/Sink Enable
DS1 Configuration	

Allows setting the default test parameters that will be applied every time a test is created manually using **Test Setup** or when using SmartMode (not supported on the FTB-8140). Changes to the default test preferences will only apply when a new test case is created.

Note: The default test preferences are saved per slot on the FTB-500 meaning that the configuration will not follow the module when changing the module from one slot to another. However, a configuration on a specific slot will remain when replacing a module by another module of the same model.

Configuration

- Laser On: Selects Laser On every time a test is created manually using the wizard or when using SmartMode. The Laser On check box is selected by default.
- ► STS-1 Fixed Stuff Columns

Enable Bulk Filled Override fills up the bytes of the STS-1 SPE's columns 30 and 59 with the selected pattern from the tab *Pattern TX* on page 405 when the **Enable Bulk Filled Override** check box is selected. The **Enable Bulk Filled Override** check box is selected by default.

► SmartMode - Launh Test

Allows the configuration of the default TX/RX **Test Pattern** that will be used when starting a test case using SmartMode.

Test Pattern: Select the test pattern from the list. Choices are **PRBS** 2 ^ 31-1, **PRBS** 2 ^ 23-1, **PRBS** 2 ^ 20-1, **PRBS** 2 ^ 15-1, **PRBS** 2 ^ 11-1, **PRBS** 2 ^ 9-1, 1100, 1010, 1111, 0000, 1in8, and 1in16.

Invert: Allows the inversion of the test pattern. When enabled, every 0 in the pattern will be changed for 1 and every 1 for 0. For example the pattern 1100 will be sent as 0011. This check box is cleared by default.

RX Live Traffic: Analyzes the line traffic without test pattern thus squelching the pattern loss and bit error indication. This check box is cleared by default meaning that the **Test Pattern** and **Invert** configuration will be used as well for the RX direction.

► Background Traffic

The Background Traffic is used to generate traffic on the channels/paths/timeslots that are not part of the defined test.

► OTN (Mux Type PT 21)

Allows the selection of the ODU FLEX multiplexed background traffic. Choices are **AIS**, **NULL Client (All Zeros)**, **PRBS31 pattern** and **Unallocated**.

For ODU2 background traffic (ODUflex client):

The above example shows that ODU2 that contains ODUflex foreground traffic uses ODUflex (one tributary slot) background or Unallocated traffic.

For ODU2 background traffic (ODU0 client):

The above example shows that ODU2 that contains ODU0 foreground traffic uses ODUflex (one tributary slot) background or Unallocated traffic.

For ODU3 background traffic (ODUflex client):

The above example shows that ODU3 that contains ODUflex foreground traffic uses ODUflex (one tributary slot) background or Unallocated traffic.

For ODU3 background traffic (ODU0 client):

The above example shows that ODU3 that contains ODU0 foreground traffic uses ODUflex (one tributary slot) background or Unallocated traffic.

► OTN (Mux Type PT20)

Allows the selection of the ODU multiplexed background traffic. Choices are **AIS**, **NULL Client (All Zeros)**, and **PRBS31 pattern**.

For ODU1 background traffic (ODU0 client):

The above example shows that ODU1 that contains ODU0 foreground traffic uses ODU0 background traffic.

For ODU2 background traffic (ODU1 client):

The above example shows that ODU2 that contains ODU1 foreground traffic uses ODU1 background traffic.

For ODU2 background traffic (ODU0 client in ODU1):

The above example shows that ODU2 that contains ODU0 in ODU1 foreground traffic uses ODU0 background traffic. The remaining tributaries use ODU1 background traffic.

For ODU3 background traffic (ODU1 client):

The above example shows that ODU3 that contains ODU1 foreground traffic uses ODU1 background traffic.

For ODU3 background traffic (ODU2 client):

The above example shows that ODU3 that contains ODU2 foreground traffic uses ODU1 or ODU2 background traffic depending on the ODU2 configuration made in the test setup. The foreground structure modulates the background structure.

When the **Fixed Structure** check box is selected, ODU2 background traffic is used.

When the **Fixed Structure** check box is cleared, ODU1 background traffic is used.

For ODU3 background traffic (ODU1 client in ODU2):

The above example shows that ODU3 that contains ODU1 in ODU2 foreground traffic uses ODU1 background traffic. The remaining tributaries are dependent on the ODU2 configuration made in the test setup. The foreground structure modulates the background structure.

When the **Fixed Structure** check box is selected, ODU2 background traffic is used.

When the **Fixed Structure** check box is cleared, ODU1 background traffic is used.

For ODU3 background traffic (ODU0 client in ODU1 in ODU2):

The above example shows that ODU3 that contains ODU0 in ODU1 in ODU2 foreground traffic uses ODU1 background traffic. The remaining tributaries are dependent on the ODU2 configuration made in the test setup:

When the **Fixed Structure** check box is selected, ODU2 background traffic is used.

When the **Fixed Structure** check box is cleared, ODU1 background traffic is used.
► SONET/SDH HOP

Allows the selection of the default high order path background traffic. Choices are **AIS**, **Unequipped**, and **Equipped** (**PRBS 2**^2**3**-1 pattern). The default setting is **Equipped**.

For SONET/SDH rates up to OC-192/STM-64: The following diagram shows a test case data path that is terminated right after SONET/SDH high order path. High order background traffic is automatically adapted to the rate (STS-1, AU-4, or AU-4) signal level for the paths that are not defined in the test case. In the situation where the traffic pattern is replaced by GFP the background traffic remains the same for the STS-1/AU-3/AU-4 that are not involved in the test case data path. In the situation where contiguous concatenation or virtual concatenation is used, the background traffic continues to be applied on the remaining timeslots not involved in the test case data path.

For OC-768/STM-256: The following diagrams above show test case data paths that are terminated right after the SONET/SDH high order path using STS-1, AU-3, and AU-4.

► SONET/SDH LOP

Allows the selection of the default low order path background traffic. Not suppoted on the FTB-8140. Choices are **AIS**, **Unequipped**, and **Equipped** (**PRBS 2 ^ 23-1** pattern). The default setting is **Equipped**.

The diagram above shows a test case data path that is terminated at the SONET/SDH low order path. The remaining STS-1 or AU-3 timeslot not involved in the test case are filled with background traffic of STS-1 or AU-3 level depending on the interface being SONET or SDH. At the low order path level, the data path not involved in the data path defined in the test case are filled with a background traffic equivalent to the VT Group (VTG) or Tributary Unit Group (TUG) type defined by the traffic selected in the data path. Further, the remaining VTG or TUG within the high order path, selected in the test case, are respectively filled with traffic of equivalent rate for SONET and SDH data paths.

► DSn/PDH

Allows the selection of the default timeslot background traffic. Not suppoted on the FTB-8140. Choices are **AIS** and **All zeros**. The default setting is **AIS**.

The diagram above shows a test case defined with DSn/PDH traffic where the background traffic is also inserted for the unused timeslots in a test case data path. The insertion is similar to the low order path SONET/SDH terminated signal where the background traffic format inserted uses the same rate as the one defined in the test case data path.

► LCAS Auto-Add at Startup

Source/Sink Enable: This setting allows to enable by default the **Add Member(s)** at Start for **Source** and **Sink** every time a test is created manually using **Test Setup** or when using **SmartMode**. This setting is disabled by default. Not suppoted on the FTB-8140.

► OC-192/STM-64 REI-L/MS-REI

Computation Method: Allows to select the default method used to calculate the REI-L/MS-REI error for OC-192 and STM-64 interfaces. Not supported on the FTB-8140.

Choices are **M1 only** and both **M0 and M1**. The default setting is **M1 only**.

► DSn Loop Codes

Allows the configuration of 10 DS1 loop code pairs. Press the **Configuration** button to configure each loop code name, Loop-Up and Loop-Down values. The name field allows up to 16 characters long. Loop-Up and

Name	Loop-Up	Loop-Down	
Loop Code 1	10000	100	
Loop Code 2	10000	100	
Loop Code 3	10000	100	
Loop Code 4	10000	100	
Loop Code 5	10000	100	
Loop Code 6	10000	100	Files
Loop Code 7	10000	100	Files
Loop Code 8	10000	100	Import
Loop Code 9	10000	100	
Loop Code 10	10000	100	Export

The **Import** button allows to import loop codes from a previously saved file.

The **Export** button allows to save loop codes to a file.

Module Information

Press System and Module Information.

Module ID	Item	r	escription	r i i				
ETR-8130NCE	Location		escipción					
TTD-0130NGL	Slot ID Description Accembly Hardware Revision							
	Serial Number	4	Δ790344					
	Calibration Date	2	006-07-21 03:34:00					
Installed Software Pa	ackages							
Software Product	Item	Description		ľ				
2.8.0.12	SUI Version	2.8.0.12						
	Instrument Version	2.8.0.12						
	Firmware Version	2.8.0.12						
	Boot Version	3.0.0.0						
Hardware Options	Boot Version	3.0.0.0						
Hardware Options -	Boot Version	3.0.0.0 Description						
Hardware Options — Device Type SEP	Boot Version Item Module ID	3.0.0.0 Description FTB-8130NGE						
Hardware Options — Device Type SFP	Boot Version Item Module ID Port Number	3.0.0.0 Description FTB-8130NGE 2						
Hardware Options — Device Type SFP	Boot Version Item Module ID Port Number Vendor Name	3.0.0.0 Description FTB-8130NGE 2 FINISAR CORP.						
Hardware Options — Device Type SFP	Boot Version Item Module ID Port Number Vendor Name Part Number	3.0.0.0 Description FTB-8130NGE 2 FINISAR CORP. FTRJ1321P18TL						
Hardware Options Device Type SFP	Boot Version Item Module ID Port Number Vendor Name Part Number Serial Number	3.0.0.0 Description FTB-8130NGE 2 FINISAR CORP. FTRJ1321P1BTL P0F0T4R						
Hardware Options — Device Type SFP	Boot Version Item Module ID Port Number Vendor Name Part Number Serial Number Revision Number	3.0.0.0 Description FTE-8130NGE 2 FINISAR CORP. FTRJ1321P1BTL P8F0T4R A						
Hardware Options — Device Type SFP	Boot Version Item Module ID Port Number Vendor Name Part Number Serial Number Connector Type	3.0.0.0 Description FTB-8130NGE 2 FINISAR CORP. FTR31321P1BTL P8F0T4R A LC						
Hardware Options – Device Type SFP	Boot Version Item Module ID Port Number Vendor Name Part Number Serial Number Revision Number Connector Type Speed	3.0.0.0 PTB-8130NGE 2 FINISAR CORP. PTR-1321P1BTL P8F0T4R A LC OC-3/STM-1, OC-1	2/51M-4, OC-48/5TM-16/0TUI, 1000Base-UX, FC-1X, FC-2X					
Hardware Options — Device Type SFP	Boot Version Item Module ID Port Number Vendor Name Part Number Serial Number Connector Type Speed Type	3.0.0.0	2/5TM-4, OC-48/5TM-16/0TU1, 1000Base-1X, FC-1X, FC-2X. Reach, FC: Long Distance					

► Installed Software Packages: Indicates the software product version and the GUI, Instrument, Firmware, and Boot versions.

► Module Description

Gives location and description of the FTB-8100 Series module.

► Location

Slot ID indicates the slot number where the FTB-8100 Series is inserted into. A module description appears after the slot ID when defined in ToolBox. Refer to **Tools**, **Remote Control Configuration** and **Module Description** field from the FTB-500 user guide for more information.

➤ Description

Assembly Hardware Revision: Indicates the product assembly hardware revision.

Serial Number: Indicates the module serial number.

Calibration Date: Indicates the last module's calibration date.

► Hardware Options

Gives hardware information related to the SFP/XFP/Transceiver.

► SFP/XFP/TRN: The following information is available for the inserted SFP/XFP/Transceiver.

Module ID Port Number Vendor Name Part Number Serial Number **Revision Number** Connector Type: LC, MT-RJ,SC, ST, FC, etc. Speed: 100Base-FX/LX, 1000Base-SX, FC-1X, FC-2X, FC-4X, 10G, OC-3/STM-1, OC-12/STM-4, OC-48/STM-16/OTU1, OC-192/STM-64/OTU2, or OC-768/STM-256/OTU3 Type: Reach type: FC: Short Distance, LR/LW, SONET/SDH Short Reach (SR), Intermediate Reach (IR), Long Reach (LR), NRZ, DPSK, etc. Wavelength: 850nm, 1310nm and 1550nm. Mode: FC: Multi-Mode(M6) Fiber, SONET/SDH: Single-Mode Fiber (SMF), SONET/SDH Multi-Mode Fiber (MMF), etc.

Software Options

Allows the installation of software options. A software option key will be generated by EXFO for each option bought.

Press System, and Software Option.

oftware Option Key				
×0000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	.oad Key A	pply
vailableOptions				
Category	Name	Description	Status	
Advanced Functions	SK-SMARTMODE	SmartMode	Enabled	
	CK FE-C	Flashing Fiberrations CONFT (CDU	Cashlad	;
Data Over SONET/SDH	SK-CEOS	Cide Optical Ethernet over SONET/SDH	Enabled	
Jata over somer/som	3K-6203	dige optical enterner over somer/som	1 COOPER	
DSn/PDH	SK-DS1-EDI	DS1/1.5M Facility Data Link		
DSn/PDH	SK-DS3-FEAC	DS3/45M Far-End Alarm and Control	chapieu	
OSn/PDH	SK-DSn	Digital Signal		
OSn/PDH	SK-DUALRX	Dual RX		
DSn/PDH	SK-G747	ITU-T Recommendation G. 747	Enabled	
DSn/PDH	SK-PDH	Plesiochronous Digital Hierarchy	Eashlad	
Next-Generation	SK-GEP-E	Framed Generic Framing Procedure	Eashlad	-1
Vext-Generation	SK-HQ-VCAT	High Order Virtual Concatenation		
Vext-Generation	SK-LCAS	Link Capacity Adjustement Scheme		
Vext-Generation	SK-LO-VCAT	Low Order Virtual Concatenation		
Next-Generation	SK-ODU0-GFP-T	Gb Ethernet in ODU0 via GFP-T (OPU0 payload)		
Next-Generation	SK-OTU2-GFP-F	10G over GFP-F over Optical Transport Unit-2 (Exter		
OTN	SK-EoOTN	10G Ethernet over Optical Transport Unit-2		
OTN	SK-ODU0	Optical Data Unit-0 (G.709)		
OTN	SK-ODUFLEX	OTN ODUflex	Enabled	
DTN	SK-ODUMUX	ODU Multiplexing	Enabled	
DTN	SK-OTN-INTR-THRU	OTN Intrusive Through Mode	Enabled	

Configuration

The software license key can be either entered (typed) or loaded (using the **Load Key** button).

- **Software Option key** allows typing the software option key.
- > Load Key button allows selecting a file containing the option key.

The default directory is d:\ToolBox\User Files\SonetSdhAnalyzerG2\Key.

Apply button sends the option key to the FTB-8100 Series. A confirmation message will be displayed. The application is automatically closed. The application must be restarted manually.

Available Options

The available software options are listed with the **Status** indicating what software options are installed (enabled) or not (disabled) on the module.0

Category	Name	Description
Advanced	SK-SMARTMODE	SmartMode
Functions	SK-MULTI- CH-SDT ^d	Multi-Channel SDT
Data Over	SK-EEoS ^a	Electrical Ethernet over SONET/SDH.
SONET/SDH	SK-GEoS ^a	GigE Optical Ethernet over SONET/SDH
DSn/PDH	SK-DSn	Digital Signal
	SK-DS1-FDL	DS1/1.5M Facility Data Link
	SK-DS3-FEAC	DS3/45M Far-End Alarm and Control
	SK-DUALRX	Dual DS1/DS3 RX
	SK-G747	ITU-T Recommendation G.747
	SK-PDH	Plesiochronous Digital Hierarchy
Next-	SK-GFP-F ^a	Framed Generic Framing Procedure
Generation	SK-LCAS ^a	Link Capacity Adjustment Scheme
	SK-HO-VCAT ^a	High Order Virtual Concatenation
	SK-LO-VCAT ^a	Lower Order Virtual Concatenation
	SK-ODU0-GFP-T ^d	Gb Ethernet in ODU0 via GFP-T (OPU0 payload)
	SK-OTU2-GFP-F	10G over GFP-F over Optical Transport Unit-2 (Extended OPU2 payload)

System Tab

Software Options

Category	Name	Description
OTN ^b	SK-OTU1	Optical Transport Unit-1 (G.709)
	SK-OTU2 ^c	Optical Transport Unit-2 (G.709)
	SK-EoOTN ^d	10G Ethernet over Optical Transport Unit 2
	SK-OTU2-1e-2e ^c	Optical Transport Unit 2 Overclocked (10G-Ethernet)
	SK-OTU2-1f-2f ^c	Optical Transport Unit 2 Overclocked (10G-Fibre Channel)
	SK-OTU3 ^e	Optical Transport Unit-3 (G.709)
	SK-OTN-INTR- THRU	OTN Intrusive Through Mode
	SK-ODU0 ^e	Optical Data Unit-0 (G.709)
	SK-ODUFLEX ^c	OTN ODUflex
	SK-ODUMUX ^c	ODU Multiplexing
Rate	SK-155M	155 Mbps
	SK-622M	622 Mbps
	SK-2488M	2.488 Gbps
	SK-9953M	9.953 Gbps
	SK-40G ^e	39.81312 Gbps
SONET/SDH	SK-SONET	Synchronous Optical Network
	SK-SDH	Synchronous Digital Hierarchy
	SK-TCM	Tandem Connection Monitoring
	SK-INTR-THRU	Intrusive Through Mode

a. Only available on the FTB-8120NG, FTB-8120NGE, FTB-8130NG, and FTB-8130NGE models.

b. Not available on the FTB-8105 and FTB-8115 models.

c. Only available on the FTB-8130, FTB-8130NG, FTB-8130NGE, and FTB-8140 models.

d. Only available on the FTB-8120NG, FTB-8130NG, FTB-8120NGE, FTB-8130NGE, and FTB-8140 models.

e. Only available on the FTB-8140 model.

Remote Control

Note: Remote Control is not available with FTB-8120NGE and FTB-8130NGE models.

Press System, and Remote Control.

User Information

The User Information field allows a user to leave a message to other users connected on the same module. Up to 80 characters are allowed.

Note: Refer to the Visual Guardian Lite user guide for more information.

21 Tools Tab

The Tools tab contains a management-scripting tool for the telecom connection.

Script Tab

The scripting tool allows a user to automate test process by creating scripts containing test setup configuration and actions. The scripting tool allows creating, saving, loading, modifying, and running script files. The script creation can be done manually or using the integrated recorder tool (**Script Tool**). Creating and editing a script is only recommended for users with writing knowledge of **Visual Basic .NET** (**Visual Basic**) programming language.

Press Tools and Script.

Note: A script is generated to be played for a specific module type in a specific slot. Playing a generated script for a module on a different slot would require manually editing the script file. A script can only be replayed on modules which are the same type as the one on which it was recorded.

Edit

Lists the content of the current script and allows its edition. Users with writing knowledge of **Visual Basic .NET (Visual Basic)** programming language will be able to customize their scripts by inserting delays for example. Note that delays are not automatically inserted during recording.

Output

Gives status of the running script.

File

Allows loading, saving, and generating a new script file.

Note: The default directory for the script files is: d:\ToolBox\User Files\SonetSdhAnalyzerG2\Scripts

- Press **New** to create a new script and clear the one on the **Edit** tab if exist. Type a new file name in the **File name** field and press **Save**.
- Press **Load** and select a script file and press **Load**.
- Press **Save** and select a name for this script file followed by the **scp** extension and press **Save**. The **scp** extension is automatically added when omitted.

Script Tools

Allows automatic generation of scripts by setting step by step the parameters from the Test Setup tab and related test tabs.

•• Press **Record** to start the recording of the script. Press the **File Name** field, a pop-up keyboard is displayed, enter a file name for the new script followed by the **scp** extension, and press **Save**. The **scp** extension is automatically added when omitted. The record button LED is red while recording.

From the Test Setup create a test case and set its parameters.

Note: A test can also be cleared before creating a new one. This is useful to automatically clear the test(s) before creating a new one without having to clear the test manually.

Once the test is created, the following actions can also be performed and recorded as well.

- > From the related test panels, set the parameters for the test.
- ➤ Start the test.
- ► Stop the test.
- ➤ Generate a report.
- ► Save the report.
- ► Etc.

From the **Script** tab, press **Record** again to end the script recording session and save the script file. The generated script is displayed once the recording ends.

Note: Only the test case path and its configuration are saved. The GUI settings and results are not saved.

Script Tab

- Note: However, for RFC 2544, all selected tests (Throughput, Back-to-Back, Frame Loss, and/or Latency) must complete before stopping the recording because tests that didn't run will not be part of the script.
 - Press Play to run the script that generates the connection and sets the parameters as recorded.

The **Edit** tab automatically switches to the **Output** tab when playing a script allowing to see the script running status.

The script will automatically stop playing when an error occurs or when the script ends.

Pressing **Play** while the script is playing will interrupt (stop) it.

Note: The **Play** button is not available when there is no script loaded or when a new script is generated and not saved yet.

Script Line Editing

- ► Interface: Select the Interface form the list.
- ► Member: Select the Member from the list.
- Member Description: Displays the description of the member corresponding to the selected Interface/Member.
- ➤ Insert button: Allows inserting the selected script line. Make sure that the cursor is located where the new script line has to be inserted. Script line insertion is only available when a script is present in the Edit tab.
- Show/Hide Keyboard button: Allows showing/hiding the keyboard. Press the show/hide keyboard button while the keyboard is hidden to pop up the keyboard. Press show/hide keyboard button while the keyboard is shown to hide the keyboard.
- ► Help button: Gives help on instrument members and functions.

22 Automatic Power Failure Recovery

The automatic power failure recovery is used to re-create and restart the test that was running before the power failure. A test that was created and not running before the power failure will be re-created but not started. The configuration of the test is saved automatically once the test is created. The logger, injections, and configuration are periodically saved.

The following requirements control the power failure recovery process:

- **1.** The power failure occurred while the test case is created. A power failure condition occurs when the AC power is down while the unit's battery has not sufficient power to keep the unit running.
- **2.** The Startup Application is enabled for this module from the FTB-500 **ToolBox**. Refer to the **ToolBox** user guide for more information.

Automatic Power Failure Recovery

If the requirements number 1 and 2 are met, the saved configuration will be loaded when the unit is rebooted after a power failure. Thus, the test that was running will be re-created, configured, and restarted; the test that was not running will be re-created and configured.

However if the FTB-500 has no batteries, the power failure recovery will only work when Windows is not requiring a user name and password. Note that the FTB-500 is set to require user name and password by default. To disable Windows user name and password on the FTB-500, do the following:

- ► Logon as **Supervisor**.
- Press Start, Programs, Accessories, System Tools, and User Accounts (Advanced).
- ➤ Select a user account.
- Clear the User must enter a user name and password to use this computer check box and enter a password to confirm.

Manual Power Failure Recovery

If only the requirement number 1 is met, the saved configuration will be loaded when the FTB-8100 Series is manually started from **ToolBox**. Thus, the test that was running will be re-created, configured, and restarted.

Note: The power failure recovery is disabled when the GUI terminates normally or when the test case is cleared.

When Using the Test Timer

Refer to *Timer Configuration* on page 130 for more information on test timer.

The test that was running will be re-created and started after a power failure if all the following conditions are met:

- ► The test was running.
- ► Startup Application is enabled on the FTB-500.
- > The start time has not expired during the power failure.
- > The stop time or the duration has not expired during the power failure.

When Using SmartMode

SmartMode is not supported meaning that SmartMode will return to its default factory settings after a power failure recovery.

23 Maintenance

To help ensure long, trouble-free operation:

- Always inspect fiber-optic connectors before using them and clean them if necessary.
- ► Keep the unit free of dust.
- Clean the unit casing and front panel with a cloth slightly dampened with water.
- Store unit at room temperature in a clean and dry area. Keep the unit out of direct sunlight.
- > Avoid high humidity or significant temperature fluctuations.
- > Avoid unnecessary shocks and vibrations.
- If any liquids are spilled on or into the unit, turn off the power immediately and let the unit dry completely.

WARNING

Use of controls, adjustments, and procedures for operation and maintenance other than those specified herein may result in hazardous radiation exposure.

Recalibrating the Unit

Manufacturing and service center calibrations are based on the ISO/IEC 17025 Standard, which states that calibration documents must not contain a recommended calibration interval, unless this has been previously agreed upon with the customer.

Validity of specifications depends on operating conditions. For example, the calibration validity period can be longer or shorter depending on the intensity of use, environmental conditions and unit maintenance. You should determine the adequate calibration interval for your unit according to your accuracy requirements.

Under normal use, EXFO recommends calibrating your unit every two years.

Recycling and Disposal (Applies to European Union Only)

Recycle or dispose of your product (including electric and electronic accessories) properly, in accordance with local regulations. Do not dispose of it in ordinary garbage receptacles.

This equipment was sold after August 13, 2005 (as identified by the black rectangle).

- ➤ Unless otherwise noted in a separate agreement between EXFO and a customer, distributor, or commercial partner, EXFO will cover costs related to the collection, treatment, recovery, and disposal of end-of-lifecycle waste generated by electronic equipment introduced after August 13, 2005 to an European Union member state with legislation regarding Directive 2002/96/EC.
- Except for reasons of safety or environmental benefit, equipment manufactured by EXFO, under its brand name, is generally designed to facilitate dismantling and reclamation.

For complete recycling/disposal procedures and contact information, visit the EXFO Web site at www.exfo.com/recycle.

24 Troubleshooting

Solving Common Problems

Before calling EXFO's technical support, please read the following usual problems that can occur and their respective solution.

Problem	Possible Cause	Solution
OC-N/STM-N Optical Laser LED is off and the connector is not generating the signal.	 The Laser On option is disabled. The SFP XFP is not compatible with the FTB-8115/20/30. 	 Ensure that the Laser button is enabled (On). Ensure to use a compatible SFP/XFP. Refer to OTN/OC-N/STM-N Interface Connections on page 19.
Unable to create a Dual RX test case from a previously save configuration using load configuration.	 The AUX connector is used for synchronization. 	 Press System, Clock Synchronization, and select None for RX Interface Type.

Finding Information on the EXFO Web Site

The EXFO Web site provides answers to frequently asked questions (FAQs) regarding the use of your FTB-8100 Series Transport Blazer.

To access FAQs:

- 1. Type http://www.exfo.com in your Internet browser.
- **2.** Click the **Support** tab.
- **3.** Click **FAQs** and follow the on-screen instructions. You will be given a list of questions pertaining to your subject.

The EXFO Web site also provides the product's most recent technical specifications.

Contacting the Technical Support Group

To obtain after-sales service or technical support for this product, contact EXFO at one of the following numbers. The Technical Support Group is available to take your calls from Monday to Friday, 8:00 a.m. to 7:00 p.m. (Eastern Time in North America).

For detailed information about technical support, visit the EXFO Web site at www.exfo.com.

Technical Support Group	
400 Godin Avenue	1 866 683-0155 (USA and Canada)
Quebec (Quebec) G1M 2K2	Tel.: 1 418 683-5498
CANADA	Fax: 1 418 683-9224
	support@exfo.com

To accelerate the process, please have information such as the name and the serial number (see the product identification label—an example is shown below), as well as a description of your problem, close at hand.

Transportation

Maintain a temperature range within specifications when transporting the unit. Transportation damage can occur from improper handling. The following steps are recommended to minimize the possibility of damage:

- > Pack the unit in its original packing material when shipping.
- > Avoid high humidity or large temperature fluctuations.
- ► Keep the unit out of direct sunlight.
- > Avoid unnecessary shocks and vibrations.

25 Warranty

General Information

EXFO Inc. (EXFO) warrants this equipment against defects in material and workmanship for a period of one year from the date of original shipment. EXFO also warrants that this equipment will meet applicable specifications under normal use.

During the warranty period, EXFO will, at its discretion, repair, replace, or issue credit for any defective product, as well as verify and adjust the product free of charge should the equipment need to be repaired or if the original calibration is erroneous. If the equipment is sent back for verification of calibration during the warranty period and found to meet all published specifications, EXFO will charge standard calibration fees.

IMPORTANT

The warranty can become null and void if:

- unit has been tampered with, repaired, or worked upon by unauthorized individuals or non-EXFO personnel.
- > warranty sticker has been removed.
- case screws, other than those specified in this guide, have been removed.
- > case has been opened, other than as explained in this guide.
- > unit serial number has been altered, erased, or removed.
- > unit has been misused, neglected, or damaged by accident.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL EXFO BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

Liability

EXFO shall not be liable for damages resulting from the use of the product, nor shall be responsible for any failure in the performance of other items to which the product is connected or the operation of any system of which the product may be a part.

EXFO shall not be liable for damages resulting from improper usage or unauthorized modification of the product, its accompanying accessories and software.

Exclusions

EXFO reserves the right to make changes in the design or construction of any of its products at any time without incurring obligation to make any changes whatsoever on units purchased. Accessories, including but not limited to fuses, pilot lamps, batteries and universal interfaces (EUI) used with EXFO products are not covered by this warranty.

This warranty excludes failure resulting from: improper use or installation, normal wear and tear, accident, abuse, neglect, fire, water, lightning or other acts of nature, causes external to the product or other factors beyond the control of EXFO.

IMPORTANT

EXFO will charge a fee for replacing optical connectors that were damaged due to misuse or bad cleaning.

Certification

EXFO certifies that this equipment met its published specifications at the time of shipment from the factory.

Service and Repairs

EXFO commits to providing product service and repair for five years following the date of purchase.

To send any equipment for service or repair:

- **1.** Call one of EXFO's authorized service centers (see *EXFO Service Centers Worldwide* on page 568). Support personnel will determine if the equipment requires service, repair, or calibration.
- **2.** If equipment must be returned to EXFO or an authorized service center, support personnel will issue a Return Merchandise Authorization (RMA) number and provide an address for return.
- 3. If possible, back up your data before sending the unit for repair.
- **4.** Pack the equipment in its original shipping material. Be sure to include a statement or report fully detailing the defect and the conditions under which it was observed.
- **5.** Return the equipment, prepaid, to the address given to you by support personnel. Be sure to write the RMA number on the shipping slip. *EXFO will refuse and return any package that does not bear an RMA number.*

Note: A test setup fee will apply to any returned unit that, after test, is found to meet the applicable specifications.

After repair, the equipment will be returned with a repair report. If the equipment is not under warranty, you will be invoiced for the cost appearing on this report. EXFO will pay return-to-customer shipping costs for equipment under warranty. Shipping insurance is at your expense.

Routine recalibration is not included in any of the warranty plans. Since calibrations/verifications are not covered by the basic or extended warranties, you may elect to purchase FlexCare Calibration/Verification Packages for a definite period of time. Contact an authorized service center (see *EXFO Service Centers Worldwide* on page 568).

EXFO Service Centers Worldwide

If your product requires servicing, contact your nearest authorized service center.

EXFO Headquarters Service Center

400 Godin Avenue Quebec (Quebec) G1M 2K2 CANADA 1 866 683-0155 (USA and Canada) Tel.: 1 418 683-5498 Fax: 1 418 683-9224 quebec.service@exfo.com

EXFO Europe Service Center

Omega Enterprise Park, Electron Way Chandlers Ford, Hampshire S053 4SE ENGLAND Tel.: +44 2380 246810 Fax: +44 2380 246801 europe.service@exfo.com

EXFO Telecom Equipment

(Shenzhen) Ltd. 3rd Floor, Building 10, Yu Sheng Industrial Park (Gu Shu Crossing), No. 467, National Highway 107, Xixiang, Bao An District, Shenzhen, China, 518126

Tel: +86 (755) 2955 3100 Fax: +86 (755) 2955 3101 beijing.service@exfo.com

A Specifications

Note: Specifications are subject to change without notice.

Electrical Interfaces for FTB-8105/15/20/30

		DS1	E1/	/2M	E2/8M	E3/34M	DS3/45M	STS-1e/STM-0e/52M	E4/140M	STS-3e/STM-1e/155M
Tx Pulse Amplitude		2.4 to 3.6 V	3.0 V	2.37 V	2.37 V	1.0 ± 0.1 V	0.36 to 0.85 V		1.0 ± 0.1 Vpp	0.5 V
Tx Pulse Mask		GR-499	G.703	G.703	G.703	G.703	DS-3 45-M	GR-253	G.703	STS-3e STM-1e/155M GR.953 G 303
		Figure 9.5	Figure 15	Figure 15	Figure 16	Figure 17	Figure 9-8 Figure 14	Figure 4-10/4-11	Figure 18/19	Figure 4-12/4-13/4-14 Figure 4-14/22, 23
Tx LBO Preamplification		Power dBdsx +0.6 dBdsx (0-133 ft) +1.2 dBdsx (133-266 ft) +1.8 dBdsx (266-399 ft) +2.4 dBdsx (399-533 ft) +3.0 dBdsx (533-655 ft)					0 to 225 ft 225 to 450 ft	0 to 225 ft 255 to 450 ft		0 to 225 ft
Cable Simulation		Power dBdsx -22.5 dBdsx -15.0 dBdsx -7.5 dBdsx 0 dBdsx					450 to 900 (927) ft	450 to 900 (927) ft		
Rı Level Sensitivity		For 772 kHz: TERM: ≤ 26 dB (cable loss only) at 0 dBdsr Tr DSX-MON: ≤ 26 dB (20 dB resistive loss + cable loss ≤ 6 dB) Bridge: ≤ 6 dB (cable loss only) Not: measurement unis = dBdsr	For 1024 kHz: TERM: ≤ 6 dB (cable loss only) MON: ≤ 25 dB (20 dB resistive loss + cable loss ≤ 6 dB) Bridge: ≤ 6 dB (cable loss only) Natr mesurement unis = dBm	For 1024 kHz: TERM: $\leq 6 dB$ (cable loss only) MON: $\leq 26 dB$ (20 dB resistive loss + cable loss $\leq 6 dB$ Bridge: $\leq 6 dB$ (cable loss only) Note measurement units = dBm	For 4224 kHz: TERM: $\leq 6 dB$ (cable loss only) MON: $\leq 26 dB$ (20 dB resistive loss + cable loss $\leq 6 dB$) Note: measurement units = dBm	For 17.184 MHz: TERM: ≤ 12 dB (caxial cable loss only) MON: ≤ 26 dB (20 dB resistive loss + cable loss ≤ 6 dB) Note: measurement units = dBm	For 22.368 MHz: TERM: ≤ 10 dB (cable loss only) DSX:MON: ≤ 26.5 dl (21.5 dB resistive loss + cable loss ≤ 5 dB) Note: measurement unis = dBm	For 25.92 MHz: TERM: ≤ 10 dB (cable loss only) 3 MON: ≤ 25 dB (20 dB resistive loss + cable loss ≤ 5 dB) Note: measurement units = dBm	For 70 MHz: TERM: $\leq 12 \text{ dB}$ (coaxial cable loss only) MON: $\leq 26 \text{ dB}$ (20 dB resistive loss $+ \text{ cable loss} \leq 6 \text{ dB}$) Note: measurement units = dBm.	For 78 MH2: TERM:≤ 12.7 dB (coaxial cable loss only) MON: ≤ 26 dB (20 dB resistive loss + cable loss ≤ 6 dB) Note: measurement units = dBm
Transmit Bit Rate		1.544 Mbit/s ± 4.6 ppm	2.048 Mbit/s ± 4.6 ppm	2.048 Mbit/s ± 4.6 ppm	8.448 Mbit/s ± 4.6 ppm	34.368 Mbit/s ± 4.6 ppm	44.736 Mbit/s ± 4.6 ppr	51.84 Mbit/s ± 4.6 ppm	139.264 Mbit/s ±4.6 ppm	155.52 Mbit/s ± 4.6 ppm
Receive Bit Rate		1.544 Mbit/s ± 140 ppm	2.048 Mbit/s ± 100 ppm	2.048 Mbit/s ± 100 ppm	8.448 Mbit/s ± 100 ppm	34.368 Mbit/s ± 100 ppm	44.736 Mbit/s ± 100 ppr	n 51.84 Mbit/s ± 100 ppm	139.264 Mbit/s ± 100 ppm	155.52 Mbit/s ± 100 ppm
Measurement Accuracy	Frequency Electrical Power	±4.6 ppm DSX range: ±1.0 dB DSX-MON range: ± 2.0 dB	±4.6 ppm NORMAL: ±1.0 dB MONITOR: ±2.0 dB	±4.6 ppm NORMAL: ±1.0 dB MONITOR: ±2.0 dB	± 4.6 ppm NORMAL: ±1.0 dB MONITOR: ±2.0 dB	±4.6 ppm NORMAL: ±1.0 dB MONITOR: ±2.0 dB	±4.6 ppm DSX range: ±1.0 dB DSX-MON range: ±2.0 dB	±4.6 ppm DSX range: ±1.0 dB DSX:MON range: ±2.0 dB	±4.6 ppm NORMAL: ±1.0 dB MONITOR: ±2.0 dB	±4.6 ppm NORMAL: ±1.0 dB MONITOR: ±2.0 dB
Peak-to-Peak Voltage		±10 % down to 500 mVpp	± 10% down to 500 mVpp	± 10% down to 500 mVpp	± 10% down to 400 mVpp	±10% down to 200 mVpp	±10% down to 200 mVpp	±10% down to 200 mVpp	±10% down to 200 mVpp	±10% down to 200 mVpp
Frequency Offset Generation		1.544 Mbit/s ± 140 ppm	2.048 Mbit/s ± 70 ppm	2.048 Mbit/s ± 70 ppm	8.448 Mbit/s ± 50 ppm	34.368 Mbit/s ± 50 ppm	44.736 Mbit/s ± 50 ppm	51.84 Mbit/s ± 50 ppm	139.264 Mbit/s ± 50 ppm	155.52 Mbit/s ± 50 ppm
Intrinsic Jitter (Tx)		ANSI T1.403 section 6.3 GR-499 section 7.3	G.823 section 5.1	G.823 section 5.1	G.823 section 5.1	G.823 section 5.1 G.751 section 2.3	GR-449 section 7.3 (categories I and II)	GR-253 section 5.6.2.2 (category II)	G.823 section 5.1	G.825 section 5.1 GR-253 section 5.6.2.2
Input Jitter Tolerance		AT&T PUB 62411 GR-499 section 7.3	G.823 section 7.1	G.823 section 7.1	G.823 section 7.1	G.823 section 7.1	GR-449 section 7.3 (categories I and II)	GR-253 section 5.6.2.2 (category II)	G.823 section 7.1 G.751 section 3.3	G.825 section 5.2 GR-253 section 5.6.2.3
Line Coding		AMI and B8ZS	AMI and HDB3	AMI and HDB3	HDB3	HDB3	B3ZS	B3ZS	CMI	CMI
Input Impedance (Resistive Termination)		100 ohms ± 5%, balanced	120 ohms ± 5%, balanced	75 ohms ± 5%, unbalanced	75 ohms ± 5%, unbalanced	75 ohms ± 5%, unbalanced	75 chms ±5%, unbalanced	75 ohms ±5%, unbalanced	75 ohms ± 10%, unbalanced	75 ohms ± 5%, unbalanced
Connector Type		BANTAM and RJ-48C	BANTAM and RJ-48C	BNC	BNC	BNC	BNC	BNC	BNC	BNC

Optical Interfaces

Optical Interface for FTB-8105/15/20/30

Refer to page 19 for more information on supported SFP/XFPs.

			00	3/STM-1			OC-12STM-4			OC-48/STM-16/OTU1			OC-192/STM-64/0TU2			
		15 km; 1310 nm	40 km; 1310 nm	40 km; 1550 nm	80 km; 1550 nm	15 km; 1310 nm	40 km; 1310 nm	40 km; 1550 nm	80 km; 1550 nm	15 km; 1310 nm	40 km; 1310 nm	40 km; 1550 nm	80 km; 1550 nm	10 km; 1310 nm	40 km; 1550 nm	80 km; 1550 nm
Level Tx		-5 to 0 dBm	-2 to +3 dBm	-5 to 0 dBm	-2 to +3 dBm	-5 to 0 dBm	-2 to +3 dBm	-5 to 0 dBm	-2 to +3 dBm	-5 to 0 dBm	-2 to +3 dBm	-5 to 0 dBm	-2 to +3 dBm	-6 to -1 dBm	-1 to +2 dBm	0 to +4 dBm
Rx Operating Range		-23 to -10 dBm	-30 to -15 dBm	-23 to -10 dBm	-30 to -15 dBm	-22 to 0 dBm	-27 to -9 dBm	-22 to 0 dBm	-29 to -9 dBm	-18 to 0 dBm	-27 to -9 dBm	-18 to 0 dBm	-28 to -9 dBm	-11 to -1 dBm	-14 to -1 dBm	-24 to -9 dBm
Transmit Bit Rate			155.52 Mb	it/s ± 4.6 ppm			622.08 Mbi	i/s±4.6 ppm			2.48832 G 2.66606 Gbit/s	bitls ± 4.6 ppm ± 4.6 ppm (OTU1)		9.95328 Gbit/s ± 4.6 ppm (OC-192/STM-64)	9.95328 Gbit 10.70922 Gbit/s :	/s ± 4.6 ppm ± 4.6 ppm (OTU2)
														10.70922 Gbit/s ± 4.6 ppm (OTU2) 11.0491 Gbit/s ± 4.6 ppm (OTU1e) 11.0967 Gbit/s ± 4.6 ppm (OTU2e)		
Raceive Bit Rate			155.52 Mbi	tls±100ppn			622.08 Mbi	/s±100 ppm			2.48832 Gi 2.66606 Gbit/s	otis ± 100 ppm ± 100 ppm (OTU1)		9.95328 Gbit/s ± 4.6 ppm (OC-192/STM-64) 10.70922 Gbit/s ± 4.6 ppm (OTU2) 11.0491 Gbit/s ± 4.6 ppm (OTU1e) 11.0967 Gbit/s ± 4.6 ppm (OTU2e)	9.95328 Gbit 10.70922 Gbit/s :	/s ± 4.6 ppm t 4.6 ppm (OTU2)
Operational Wavelength Range		1261 to 1360 nm	1263 to 1360 nm	1430 to 1580 nm	1480 to 1580 nm	1270 to 1360 nm	1280 to 1335 nm	1430 to 1580 nm	1480 to 1580 nm	1260 to 1360 nm	1280 to 1335 nm	1430 to 1580 nm	1500 to 1580 nm	1290 to 1330 nm	1530 to 1565 nm	1530 to 1565 nm
Spectral Width			1 m	(-20 dB)			1 nn (-20 dB)			1 nm (-20 dB)			1 nm (-20 dB)	
Frequency Offset Generation			±ŝ	60 ppm			±50	D ppm		±50 ppm			± 50 ppm ^a			
Measurement	Frequency		±4	.6 ppm			± 4)	6 ррт		± 4.6 ppm			± 46 ppm			
Accuracy	Optical Power		±	2 dB			±	2 dB			±	2 dB			±2dB	
Maimum Rx before Damage ^b			+8	3 dBm			+3	dBm		+ 3 dBm			+ 3 dBm			
Jitter Compliance			GR-253	3 (SONET)			GR-253	(SONET)			GR-253	(SONET)			GR-253 (SONET)	
			G.95	8 (SDH)			G.958	B (SDH)			G.951	B (SDH)			G.825 (SDH)	
Line Coding)	(RZ			N	IRZ			N	RZ			NRZ	
Eye Safety						SFP/XFP transc	eivers comply with IEC	060825 and 21 CFR	1040.10 (except for de	eviations pursuant to L	aser Notice No. 50, dat	ted July 2001), for Cla	ss 1 or 1M lasers.			
Connector ^c			Du	ual LC			Du	al LC			Du	al LC			Dual LC	
Transceiver Type ^d			5	SFP			S	IP			5	IFP			XFP	

Notes

a. In order not to exceed the maximum receiver power level before damage, an attenuator must be used.

b. External adaptors can be used for other type of connectors. For example FC/PC.

c. SFP/XFP Compliance: The FTB-8100 Series selected SFP/XFP shall meet the requirements stated in the "Small Form-factor Pluggable (SFP) Transceiver MultiSource Agreement (MSA)". The FTB-8100 Series selected SFP/XFP shall meet the requirements stated in the "Specification for Diagnostic Monitoring Interface for Optical Xcvrs".

Optical Interface for FTB-8140

OC-768/STM-256/OTU3			
Line coding	NRZ	NRZ-DPSK	
Level Tx (dBm)	0 to 3	4 to 7.5	
Rx operating range (dBm)	-5 to 3	3 to 8	
Transmit bit rate	39.81312 Gbit/s ± 4.6 ppm	39.81312 Gbit/s ± 4.6 ppm	
	43.01841 Gbit/s ± 4.6 ppm (OTU3)	43.01841 Gbit/s ± 4.6 ppm (OTU3)	
Receive bit rate	39.81312 Gbit/s ± 100 ppm	39.81312 Gbit/s ± 100 ppm	
	43.01841 Gbit/s ± 100 ppm (OTU3)	43.01841 Gbit/s ± 100 ppm (OTU3)	
Operational wavelength range (nm)	1530 to 1565	1528.77 to 1563.86	
Frequency offset generation	39.81312 Gbit/s ± 50 ppm	39.81312 Gbit/s ± 50 ppm	
	43.01841 Gbit/s ± 50 ppm	43.01841 Gbit/s ± 50 ppm	
Measurement accuracy (uncertainty)			
Frequency (ppm)	±4.6	±4.6	
Optical power (dB)	±2	±1.3 (-6 to 5)	
Rx overload (dBm)	3	8	
Rx damage level ^a (dBm)	6	10	
Jitter compliance	GR-253 (SONET)	GR-253 (SONET)	
	G.958 (SDH)	G.958 (SDH)	
	G.8251 (OTN)	G.8251 (OTN)	
Line coding compliance	G.693 VSR 2000 compliant	NRZ-DPSK	
Connector	SC, FC, LC, ST	SC, FC, LC, ST	

NOTE

a. In order not to exceed the maximum receiver power level before damage, an attenuator must be used.

Synchronization Interfaces for FTB-8105/15/20/30

Synchronization Interfaces for FTB-8105/15/20/30

	External Clock DS1/1.5M	External Clock E1/2M	External Clock E1/2M	Trigger 2 MHz	
Tx Pulse Amplitude	2.4 to 3.6 V	3.0 V	2.37 V	0.75 to 1.5 V	
Tx Pulse Mask	GR-499 figure 9.5	G.703 figure 15	G.703 figure 15	G.703 figure 20	
Tx LBO Preamplification	Typical power dBdsx +0.6 dBdsx (0-133 ft) +1.2 dBdsx (133-266 ft) +1.8 dBdsx (266-399 ft) +2.4 dBdsx (399-533 ft) +3.0 dBdsx (533-655 ft)				
Rx Level Sensivity	TERM: ≤ 6 dB (cable loss only) (at 772 kHz for T1) DSX-MON: ≤ 26 dB (20 dB resistive loss + cable loss ≤ 6 dB) Bridge: ≤ 6 dB (cable loss only)	TERM: = ≤ 6 dB (cable loss only) MON: ≤ 26 dB (20 dB resistive loss + cable loss ≤ 6 dB) Bridge: ≤ 6 dB (cable loss only)	TERM: = ≤ 6 dB (cable loss only) MON: ≤ 26 dB (resistive loss + cable loss ≤ 6 dB) Bridge: ≤ 6 dB (cable loss only)	≤ 6 dB (cable loss only)	
Transmission Bit Rate	1.544 Mbit/s ± 4.6 ppm	2.048 Mbit/s ± 4.6 ppm	2.048 Mbit/s ± 4.6 ppm		
Reception Bit Rate	1.544 Mbit/s ± 50 ppm	2.048 Mbit/s ± 50 ppm	2.048 Mbit/s ± 50 ppm		
Intrinsic Jitter (Tx)	ANSI T1.403 section 6.3 GR-499 section 7.3	G.823 section 6.1	G.823 section 6.1	G.703 table 11	
Input Jitter Tolerance	AT&T PUB 62411 GR-499 SECTION 7.3	G.823 section 7.2 G.813	G.823 section 7.2 G.813		
Line Coding	AMI and B8ZS	AMI and HDB3	AMI and HDB3		
Input Impedance (Resistive Termination)	75 ohms ± 5%, unbalanced	75 ohms ± 5%, unbalanced	75 ohms ± 5%, unbalanced	75 ohms ± 5%, unbalanced	
Connector Type	BNC ^a	BNC ^a	BNC	BNC	

Parameter	Value				
Tx pulse amplitude	600 ± 150	mVpp			
Transmission frequency					
	SONET/SDH/ 10 GigE WAN	10 GigE LAN	OTU2	OTU1e	OTU2e
Clock divider = 16	622.08 MHz	644.53 MHz	669.33 MHz	690.57 MHz	693.48 MHz
Clock divider = 32	311.04 MHz	322.266 MHz	334.66 MHz	345.29 MHz	346.74 MHz
Clock divider = 64	155.52 MHz	161.133 MHz	167.33 MHz	172.64 MHz	173.37 MHz
Output configuration	AC coupled	1			
Load impedance	50 ohms				
Maximum cable length	3 meters				
Connector Type	SMA				

NOTES

a. Adaptation cable required for BANTAM.

 SFP/XFP transceivers comply with IEC 60825 and 21 CFR 1040.10 (except for deviations pursuant to Laser Notice 50, dated July, 2001), for Class 1 or 1M lasers.

Synchronisation Interfaces for FTB-8140

SYNCHRONIZATION INTERFACES					
	External Clock DS1/1.5M	External Clock E1/2M	External Clock E1/2M	2 MHz (Trigger)	
Tx pulse amplitude	2.4 to 3.6 V	3.0 V	2.37 V	0.75 to 1.5 V	
Tx pulse mask	GR-499 figure 9.5	G.703 figure 15	G.703 figure 15	G.703 figure 20	
Tx LBO preamplification	Typical power dBdsx +0.6 dBdsx (0-133 ft) +1.2 dBdsx (133-266 ft) +1.8 dBdsx (266-399 ft) +2.4 dBdsx (399-533 ft) +3.0 dBdsx (533-655 ft)				
Rx level sensivity	TERM: ≤6 dB (cable loss only) (at 772 kHz for T1) DSX-MON: ≤26dB (20 dB resistive loss + cable loss ≤ 6 dB) Bridge: ≤6dB (cable loss only)	TERM: ≤ 6 dB (cable loss only) MON: ≤ 26 dB (20 dB resistive loss + cable loss ≤ 6 dB) Bridge: ≤ 6 dB (cable loss only)	TERM: ≤6 dB (cable loss only) MON: ≤26 dB (resistive loss + cable loss ≤ 6 dB) Bridge: ≤6 dB (cable loss only)	≤6 dB (cable loss only)	
Transmission bit rate	1.544 Mbit/s ± 4.6 ppm	2.048 Mbit/s ± 4.6 ppm	2.048 Mbit/s ± 4.6 ppm		
Reception bit rate	1.544 Mbit/s ± 50 ppm	2.048 Mbit/s ± 50 ppm	2.048 Mbit/s ± 50 ppm		
Intrinsic jitter (Tx)	ANSI T1.403 section 6.3 GR-499 section 7.3	G.823 section 6.1	G.823 section 6.1	G.703 table 11	
Input jitter tolerance	AT&T PUB 62411 GR-499 SECTION 7.3	G.823 section 7.2 G.813	G.823 section 7.2 G.813		
Line coding	AMI and B8ZS	AMI and HDB3	AMI and HDB3		
Input impedance (resistive termination)	75 $\Omega\pm$ 5 %, unbalanced	75 Ω \pm 5 %, unbalanced	75 Ω ± 5 %, unbalanced	75 Ω \pm 5 %, unbalanced	
Connector type	BNC ^a	BNC ^a	BNC	BNC	
REF-OUT INTER	RFACE				
		SONET/SDH	OTN		
Parameter		Value	Value		
Tx pulse amplitude		600 ± 200 mVpp	600 ± 200 mVpp		
Transmission frequency		2.48832 GHz	2.68865 GHz		
Output configuration		AC coupled	AC coupled		
Load impedance		50 Ω	50 Ω		
Maximum cable length		1 m	1 m		
Connector type		SMA	SMA		

NOTE

a. Adaptation cable required for BANTAM.

Ethernet Add/Drop Interfaces for FTB-8105/15/20/30

ETHERNET ADD/DROP INTERFACE					
10/100/1000 Base-T (Add/Drop)					
Compliance	10 Mbit/s: IEEE 802.3 section 14				
	100 Mbit/s: IEEE 802.3 section 25				
	1000 Mbit/s: IEEE 802.3 section 40				
Connector	RJ-45 Ethernet				
Gigabit Ethernet (Add/Drop)					
Interface/connector	SFP/Dual LC				
Compliance	1000 Mbit/s: IEEE 802.3 Section 40 b				
Wavelength/Max Tx level	850, 1310 nm/-3 dBm				
	1550 nm/+5 dBm				

Ethernet Interfaces

Ethernet Interfaces

ELECTRICAL INTERFACES

10Base-T	100Base-T	1000Base-T
10 Mbit/s	125 Mbit/s	1 Gbit/s
±100	±100	±100
10 Mbit/s	125 Mbit/s	1 Gbit/s
±4.6	±4.6	±4.6
Half and full duplex	Half and full duplex	Full duplex
IEEE 802.3	IEEE 802.3	IEEE 802.3
RJ-45	RJ-45	RJ-45
100	100	100
	10Base-T 10 Mbit/s ±100 10 Mbit/s ±4.6 Half and full duplex IEEE 802.3 RJ-45 100	10Base-T 100Base-T 10 Mbit/s 125 Mbit/s ±100 ±100 10 Mbit/s 125 Mbit/s ±4.6 ±4.6 Half and full duplex Half and full duplex IEEE 802.3 IEEE 802.3 RJ-45 RJ-45 100 100

100 Mbit/s AND GigE OPTICAL INTERFACES

0					
	100Base-FX	100Base-LX	1000Base-SX	1000Base-LX	1000Base-ZX
Wavelength (nm)	1310	1310	850	1310	1550
Tx level (dBm)	-20 to -15	-15 to -8	-9 to -3	-9.5 to -3	0 to +5
Rx level sensitivity (dBm)	-31	-28 to -8	-20	-22	-22
Maximum reach	2 km	15 km	550 m	10 km	80 km
Transmission bit rate (Gbit/s)	0.125	0.125	1.25	1.25	1.25
Reception bit rate (Gbit/s)	0.125	0.125	1.25	1.25	1.25
Tx operational wavelength range (nm)	1280 to 1380	1261 to 1360	830 to 860	1270 to 1360	1540 to 1570
Measurement accuracy					
Frequency (ppm)	±4.6	±4.6	±4.6	±4.6	±4.6
Optical power (dB)	±2	±2	±2	±2	±2
Maximum Rx before damage (dBm)	+3	+3	+6	+6	+6
Jitter compliance	ANSI X3.166	IEEE 802.3	IEEE 802.3	IEEE 802.3	IEEE 802.3
Ethernet classification	ANSI X3.166	IEEE 802.3	IEEE 802.3	IEEE 802.3	IEEE 802.3
Laser type	LED	FP	VCSEL	FP	DFB
Eye safety	CLASS 1	CLASS 1	CLASS 1	CLASS 1	CLASS 1
Connector	LC	LC	LC	LC	LC
Transceiver type	SFP	SFP	SFP	SFP	SFP

10 GigE OPTICAL INTERFACES

	10GBASE-SW	10GBASE-SR	10GBASE-LW	10GBASE-LR	10GBASE-EW	10GBASE-ER
Wavelength (nm)	850	850	1310	1310	1550	1550
	Multimode	Multimode	Singlemode	Singlemode	Singlemode	Singlemode
Tx level (802.3ae-compliant) (dBn	n) -7.3 to -1	-7.3 to -1	-8.2 to +0.5	-8.2 to +0.5	-4.7 to +4.0	-4.7 to +4.0
Rx level sensitivity (dBm)	-9.9 to -1.0	-9.9 to -1.0	-14.4 to +0.5	-14.4 to +0.5	-15.8 to -1.0	-15.8 to -1.0
Transmission bit rate	9.95328 Gbit/s ± 4.6 ppm ^a	10.3125 Gbit/s ± 4.6 ppm ^a	9.95328 Gbit/s ± 4.6 ppm ^a	10.3125 Gbit/s ± 4.6 ppm ^a	9.95328 Gbit/s ± 4.6 ppm ^a	10.3125 Gbit/s ± 4.6 ppm ^a
Reception bit rate	9.95328 Gbit/s ± 135 ppm	10.3125 Gbit/s ± 135 ppm	9.95328 Gbit/s ± 135 ppm	10.3125 Gbit/s ± 135 ppm	9.95328 Gbit/s ± 135 ppm	10.3125 Gbit/s ± 135 ppm
Tx operational wavelength range	840 to 860	840 to 860	1260 to 1355	1260 to 1355	1530 to 1565	1530 to 1565
(802.3ae-compliant) (nm)						
Measurement accuracy						
Frequency (ppm)	±4.6	±4.6	±4.6	±4.6	±4.6	±4.6
Optical power (dB)	±2	±2	±2	±2	±2	±2
Maximum Rx before damage (dBr	n) 0	0	+1.5	+1.5	+4.0	+4.0
Jitter compliance	IEEE 802.3ae					
Ethernet classification	IEEE 802.3ae					
Laser type	VCSEL	VCSEL	DFB	DFB	EML	EML
Eye safety	Class 1 laser; complies	Class 1M laser; complies	Class 1M laser; complies			
	with 21 CFR 1040.10					
	and IEC 60825-1					
Connector	Duplex LC					
Transceiver type	XFP	XFP	XFP	XFP	XFP	XFP
(compliant with XFP MSA)						

NOTE

a. When clocking is in internal mode.
General Specifications

For FTB-8105/15/20/30

	FTB-8115, FTB-8120, FTB-8120NG, FTB-8130, FTB-8130NG	FTB-8105
Size (H x W x D)	51 x 96 x 288 mm (2" x 3 3/4" x 11 3/8")	25 x 96 x 288 mm (1" x 3 3/4" x 11 3/8")
Weight (without transceiver)	0.9 kg (2.0 lb)	0.5 kg (1.1 lb)
Temperature - operating - storing	0 °C to 40 °C (32 °F to 104 °F) -40 °C to 60 °C (-40 °F to 140 °F)	

For FTB-8140

GENER	AL SPECIFICA	TIONS
Typical weig	ht	2.5 kg (5.5 lb)
Size (H x W	x D)	96 mm x 152 mm x 292 mm (3 ³ /4 in x 6 in x 11 ¹ /2 in)
Temperature	operating	0 °C to 40 °C (32 °F to 104 °F)
	storage	-40 °C to 60 °C (-40 °F to 140 °F)

B Glossary

SONET/DSn/SDH/PDH Nomenclature

The GUI will used the International or European nomenclature based on the SONET and SDH software options installed on the FTB-8100 Series.

Software option	Nomenclature
SONET only	International
SDH only	European
SONET and SDH	International

Signal Rates

Pata	SONET/DSp	SDH/PDH	
nate	SONEI/DSI	International	European
1.544 Mbps	DS1	-	1.5M
2.048 Mbps	-	E1	2M
8.448 Mbps	-	E2	8M
34.368 Mbps	-	E3	34M
44.736 Mbps	DS3	-	45M
51.84 Mbps	STS-1e	STM-0e	52M
139.264 Mbps	-	E4	140M
155.52 Mbps	STS-3e / OC-3	STM-1e / STM-1	155M / STM-1
622.08 Mbps	OC-12	STM-4	STM-4
2.48832 Gbps	OC-48	STM-16	STM-16
2.666057143 Gbps	OTU1	OTU1	OTU1
9.95328 Gbps	OC-192	STM-64	STM-64

Rate	Signal
10.709225316 Gbps	OTU2
11.0491 Gbps	OTU1e
11.0957 Gbps	OTU2e
11.2701 Gbps	OTU1f
11.3176 Gbps	OTU2f
39.81312 Gbps	OC-768
43.018413559 Gbps	OTU3

SONET/SDH High and LowOrder Path Nomenclature

Path Type	SDH	SONET
High Order	AU-3	STS-1
	AU-4	STS-3c
	AU-4-4c	STS-12c
	AU-4-16c	STS-48c
	AU-4-64c	STS-192c
	AU-4-256c	STS-768c
Low Order	TUG-3	-
	TUG-2	VTG
	TU-11	VT1.5
	TU-12	VT2
	TU-2	VT6
	TU-3	-

SONET/SDH Alarms and Errors Nomenclature

Layer	SONET	SDH
Physical	BPV	CV
Section / Regenerator	LOF	LOF
Section	SEF	OOF
	TIM-S	RS-TIM
	B1	B1
Line / Multiplex Section	AIS-L	MS-AIS
	RDI-L	MS-RDI
	B2	B2
	REI-L	MS-REI
High Order Path	AIS-P	AU-AIS
	LOP-P	AU-LOP
	LOM	H4-LOM
	PDI-P	-
	RDI-P	HP-RDI
	ERDI-PCD	ERDI-CD
	ERDI-PPD	ERDI-PD
	ERDI-PSD	ERDI-SD
	PLM-P	HP-PLM
	UNEQ-P	HP-UNEQ
	TIM-P	HP-TIM
	B3	B3
	REI-P	HP-REI

SONET/SDH Alarms and Errors Nomenclature

Layer	SONET	SDH
Low Order Path	AIS-V	TU-AIS
	LOP-V	TU-LOP
	RDI-V	LP-RDI
	ERDI-VCD	ERDI-CD
	ERDI-VPD	ERDI-PD
	ERDI-VSD	ERDI-SD
	RFI-V	LP-RFI
	UNEQ-V	LP-UNEQ
	TIM-V	LP-TIM
	PLM-V	LP-PLM
	BIP-2	BIP-2
	REI-V	LP-REI

Acronym List

140M	Digital signal (139.264 Mbps)
155M	Digital signal (155.52 Mbps)
2M	Digital signal (2.048 Mbps)
34M	Digital signal (34.368 Mbps)
45M	Digital signal (44.736 Mbps)
52M	Digital signal (51.84 Mbps)
8M	Digital signal (8.448 Mbps)
?	Help
_	Minimize

А

А	Ampere
AC	Alternating Current
AcPT	Accepted Payload Type
AcSTAT	Accepted STAT information in the TCMi
AIS	Alarm Indication Signal
AIS-L	Alarm Indication Signal - Line
AIS-P	Alarm Indication Signal - Path
AIS-V	Alarm Indication Signal - VT
AMI	Alternate Mark Inversion
ANSI	American National Standards Institute
APId	Access Point Identifier
APS	Automatic Protection Switching

AS	Available Second
ASCII	American Standard Code for Information Interchange
ATM	Asynchronous Transfer Mode
AU-AIS	Administrative Unit - Alarm Indication Signal
AU-LOP	Administrative Unit - Loss of Pointer
AU-n	Administrative Unit-n
AUG	Administrative Unit Group
AUX	Auxiliary
AWG	American Wire Gage

В

B1	BIP-8 - Section
B2	BIP-8 - Line
B3	BIP-8 - Path
B3ZS	Bipolar with 3 zero substitution
B8ZS	Bipolar with 8 zero substitution
BBE	Background Block Error
BBER	Background Block Error Ratio
BDI	Backward Defect Indication
BEI	Backward Error Indication
BER	Bit Error Rate
BIAE	Backward Incoming Alignment Error
BIP	Bit-Interleaved Parity
BIP-2	Bit-Interleaved Parity - 2 bits
BIP-8	Bit-Interleaved Parity - 8 bits

Acronym List

BNC	bayonet-Neill-Concelman
BOM	Bit-Oriented Messages
bps	Bit Per Second
Bps	Byte Per Second
BPV	Bipolar Violation
BSD	Backward Signal Degrade
BSF	Backward Signal Fail

С

*	
С	Current
C-bit	Control bit
CAGE	Commerce And Government Entities
CBR	Constant Bit Rate
CD	Compact Disk
CE	European Conformity
CFR	Code of Federal Regulations
cHEC	Core Header Error Check
CID	Channel Identifier
CMF	Client Management Frame
СМІ	Coded Mark Inversion
CORR	Correctable
<c<sub>R></c<sub>	Carriage Return
CRC	Cyclic Redundancy Check
CRC-4	Cyclic Redundancy Check (a four-bit word that detects bit errors)

CRC-6	Cyclic Redundancy Check (a six-bit word that detects bit errors)
CRC-7	Cyclic Redundancy Check (a seven-bit word that detects bit errors)
CRC LOMF	Cyclic Redundancy Check Loss Of Multiframe
CSF	Client Signal Fail
CSU	Customer Service Unit
CTRL	Control
CV	Code Violation
CW	Codeword

D

DAPI	Destination Access Point Identifier
dB	Decibel
dBdsx	Decibel DSX1
dBm	Decibel - milliwatts
DCC	Data Communication Channel
DCI	Defect Clear Indication
DM	Degraded Minutes
DNU	Do Not Use
DPSK	Differential Phase Shift Keying
DQDB	Distributed Queue Dual Bus
DS0	Digital Signal-level 0 (64 kbps)
DS1	Digital Signal-level 1 (1.544 Mbps)
DS3	Digital Signal-level 3 (44.736 Mbps)
DSn	Digital Signal-level n

Acronym List

DSX1	Digital Signal Level 1 Cross Connect
DUT	Device Under Test
DVB ASI	Digital Video Broadcast - A Synchronous Interface

Е

E-bit	CRC-4 Error Signal
E0	European standard for digital transmission-level 0 (64 Kbps).
E1	European standard for digital transmission-level 1 (2.048 Mbps).
E2	European standard for digital transmission-level 2 (8.448 Mbps).
E3	European standard for digital transmission-level 3 (34.368 Mbps).
E4	European standard for digital transmission-level 4 (139.264 Mbps).
EB	Errored Block
EC	Error Count
EFS	Error Free Second
eHEC	Extension Header Error Check
EMC	Electromagnetic Compatibility
EOS	End Of Sequence
ERDI-CD	Enhanced Remote Defect Indication - Connectivity Defect
ERDI-PCD	Enhanced Remote Defect Indication - Path Connectivity Defect
ERDI-PD	Enhanced Remote Defect Indication - Payload Defect

Acronym List

ERDI-PPD	Enhanced Remote Defect Indication - Path Payload Defect
ERDI-PSD	Enhanced Remote Defect Indication - Path Server Defect
ERDI-SD	Enhanced Remote Defect Indication - Server Defect
ERDI-VCD	Enhanced Remote Defect Indication - VT Connectivity Defect
ERDI-VPD	Enhanced Remote Defect Indication - VT Payload Defect
ERDI-VSD	Enhanced Remote Defect Indication - VT Server Defect
ES	Errored Second
ESCON	Enterprise System Connection
ESD	Electrostatic Discharge
ESF	Extended Superframe
ESR	Errored Second Ratio
EUI	EXFO Universal Interfaces
EXI	Extension Header Identifier
EXP	Experimental
ExSQ	Expected Sequence Indicator
EXZ	Excessive Zeros

F

F-bit	Framing bit
FAS	Frame Alignment Signal
FC	Fibre Channel
FCC	Federal Communications Commission

Acronym List

r	
FCS	Frame Check Sequence
FDDI	Fiber Distributed Data Interface
FDI	Forward Defect Indication
FDL	Facility Data Link
FEAC	Far End Alarm and Control
FEBE	Far-End Block Error
FEC	Forward Error Correction
FICON	Fiber Connection
FIF	Fault Indication Field
FOPR	Failure of Protocol Receive
FOPT	Failure of Protocol Transmit
fps	frame per second
FSD	Forward Signal Degrade
FSF	Forward Signal Fail
ft	Feet
FTFL	Fault Type Fault Location

G

GCC	General Communication Channel
Gbps	Gigabit per second
GBps	Gigabyte per second
GCCx	General Communication Channel-x
GFP	Generic Framing Procedure
GFP-F	Generic Framing Procedure - framed
GFP-T	Generic Framing Procedure - transparent

GID	Group Identifier
GMP	Generic Mapping Procedure
GMP OOS	GMP Out of Synchronization
GMT	Greenwich Mean Time
GUI	Graphical User Interface

Н

Н	History
H4-LOM	H4 - Loss Of Multiframe
HDB3	High Density Bipolar 3 Code
HDLC	High-Level Data Link Control
НО	High Order
НОР	High Order Path
HP-PLM	High Order Path - Payload Label Mismatch
HP-POH	Higher-Order Path Overhead
HP-RDI	High Order path - Remote Defect Indication
HP-REI	High Order path - Remote Error Indicator
HP-TIM	High Order Path - Trace Identifier Mismatch
HP-UNEQ	High Order Path - Unequipped

I

IAE	Incoming Alignment Error
IC	Industry Canada
ID	Identification
IEEE	Institute of Electrical & Electronics Engineers

Acronym List

IFG	Inter Frame Gap
IN	INput
IR	Intermediate Reach
ISDN	Integrated Services Digital Network
ISM	In-Service Monitoring
ISO	International Organization for Standardization
ITU	International Telecommunication Union

J

JC	Justification Control

Κ

Kbps	Kilobit per second
KBps	Kilobyte per second

L

1	
LAPS	Link Access Procedure for SDH
LBO	Line Build Out
LCAS	Link Capacity Adjustment Scheme
LED	Light-Emitting Diode
LCK	Locked
lf	Line Feed
LFD	Loss of Frame Delineation
LO	Low Order

LOA	Loss Of Alignment
LOC	Loss Of Clock
LOCCS	Loss of Client Character Synchronization
LOCS	Loss Of Client Signal
LOF	Loss Of Frame
LOFLOM	Loss of Frame Loss Of Multiframe
LOH	Line Overhead
LOM	Loss Of Multiframe
LOMF	Loss Of Multiframe
LOP	Loss Of Pointer
LOP	Low Order Path
LOP-P	Loss Of Pointer - Path
LOP-V	Loss Of Pointer - VT
LOS	Loss Of Signal
LP-PLM	Low Order Path - Payload Label Mismatch
LP-RDI	Low Order Path - Remote Defect Indication
LP-REI	Low Order Path - Remote Error Indicator
LP-RFI	Low Order Path - Remote Failure Indication
LP-TIM	Low Order Path - Trace Identifier Mismatch
LP-UNEQ	Low Order Path - Unequipped
LR	Long Reach
LSB	Least-Significant Bit
LSS	Loss of Sequence Synchronization
LTC	Loss of Tandem Connection

М

MAC	Media Access Control
MAPOS	Multiple Access Protocol Over SONET/SDH
Mbps	Megabit per second
MBps	Megabyte per second
MFAS	Multiframe Alignment Signal
MMF	Multi-Mode Fiber
MS	Multiplex Section
MS-AIS	Multiplex Section - Alarm Indication Signal
MS-RDI	Multiplex Section - Remote Defect Indication
MS-REI	Multiplex Section - Remote Error Indicator
MSB	Most-Significant Bit
MSIM	Multiplex Structure Identifier Mismatch
MSOH	Multiplex Section Overhead
MST	Member Status
MUX	Multiplexer
MUX/DEMUX	Multiplexer/Demultiplexer

Ν

NATO	North Atlantic Treaty Organization
NDF	New Data Flag
NE	Network Element
NI/CSU	Network Interface/Customer Service Unit
NJO	Negative Justification Opportunity

nm	Nanometer
NORM	Normal

0

OC-3	Optical Carrier for 3rd level (155.52 Mbps)
OC-12	Optical Carrier for 12th level (622.08 Mbps)
OC-48	Optical Carrier for 48th level (2488.32 Mbps)
OC-192	Optical Carrier for 192th level (9.95328 Gbps)
OC-768	Optical Carrier for 768th level (39.81312 Gbps)
OCI	Open Connection Indication
ODU	Optical Data Unit
ODI	Outgoing Defect Indication
OEI	Outgoing Error indication
ОН	Overhead
OOF	Out-Of-Frame
OOM	Out-Of-Multiframe
OOM1	Out-Of-Multiframe of stage 1
OOM2	Out-Of-Multiframe of stage 2
OOSM	Out-Of-Service Monitoring
OPU	Optical Payload Unit
OTN	Optical Transport Network
OTU	Optical Transport Unit
OTU1	Optical Transport Unit 2.666 Gbps
OTU1e	Optical Transport Unit 11.049 Gbps
OTU1f	Optical Transport Unit 11.270 Gbps

OTU2	Optical Transport Unit 10.709 Gbps
OTU2e	Optical Transport Unit 11.096 Gbps
OTU2f	Optical Transport Unit 11.317 Gbps
OTU3	Optical Transport Unit 43.018 Gbps
OUT	OUTput

Р

P-bit	Parity bit
PC	Personal Computer
PCC	Protection Communication Channel
РСМ	Pulse Code Modulation
PDH	Plesiochronous Digital Hierarchy
PDI-P	Payload Defect Indication - Path
pFCS	payload Frame Check Sequence
PFI	Payload Frame check sequence Identifier
PLCR	Partial Loss of Capacity Receive
PLCT	Partial Loss of Capacity Transmit
PLI	Payload Length Indicator
PLM	Payload Label Mismatch
PLM-P	Payload Label Mismatch - Path
PLM-V	Payload Label Mismatch - VT
РМ	Path Monitoring
РМ	Performance Monitoring
PN-11	Polynominal Number 11
РОН	Path Overhead

x	
ppm	Parts Per Million
PPP	Point-to-Point Protocol
PRBS	Pseudo Random Bit Sequence
PRM	Performance Report Messages
PSI	Payload Structure Identifier
РТ	Payload Type
PTE	Path Terminating Equipment
PTI	Payload Type Identifier

Q

QRSS	Quasi-Random Signal Source

R

RAI	Remote Alarm Indication
RAI MF	Remote Alarm Indication MultiFrame
RAM	Random-Access Memory
RDI	Reverse Defect Indication
RDI	Remote Defect Indication test (replaces the former names FERF and RAI)
RDI-L	Remote Defect Indication - Line
RDI-P	Remote Defect Indication - Path
RDI-V	Remote Defect Indication - VT
REF OUT	Reference Output
REI	Remote Error Indication
REI-L	Remote Error Indication - Line

Acronym List

REI-P	Remote Error Indication - Path
REI-V	Remote Error Indication - VT
RES	Reserved
RFI	Remote Failure Indication
RFI-V	Remote Failure Indication - VT
RMA	Return Merchandise Authorization
RS	Regenerator Section
RS-Ack	Re-Sequence Acknowledge
RS-TIM	Regenerator Section - Trace Identifier Mismatch
RSOH	Regenerator Section Overhead
RTD	Round Trip Delay
RX	Receive

S

SAPI	Source Access Point Identifier
SDH	Synchronous Digital Hierarchy
SDT	Service Disruption Time
SEF	Severely Errored Framing
SELV	Safety Extra Low Voltage
SEP	Severely Errored Period
SEPI	Severely Errored Period Intensity
SES	Severely Errored Second
SESR	Severely Errored Second Ratio
SF	Superframe
SFP	Small Form Factor Pluggable

SI	International System
SK	Software Key
SM	Section Monitoring
SMA	Sub-Miniature A connector
SMF	Single Mode Fiber
SOH	Section Overhead
SONET	Synchronous Optical NETwork
SPE	Synchronous Payload Envelope
SQ	Sequence indicator
SQM	Sequence Indicator Mismatch
SQNC	Sequence Indicator Non-Consistent
SR	Short Reach
SSA	SONET SDH Analyzer
SSMB	Synchronization Status Message Byte
STM-0e	Electrical Synchronous Transport Module (51 Mbps)
STM-1	Synchronous Transport Module for 1st level (155.52 Mbps)
STM-1e	Electrical Synchronous Transport Module for 1st level (155.52 Mbps)
STM-4	Synchronous Transport Module for 4th level (622.08 Mbps)
STM-16	Synchronous Transport Module for 16th level (2.48832 Gbps)
STM-64	Optical Carrier for 64th level (9.95328 Gbps)
STM-256	Optical Carrier for 256th level (39.81312 Gbps)
STS-1	Synchronous Transport Signal-Level 1 (51.84 Mbps)
STS-3	Synchronous Transport Signal-Level 3 (155.52 Mbps)

Acronym List

STS-12	Synchronous Transport Signal-Level 12 (622.08 Mbps)
STS-48	Synchronous Transport Signal-Level 48 (2.48832 Gbps)
STS-192	Synchronous Transport Signal-Level 192 (9.95328 Gbps)
STS-768	Synchronous Transport Signal-Level 768 (39.81312 Gbps)
SYMB	Symbol

Т

TC	Tandem Connection
TC-BIP	Tandem Connection - Bit Interleaved parity
TC-IAIS	Tandem Connection - Incoming Alarm Indication Signal
TC-IEC	Tandem Connection - Incoming Error Count
TC-LTC	Tandem Connection - Loss of Tandem Connection
TC-RDI	Tandem Connection - Remote Defect Indication
TC-REI	Tandem Connection - Remote Error Indication
TC-TIM	Tandem Connection - Trace Identifier Mismatch
TC-VIOL	Tandem Connection - Violations
ТСМ	Tandem Connection Monitoring
TCM ACT	Tandem Connection Monitoring Activation
TERM	Terminal
tHEC	type Header Error Check
TIM	Trace Identifier Mismatch
TIM-P	Trace Identifier Mismatch - Path
TIM-S	Trace Identifier Mismatch - Section
TIM-V	Trace Identifier Mismatch - VT

TLCR	Total Loss of Capacity Receive
TLCT	Total Loss of Capacity Transmit
TNC	Transmit Node Clock
TRN	Transceiver
TS16 AIS	TimeSlot 16 Alarm Indication Signal
TTI	Trail Trace Identifier
TU	Tributary Unit
TU-11	Tributary Unit - 11
TU-12	Tributary Unit - 12
TU-AIS	Tributary Unit - Alarm Indication Signal
TU-LOP	Tributary Unit - Loss Of Pointer
TUG	Tributary Unit Group
TX	Transmit

U

UAS	Unavailable Second
UMST	Unexpected Member Status
UNCORR	Uncorrectable
UNEQ-P	Unequipped - Path
UNEQ-V	Unequipped - VT
UPI	User Payload Identifier
μs	microsecond
USA	United States of America
USB	Universal Serial Bus
UTC	Universal Time Coordinated

V

V	Volt
VC	Virtual Container
VC-11	Virtual Container-11
VC-12	Virtual Container-12
VC-AIS	Virtual Container - Alarm Indication Signal
VC-3	Virtual Container-3
VC-4	Virtual Container-4
VC-n	Virtual Container-n
VCAT	Virtual Concatenation
VCG	Virtual Concatenated Group
VLAN	Virtual Local Area Network
Vpp	Volt peak-to-peak
VT	Virtual Tributary
VTG	Virtual Tributary Group
VT1.5	Virtual Tributary-1.5
VT2	Virtual Tributary-2
VT3	Virtual Tributary-3
VT6	Virtual Tributary-6

Acronym List

Х

Х	Exit application
XFP	10G Small Form Factor Pluggable

Ζ

	7	ZCS	Zero Code Suppression
--	---	-----	-----------------------

G.709 Optical Transport Network (OTN)

Overview

The optical transport network (OTN) combines the benefits of SONET/SDH technology with the bandwidth expansion capabilities offered by dense wavelength-division multiplexing (DWDM) technology.

The OTN consists of the following layers:

- ► Optical Transport Section (OTS)
- ► Optical Multiplex Section (OMS)
- ► Optical Channel (OCh)
- ► Optical Transport Unit (OTU)
- ► Optical Data Unit (ODU)
- > Optical Channel Payload Unit (OPU)

Each of these layers and their functions are distributed along the network and activated when they reach their termination points, which are illustrated in the following figure.

OTN Layer Termination Points

The termination of the OTS, OMS and OCh layers is performed at the optical level of the OTN. It is at the termination of the OTU layer that further functionality can be added. This layer is the digital layer—also known as the "digital wrapper"—and offers specific overhead to manage the OTN's digital functions. The OTU also introduces a new dimension to optical networking by adding forward error correction (FEC) to the network elements, allowing operators to limit the number of required regenerators used in the network which, in turn, lowers its cost.

FEC allows an increase in the optical link budget by providing a new method to correct errors, thereby reducing the impact of network noise and other optical phenomena experienced by the client signal traveling through the network.

The OTU also encapsulates two additional layers—the ODU and the OPU which provide access to the payload (SONET, SDH, etc.). These layers are normally terminated at the same location. The OTU, ODU (including the ODU tandem connection) and OPU layers can all be analyzed and monitored. As per ITU G.709, current test solutions offer these possibilities using three line rates:

- OTU1 (255/238 x 2.488 320 Gbps ~ 2.666057143 Gbps) also referred to as 2.7 Gbps
- OTU2 (255/237 x 9.953280 Gbps ~ 10.709225316 Gbps) also referred to as 10.7 Gbps
- OTU3 (255/236 x 39.813120 Gbps ~ 43.018413559 Gbps) also referred to as 43 Gbps

Each line rate is adapted to service different client signals:

- ► OC-48/STM-16 is transported via OTU1
- ► OC-192/STM-64 is transported via OTU2
- ► OC-768/STM-256 is transported via OTU3
- ▶ Null Client (All 0s) is transported via OTUk (k = 1, 2, 3)
- > PRBS 231-1 is transported via OTUk (k = 1, 2, 3)

In order to map client signals via ITU G.709, they are encapsulated using the structure illustrated in the following figure.

Basic OTN Transport Structure

As depicted above, to create an OTU frame, a client signal rate is first adapted at the OPU layer. The adaptation consists of adjusting the client signal rate to the OPU rate. Its overhead contains information to support the adaptation of the client signal. Once adapted, the OPU is mapped into the ODU. The ODU maps the OPU and adds the overhead necessary to ensure end-to-end supervision and tandem connection monitoring (up to six levels). Finally, the ODU is mapped into an OTU, which provides framing as well as section monitoring and FEC.

Following the OTN structure presented in figure *Basic OTN Transport Structure* on page 603, OTUks (k = 1, 2, 3) are transported using the OCh; each unit is assigned a specific wavelength of the ITU grid. Several channels can be mapped into the OMS and then transported via the OTS layer. The OCh, OMS and OTS layers each have their own overhead for management purposes at the optical level. The overhead of these optical layers is transported outside of the ITU grid in an out-of-band channel called the optical supervisory channel (OSC).

When the OTU frame structure is complete (OPU, ODU and OTU), ITU G.709 provides OAM&P functions that are supported by the overhead.

OTU Frame Structure and Overhead

As shown in the figure below, the OTU frame is broken down into the following components:

- ► Framing
- ► OTU, ODU, OPU overhead
- ► OTU FEC

OTU Frame Description

➤ Framing

The OTU framing is divided into two portions: FAS and MFAS.

The frame alignment signal (FAS) uses the first six bytes and, similarly to SONET/SDH, it is used to provide framing for the entire signal. In order to provide enough 1/0 transitions for synchronization, scrambling is used over the entire OTU frame, except for the FAS bytes.

The multiframe alignment signal (MFAS) byte is used to extend command and management functions over several frames. The MFAS counts from 0 to 255, providing a 256 multiframe structure.

➤ Overhead

Each portion of the OTU frame has its own specific overhead functions. They are displayed in figure *OTU Frame Description* on page 605, and are briefly described below. Further details can be found about these overhead fields in the ITU G.709 standard.

► Optical Transport Unit (OTU)

The OTU overhead is comprised of the SM, GCC0 and RES bytes.

The section monitoring (SM) bytes are used for the trail trace identifier (TTI), parity (BIP-8) and the backward error indicator (BEI), or backward incoming alignment error (BIAE), backward defect indicator (BDI), and incoming alignment error (IAE). The TTI is distributed over the multiframe and is 64 bytes in length. It is repeated four times over the multiframe.

General communication channel 0 (GCC0) is a clear channel used for transmission of information between OTU termination points.

The reserved (RES) bytes are currently undefined in the standard.

► Optical Data Unit (ODU)

The ODU overhead is broken into several fields: RES, PM, TCMi, TCM ACT, FTFL, EXP, GCC1/GCC2 and APS/PCC.

The reserved (RES) bytes are undefined and are set aside for future applications.

The path monitoring (PM) field is similar to the SM field described above. It contains the TTI, BIP-8, BEI, BDI and Status (STAT) field.

There are six tandem connection monitoring (TCMi) fields, which contain the BEI/BIAE, BDI and STAT fields. The STAT field is used in the PM and TCMi fields to provide an indication of the presence or absence of maintenance signals.

The tandem connection monitoring activation/deactivation (TCM ACT) field is currently undefined in the standards.

The fault type and fault location reporting communication channel (FTFL) is a message spread over a 256-byte multiframe that provides the ability to send forward and backward path-level fault indications.

The experimental (EXP) field is a field that is not subject to standards and is available for network operator applications.

General communication channels 1 and 2 (GCC1/GCC2) fields are very similar to the GCC0 field except that each channel is available in the ODU.

The automatic protection switching and protection communication channel (APS/PCC) supports up to eight levels of nested APS/PCC signals, which are associated to a dedicated-connection monitoring level depending on the value of the multiframe.

► Optical Payload Unit (OPU)

The primary overhead field associated to the OPU is the Payload Structure Identifier (PSI). This is a 256 bytes multi-frame where its first byte is defined as the Payload Type (PT). The remaining 255 bytes are currently reserved.

The other fields in the OPU overhead are dependent on the mapping and concatenation capabilities associated to the OPU. For an asynchronous mapping (the client signal and OPU clock are different) Justification Control (JC) bytes are available to compensate for clock rate differences, two methods are supported Asynchronous Mapping Procedure (AMP) and Generic Mapping Procedure (GMP). For a purely Bit-Synchronous Mapping Procedure (BMP) (client source and OPU clock are the same), the JC bytes become reserved (set to 0). Concatenation bytes are also available as described in ITU G.709.

Tandem Connection Monitoring (TCM)

TCM enables the user and its signal carriers to monitor the quality of the traffic that is transported between segments or connections in the network. SONET/SDH allowed a single level of TCM to be configured, while ITU G.709 allows six levels of tandem connection monitoring to be configured. The assignment of monitored connections is currently a manual process that involves an understanding between the different parties. There are various types of monitored connection topologies: cascaded, nested and overlapping. Examples of these topologies are provided in the following figure.

Tandem Connection Monitoring

Each of the six TCMi fields in the ODU overhead is assigned to a monitored connection. There can be from zero to six connections that can be configured for each connection. In the figure *Tandem Connection Monitoring* on page 609, there are three different connections that are actually monitored. Carrier C, due to its location, can monitor three TCM levels as the ODU passes through its portion of the network.

In addition to monitoring maintenance signals, using the STAT field associated with each TCM level, the TCM connection also monitors the BIP-8 and BEI errors for each connection level. Maintenance signals are used to advertise upstream maintenance conditions affecting the traffic and errors provide an indication of the quality of service offered at each segment of the network, which provides a valuable tool for the user and carrier to isolate faulty sections of the network.
Forward Error Correction (FEC)

The ITU G.709 standard supports forward error correction (FEC) in the OTU frame and is the last part added to the frame before the frame is scrambled. FEC provides a method to significantly reduce the number of transmitted errors due to noise, as well as other optical phenomena that occur at high transmission speeds. This enables providers to support longer spans in between optical repeaters.

An OTU frame is divided into four rows. Each row is broken down into 16 sub-rows comprised of 255 bytes each, as shown in figure *Forward Error Correction* on page 612. A sub-row is composed of interleaved bytes. The interleave is executed so that the first sub-row contains the first overhead (OH) byte, the first payload byte and the first FEC byte, and so on for the remaining sub-rows of each row in the frame. The first FEC byte starts at position 240 for all sub-rows.

The FEC uses a Reed-Solomon RS (255/239) coding technique. This means that 239 bytes are required to compute a 16-byte parity check. The FEC can correct up to eight (bytes) errors per sub-row (codeword) or detect up to 16 byte errors without correcting any. Combined with the byte interleave capability included in ITU G.709 implementation, the FEC is more resilient in regards to error burst, where up to 128 consecutive bytes can be corrected per OTU frame row.

Forward Error Correction

ODU Multiplexing

The ODU multiplexer is a function that allows the multiplexing of ODU tributary signals into higher OTN signal rates. The G.709 standard supports 2 types of ODU multiplexer which can be classified as follows:

- ➤ Legacy architecture is based on multi-stage architecture to bring an ODUk client to a higher OTN interface rate. This multiplexer is identified by Payload Type 20 (PT 20).
- New architecture uses a single stage architecture to bring an ODUk client to any higher OTN interface rate. This method supports the ODUflex client signal. The multiplexer is identified by Payload Type 21 (PT 21). The ODUflex function is only supported on FTB-8130, FTB-8130NG, FTB-8130NGE, and FTB-8140 modules.
- **Note:** Refer to the Supported Paths/Mappings on page 59 for the ODU multiplexing capabilities.

The multiplexing strategy is based on the concept of tributary slots, which is similar in concept to the SONET timeslot. The multiplexing of 4 ODU1 in one ODU2 is made by distributing the ODU1 structure in a repetitive sequence of 4 ODU2 Tributary slots, a similar strategy is used for ODU3 multiplexing where the repetitive sequence is made of 16 ODU3 tributary slots, refer to G.709 standard for detailed information. The main attributes of the ODU multiplexer functionality are as follows:

- ➤ The Asynchronous Mapping Procedure (AMP) is used for multiplexing the tributary signals; this method uses a modified Justification Control mechanism which has 2 positive Justification Control bytes and one negative Justification Control byte.
- The new multiplex method also supports the Generic Mapping Procedure as the Justification Control mechanism is still using the OPU OH JC bytes.
- ➤ The Multiplex Structure Identifier (MSI) provides information that is specific to each type of multiplexer provided.
- Can handle multiplex signals with frequency offset of +/- 20 ppm on every layer for the legacy architecture while the new architecture (using GMP) can handle frequency offset of +/-100 ppm.

ODUflex

ODUflex provides the capability to carry client payload of variable size with a container size of 1.244 Gb/s granularity. An ODUflex (L) signal can be transported once multiplexed in an ODUk (H) signal, the multiplexer in this case handles tributary slots of 1.244 Gb/s and has a Payload Type 21. The ODUflex function can be used to transport 2 signal categories mapped in ODTUk.ts using GMP:

► Ethernet in ODUflex over GFP-F signal

The Ethernet packets are mapped in GFP-F as specified in G.7041, the packets are processed as follows:

- > The Start of Frame Delineation bytes are terminated
- ► Inter Frame Gaps bytes are terminated
- ► PCS coding is terminated
- ► GFP overhead bytes added

Since the PCS coding is terminated, it is not possible to transport the Ethernet Link status transparently but it is accommodated by the Forward Defect Indication (FDI) and Remote Defect Indication (RDI) alarms over GFP. The RDI is used to carry the Remote Fault alarm while the FDI is used to carry the Local Fault.

GFP-F provides rate adaptation between the incoming Ethernet signal and the outgoing OPUflex transport signal. This brings the fact that GMP is operated at a fixed Cm value close to the maximum server capacity.

► CBR over ODUflex signal

ODUflex can transport Constant Bit Rate signal (bulk filled Test pattern) as Client of the ODUflex CBR function. This CBR function needs a Pattern generator that can operate at a data rate specified by the user, the range of the available data rates is qualified by the Bandwidth management function.

SONET Numbering Convention

The FTB-8100 Series supports the Timeslot (default) and hierarchical two-level numbering conventions as per GR-253.

Hierarchical Notation

The FTB-8100 Series supports numbering SONET high order path STS-1s and STS-3c using the two-level "STS-3#,STS-1#" convention in an OC-N. For example: STS-1 [2,3].

	[STS-	3,STS-1]															
		_			STS-3			STS-3			S⊺S-3			STS-3			
		ſ											$ \longrightarrow $				
			(1	2	3	4	5	6	7	8	9	10	11	12		
			STS-1	1,1	1,2	1,3	2,1	2,2	2,3	3,1	3,2	3,3	4,1	4,2	4,3		
				12	14	15	16	17	10	10	20	21	22	22	24		
			STS-1	13	14 6.2	52	61	62	61	71	7.2	72	22	23	0.24		
		OC-48		5,1	5,2	5,5	0,1	0,2	0,3	/.1	1,2	1,3	0,1	0,2	0,3		
		~) (25	26	27	28	29	30	31	32	33	34	35	36		
			STS-1	9,1	9,2	9,3	10,1	10,2	10,3	11,1	11,2	11,3	12,1	12,2	12,3		
	0.0 400			27	20	20	40	44	42	42	44	45	46	47	49		
	00-192	,	STS-1	3/	13.2	13.3	40	141	42	40	44	40	40	47	16.3		
				13,1	10,2	10,0	14,1	14,2	14,5	13,1	15,2	15,5	10,1	10,2	10.5		
				49 [17,1]				· · · · · ·							60 [20.3]		
				85 [29,1]											96 [32,3]		
OC-768				97 [33,1]											108 [36,3]		
1 TONY																	
				133 [45,1]											144 [48,3]		
				145 [49,1]											156 [52,3]		
		L		181 (61.1)											192 (64.3)		
				101 [01,1]											102 [04,0]		
				193 [65,1]											204 [68,3]		
				i 373 (125 1]		<u> </u>									:		
				515 [125,1]											304 [120,3]		
				385 [129,1]											396 [132,3]		
				1											:		
				565 [189,1]											576 [192,3]		
				577 [193.1]			1				1		588 [196.3]				
				1											1		
	l			757 [253,1]											768 [256,3]		

The FTB-8100 Series supports numbering SONET low order path using the two-level "VTGroup#,VT#" convention for numbering VTs within an STS-1. For example: VT1.5 [1,3], VT2 [3,2], VT6 [6,1].

The FTB-8100 Series supports numbering SONET high order path STS-nc within an OC-N using the two-level "STS-3#,STS-1#". For example: STS-12c [5,1].

Note: For STS-1e the numbering is limited to the A value as only one STS-1 exits.

SDH Numbering Convention

As per ITU G.707, the high order paths are defined using a 2 to 5 level convention E,D,C,B,A depending on the rate of the STM-n used.

- ► E: the AUG-64 are numbered 1 to 4
- > D: the AUG-16 are numbered 1 to 4
- ► C: the AUG-4 are numbered 1 to 4
- ► B: the AUG-1 are numbered 1 to 4
- ► A: the AU-3 are numbered 1 to 3

So for the naming is as follows for each of the following rate:

- \blacktriangleright [E,D,C,B,A] for STM-256
- \blacktriangleright [D,C,B,A] for STM-64
- ► [C,B,A] for STM-16
- ► [B,A] for STM-4
- ► [0] for AU-4 in STM-1
- ► [A] for AU-3 in STM-1
- \blacktriangleright [A] for the AU-3 in STM-0e, A=0.

Glossary SDH Numbering Convention

				B=1			B=2			B=3			B=4 人	
						γ			γ			Ý		
Í		C=1	1 A=1	2 A=2	3 A=3	4 A=1	5 A=2	6 A=3	7 A=1	8 A=2	9 A=3	10 A=1	11 A=2	12 A=3
			13	14	15	16	17	18	19	20	21	22	23	24
		C=2	A=1	A=2	A=3	A=1	A=2	A=3	A=1	A=2	A=3	A=1	A=2	A=3
	D=1≺	C=3	25 A=1	26 A=2	27 A=3	28 A=1	29 A=2	30 A=3	31 A=1	32 A=2	33 A=3	34 A=1	35 A=2	36 A=3
		0-0	27	20	20	40	44	40	42		45	46	47	49
E=1		C=4	A=1	A=2	A=3	40 A=1	A=2	42 A=3	43 A=1	44 A=2	45 A=3	40 A=1	47 A=2	40 A=3
			[1,2,1,1,1]				 	 			 	 	 	[1,2,1,4,3]
	D=2		[1,2,4,1,1]											[1,2,4,4,3]
	D-2	ſ	[1,3,1,1,1]	-									<u> </u>	[1,3,1,4,3]
	D=3-		[1,3,4,1,1]											[1,3,4,4,3]
	D=4	([1,4,1,1,1]											[1,4,1,4,3]
)		[1,4,4,1,1]											[1,4,4,4,3]
E-2 (\sim		[2,1,1,1,1]											[2,1,1,4,3]
			[2,4,4,1,1]											i [2,4,4,4,3]
	\mathcal{C}		[3,1,1,1,1]											[3,1,1,4,3]
E=3	l		: [3,4,4,1,1]											: [3,4,4,4,3]
E=4 ([4,1,1,1,1]											[4,1,1,4,3]
- {			: [4,4,4,1,1]											: [4,4,4,3]

The low order paths are defined using a 2 or 3 level convention K,L,M depending on the rate of the AU-4 or AU-3 used to multiplex the low order signals.

- ► K: the TUG-3 are numbered 1 to 3
- ▶ L: the TUG-2 are numbered within the TUG-3 0 or from 1 to 7
- ► M: the TU-2, TU-12, TU-11 are numbered within the TUG-2 1, 1 to 3, 1 to 4 respectively

Examples for AU-4 (3 level convention)

TU-3: [K,0,0] TU-2: [K,L,0] TU-12:[K,L,M] where M = 1 to 3 TU-11:[K,L,M] where M = 1 to 4 Example for AU-3 (2 level convention) TU-2: [L,0] TU-12: [L,M] M is numbered 1 to 3

TU-11: [L,M] M is numbered 1 to 4

The GUI Grid indicates the TUG-2 [x] and TUG-3 [x] values.

DSn/PDH Numbering Convention

The DS1 numbering in DS3 shall be numbered with respect to the DS2 muxing [DS2,DS1]. For example a DS3 has 7 DS2 and a DS2 has 4 DS1, so an example would be for a DS1 number [3,2]. The DS3 shall have a single number to represent its position. That is [1] all the time whether it is used in an STS-1 or it is the DS3 electrical interface.

The PDH do not have special grouping of the E1, E2, E3 or E4. This means that the PDH has a single number. For example E1 number 2 shall be number [2].

The E1 in DS3 via G.747 numbering uses the naming [DS2,E1]. However in the grid the label shall adapt itself to DS2 [x] or 6.3M [x] (where x = 1 to 7) with respect to the interface standard used: European or International.

SONET - Section Overhead (SOH)

The section contains overhead information (SOH) used by all SONET equipment along a network path, including signal regenerators.

A1 and A2: Framing

A1 and A2 provide frame alignment of each STS-1 frame within a composite signal (STS-1 to STS-n). They must appear in every STS-1 of a composite signal. The value is hexadecimal F628.

J0: Trace

The J0 (Trace) byte is used to trace the origin of an STS-1 frame as it travels across the SONET network. This byte is only defined for the first STS-1 frame of a composite signal STS-1 to STS-n (STS-1 of an electrical or OC-N signal).

Z0: Growth

The Z0 (Growth) byte was used to uniquely identify the STS in question. This byte had to be defined in every STS-1 to STS-n frame of a composite signal. For speed reasons, a Section Trace is a much better use of this byte.

B1: BIP-8

The BIP-8 (Bit-Interleaved Parity) byte provides section error monitoring. The byte is calculated by performing a routine even-parity check over all bits of the previous frame of a composite signal (STS-1 to STS-n). This byte is only defined for the first STS-1 frame of a composite signal.

E1: Orderwire

The Orderwire provides a 64 Kbps voice channel for communication between two STEs (Section Terminating Equipment). This byte is only defined for the first STS-1 frame of a composite signal.

F1: User

The User byte is reserved for user purposes. This byte is only defined for the first STS-1 frame of a composite signal.

D1, D2 and D3: Data Communications Channel (DCC)

The Data Communication Channel (D1, D2 and D3) provides a 192 Kbps data communication between two STEs for operation functions such as OAM&P. This byte is only defined for the first STS-1 frame of a composite signal.

SONET - Line Overhead (LOH)

This section contains overhead information (LOH) processed by all SONET equipment along a network path, excluding signal regenerators.

		Transport Ov	erhead	Path Overhead
	Framing	Framing	Trace/Growth	Trace
0'0	A1	A2	J0/Z0	J1
ver	BIP-8	Orderwire	User	BIP-8
he	B1	E1	F1	B3
adi	Data Com	Data Com	Data Com	Signal Label
-¥	D1	D2	D3	C2
	Pointer	Pointer	Pointer Action	Path Status
	H1	H2	H3	G1
	BIP-8	APS	APS	User Channel
1	B2	K1	K2	F2
Ş	Data Com	Data Com	Data Com	Indicator
e E	D4	D5	D6	H4
ne	Data Com	Data Com	Data Com	Growth/User
ad	D7	D8	D9	Z3
	Data Com	Data Com	Data Com	Growth
	D10	D11	D12	Z4
	Sync/Growth	REI/Growth	Orderwire	Growth/User
*	S1/Z1	M0 or M1/Z2	E2	N1

H1 and H2: Pointer

H1 and H2 bytes are combined to form a pointer indicating where the path overhead begins within each SPE.

H3: Pointer Action

H3 is an extra byte used to compensate for the SPE timing variation. The H1 and H2 pointer tell the receiver when the H3 pointer is used. This byte must be defined in every STS-1 to STS-n frame of a composite signal.

B2: BIP-8

The BIP-8 (Bit-Interleaved Parity) byte provides line error monitoring. The byte is calculated by performing a routine even-parity check over all bits of the LOH and the STS-1 frame capacity of the previous frame of a composite signal (STS-1 to STS-n). Note that the SOH is not used to calculate the parity check. This byte must be defined in every STS-1 to STS-n frame of a composite signal.

K1 and K2: Automatic Protection Switching (APS)

The K1 and K2 bytes communicate APS between two LTE. This byte is only defined for the first STS-1 frame of a composite signal.

D4 - D12: Data Communications Channel (DCC)

The D4 through D12 bytes provides a 576 Kbps data communications channel between two LTEs for administration, monitoring and other communications. These bytes are only defined for the first STS-1 frame of a composite signal.

S1: Synchronization Status

The S1 byte is used to carry the synchronization status of the SONET device. This byte is only defined for the first STS-1 frame of a composite signal (STS-1 of an electrical or OC-N signal).

Z1: Growth

The Z1 byte is allocated for future growth. This byte is located in the second STS-1 through STS-n frame of a composite signal (STS-1 #2, STS-1 #3, up to STS-1 #N of a OC-N (N>3) signal).

M0: STS-1 REI-L

Bits 5 through 8 of M0 byte are used for line Remote Error Indication (REI-L). Bits 1 through 4 are currently undefined. The M0 byte is defined only for the STS-1 in an STS-1 electrical signal.

M1: STS-n REI-L

The M1 byte is used for line Remote Error Indication (REI-L). This byte is located in the third STS-1 of an STS-n signal (n > 3).

Z2: Growth/FEBE (Far-End Block Error)

The Z2 byte is allocated for future growth. This byte is located in the first and second STS-1s of an STS-3, and the first, second, and fourth through n of a STS-n signal ($12 \le n \le 48$).

E2: Orderwire

The Orderwire provides a 64 Kbps voice channel for communication between LTEs. This byte is only defined for the first STS-1 frame of a composite signal.

SONET - Path Overhead (POH)

This section contains overhead information (POH) processed by SONET STS-1 terminating equipment.

J1: Trace

The J1 Trace byte provides a 16 or 64 byte fixed string to verify connection between path transmitting equipment and path receiving equipment.

B3: BIP-8

The BIP-8 (Bit-Interleaved Parity) byte provides path error monitoring. The byte is calculated by performing a even-parity check over all bits of the previous SPE.

C2: Signal Label

C2 provides an identification byte for the STS SPE.

► STS Path Signal Label Assignments:

C2 (Hex.)	Description
00	Unequipped
01	Equipped - Non-Specific
02	Floating VT Mode
03	Locked VT Mode
04	Asynchronous Mapping for DS3
05	Mapping under development
12	Asynchronous Mapping for 140M (DS4NA)
13	Mapping for ATM
14	Mapping for DQDB
15	Asynchronous Mapping for FDDI
16	Mapping of HDLC over SONET
17	SDL with self-synchronization scrambler
18	Mapping of HDLC/LAPS
19	SDL with use of a set-reset scrambler
1A	10 Gbps Ethernet (IEEE 802.3)
1B	GFP
CF	Reserved (Obsolete HDLC/PPP framed)
E1 to	STS-1 w/1 VTx Payload Defects, STS-1 w/2 VTx Payload Defects, STS-1 w/28 VTx or STS-n/nc with Payload Defects
FE	Test Signal, ITU-T 0.181 specific mapping

G1: Status

The G1 byte provides a method to communicate the far-end path status back to the path originating equipment.

F2: User Channel

The User Channel provides a 64 Kbps channel for communication between two PTEs. This byte is only defined for the first STS-1 frame of a composite signal.

H4: Multiframe Indicator

The H4 byte provides a multiframe phase indication of a VT payload to identify phases of a SF as well as to convey the control packet information in VCAT.

Z3 and Z4: Growth

The Z3 and Z4 bytes are allocated for future growth.

N1: Tandem Connection

The N1 byte (formerly referred to as the Z5 byte) is allocated for Tandem Connection Maintenance and the Path Data Channel.

SONET - VT Path Overhead

V5: VT Path overhead

The V5 byte provides the same functions for VT paths that the B3, C2, and G1 bytes provide for STS paths.

Note: If the signal label in V5 (bits 5, 6, and 7) is 101 the contents of the extended signal label is valid and contains in a 32 bit frame multiframe as shown below. See Z7 Structure shown below.

Z7 Structure

- 0 c 4 c 0 / c 0 f f	12 15 15 15 15 15 15 15 15 15 15 15 15 15	22 22 22 25 25 25 25 25 25 25 25 25 25 2
Multiframe Alignment Signal Frame Count Sequence Indicator	Extended Signal Label	

R = Reserved

J2: VT Path Trace

The J2 Trace byte provides a 16 byte fixed string allowing the receiving VT PTE to verify its continued connection to the intended transmitting VT PTE.

Z6: VT Path Growth

The Z6 byte is allocated for future growth.

Z7: VT Path Growth

Bit 1 of the Z7 byte is allocated for an extended signal label. Bits 12 to 19 of the 32 bit frame multiframe (see *Z7 Structure* on page 630) contain the extended signal label.

Bit 2 of the Z7 byte is allocated for virtual concatenation. Bits 1 to 5 of the 32 bit frame multiframe (see *Z7 Structure* on page 630) contain the LO virtual concatenation frame count while bits 6 to 11 contain the LO virtual concatenation sequence indicator.

Bits 3, and 4 of the Z7 byte are unassigned and reserved for APS signaling for protection at the lower order path level.

Bits 5 through 7 of the Z7 byte in combination with bit 8 of V5 are allocated for RDI -V/ERDI-V signal.

Bit 8 of the Z7 byte is unassigned and reserved for a lower order path data link.

VT Payload Pointer

The VT Payload Pointer provides a method of allowing flexible and dynamic alignment of the VT SPE within the VT Superframe.

Normal Values		
0 1 1 0	0 0	10 Bit Pointer Value
0 1 1 0	0 1	10 Bit Pointer Value
0 1 1 0	1 0	10 Bit Pointer Value
0 1 1 0	1 1	10 Bit Pointer Value
	Normal Values O 1 1 O O 1 1 O O 1 1 O O 1 1 O	Normal Values 0 1 1 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0

► New Data Flag

NDF is enabled when at least 3 out of 4 bits match "1001".

NDF is disabled (normal value) when at least 3 out of 4 bits match "0110".

► Pointer Value

The pointer value indicates the offset between the pointer word and the first byte fo the VT SPE. The V1 through V4 bytes are not counted in the offset calculation. The pointer is a binary number with the following range:

Path	Rai	ge				
VT1.5	0	103				
VT2	0	139				
VT3	0	211				
VT6	0	427				

SDH - Regenerator Section Overhead (RSOH)

The section contains regenerator section overhead information (RSOH) used by all SDH equipment along a network path, including signal regenerators.

			Т	ransp	STM- ort O	1 verhe	ad			Hiq Pat	gher-Or h Overl	rder head
S S S S S S S S S S S S S S S S S S S	A1	A1	A1	A2	A2	A2	JO				J1	
ectio ectio	B1			E1			F1				B3	
ad ∀	D1			D2			D3				C2	
1	H1	H1	H1	H2	H2	H2	H3	Н3	НЗ		G1	
	B2	B2	B2	K1			K2				F2	
Multip Sect	D4			D5			D6				H4	
ion lead	D7			D8			D9				F3	
	D10			D11			D12				К3	
↓ ·	S1					M1	E2				N1	

A1 and A2: Framing

A1 and A2 indicate the beginning of the STM-N frame. They must appear in every STM-1 of a composite signal. The value in hexadecimal is F628.

J0: RS Trace Message

The J0 (Trace) byte is used to trace the origin of an STM-1 frame as it travels across the SDH network. This byte is only defined for the first STM-1 of an STM-N signal.

Z0: Growth

These bytes are reserved for future international standardization. They are located at positions S[1,6N+2] to S[1,7N] of an STM-N signal (N > 1).

B1: RS BIP-8

The BIP-8 (Bit-Interleaved Parity) byte provides section error monitoring. The byte is calculated by performing a routine even-parity check over all bits of the previous STM-N frame. This byte is only defined for the first STM-1 frame of a composite signal.

E1: RS Orderwire

The Orderwire provides a 64 kbps voice channel for communication between two STEs. This byte is only defined for the first STM-1 frame of a composite signal.

F1: RS User Channel

The User Channel byte is reserved for user purposes. This byte is only defined for the first STM-1 frame of a composite signal.

D1, D2 and D3: RS DCC (Data Communications Channel)

The Data Communication Channel (D1, D2 and D3) provides a 192 kbps data communication between two STEs for operation functions such as OAM&P. This byte is only defined for the first STM-1 frame of a composite signal.

SDH - Multiplex Section Overhead (MSOH)

This section contains multiplex section overhead information (MSOH) processed by all SDH equipment along a network path, excluding signal regenerators.

			Т	ransp	STM- ort O	1 verhe	ad			Hig Pat	gher-Or h Overl	rder head
	A1	A1	A1	A2	A2	A2	JO				J1	
ectio	B1			E1			F1				В3	
ad ↓	D1			D2			D3				C2	
1	H1	H1	H1	H2	H2	H2	НЗ	Н3	НЗ		G1	
	B2	B2	B2	K1			K2				F2	
Sect Sect	D4			D5			D6				H4	
ion lead	D7			D8			D9				F3	
	D10			D11			D12				К3	
Ļ	S1					M1	E2				N1	

H1 and H2: Pointer

H1 and H2 bytes are combined to form a pointer indicating where the VC (Virtual Container) framed begins within each SPE.

H3: Pointer Action

H3 is an extra byte used to compensate for the SPE timing variation. The H1 and H2 pointer tell the receiver when the H3 pointer is used. This byte must be defined in every STM-1 of an STM-N signal in the event of negative justification, otherwise it is not defined.

B2: MS BIP-N*24

The MS BIP-N*24 (Bit-Interleaved Parity) byte provides line error monitoring. The byte is calculated by performing a routine even-parity check over all bits of the MSOH and the STM-N frame of the previous STM-N frame. Note that the RSOH is not used to calculate the parity check. This byte must be defined in every STM-1 of an STM-N signal.

K1 and K2: APS Channel (Automatic Protection Switching)

The K1 and K2 bytes communicate APS between two LTEs. This byte is only defined for the first STM-1 frame of an STM-N signal.

D4 through D12: MS DCC (Data Communications Channel)

The D4 through D12 bytes provides a 576 kbps data communications channel between two LTEs for administration, monitoring and other communications. These bytes are only defined for the first STM-1 frame of an STM-N signal.

S1: SSMB (Synchronization Status Message Byte)

Bits 5 to 8 of the S1 byte are used to carry the synchronization messages of the SDH device. This byte is only defined for the first STM-1 frame of an STM-N signal.

M1: MS-REI (Remote Error Indicator)

The M1 byte of a STM-1 or the first STM-1 of an STM-N signal is used for MS layer Remote Error Indication (MS-REI). This byte is located in the third STM-1 of an STS-N signal (N > 1).

E2: MS Orderwire

The MS Orderwire provides a 64 kbps voice channel for communication between LTEs. This byte is only defined for the first STM-1 frame of an STM-N signal.

SDH - Higher-Order Path Overhead (HP-POH)

This section contains higher-order path overhead information (HPOH) processed by SDH STM-1 terminating equipment.

	STM-1 Transport Overhead														
	A1	A1	A1	A2	A2	A2	JO				J1				
ectio ectio	B1			E1			F1				B3				
n ↓ ad	D1			D2			D3				C2				
1	H1	H1	H1	H2	H2	H2	НЗ	Н3	НЗ		G1				
	B2	B2	B2	K1			K2				F2				
Multij Sect Overh	D4			D5			D6				H4				
plex lion head	D7			D8			D9				F3				
	D10			D11			D12				K3				
¥	S1					M1	E2				N1				

J1: Higher-Order VC-N Path Trace

The higher-order VC-N path trace byte provides a 64 byte fixed string to verify connection between path transmitting equipment and path receiving equipment.

B3: Path BIP-8

The path BIP-8 (Bit-Interleaved Parity) byte provides path error monitoring. The byte is calculated by performing a routine even-parity check over all bits of the previous SPE.

C2: Path Signal Label

C2 specifies the mapping type in the VC-N.

C2 (Hex.)	Description
00	Unequipped or supervisory-unequipped
01	Reserved (Equipped - Non-Specific)
02	TUG Structure
03	Locked TU-n
04	Asynchronous Mapping of 34M/45M in C-3
05	Experimental Mapping
12	Asynchronous Mapping of 140M in C-4
13	ATM Mapping
14	MAN DQDB
15	FDDI [3]-[11] Mapping
16	Mapping of HDLC/PPP
17	Reserved (SDL self-synch scrambler)
18	Mapping of HDLC/LAPS
19	Reserved (SDL set-reset scrambler)
1A	Mapping of 10 Gbps Ethernet (IEEE 802.3)
1B	GFP
1C	Mapping 10 Gbps FC
20	Asynchronous Mapping of ODUk
CF	Reserved (obsolete HDLC/PPP framed)
FE	Test Signal, ITU-T 0.181 specific mapping
FF	VC-AIS (TCM)

G1: Path Status

The G1 byte provides a method to communicate the far-end path status back to the path originating equipment.

F2: Path User Channel

The Path User Channel provides a 64 kbps channel for communication between two PTEs. This byte is only defined for the first STM-1 frame of an STM-N signal.

H4: Position and Sequence Indicator

The H4 byte provides a multiframe phase indication of a VC-3/4 payload to identify phases of a SF as well as to convey the control packet information in VCAT.

F3: Path User Channel

The Path User Channel provides a channel for communication purposes between path elements and is payload dependent.

K3: APS Signaling

Bits 1 to 4 of the K3 byte are used for APS signaling. K3 bits 5 to 8 are reserved for future use.

N1: Network Operator (TCM)

The N1 byte is allocated to provide a Higher-Order Tandem Connection Monitoring (HO-TCM) function.

SDH - Lower-Order Path Overhead

V5: VC Path Overhead

The V5 byte provides the same functions for VC paths overhead that the B3, C2, and G1 bytes provide for STM paths.

Note: If the signal label in V5 (bits 5, 6, and 7) is 101 the contents of the extended signal label is valid and contains in a 32 bit frame multiframe. See K4 Structure shown below.

K4 Structure

-	2	ო	4	ß	9	2	8	6	10	11	12	13	44	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Mu Fra	ılti [.] am	fra e C	me our	e A nt	ligi Se	nm que	ente	t S	ign dica	ial tor		Ex Si	te gn	nd al	ed Lal	bel			0	R	R	R	R	R	R	R	R	R	R	R	R

R = Reserved

J2: Path Trace

The J2 byte is used to repetitively transmit a Lower-Order Access Path Identifier so that a path receiving terminal can verify its continued connection to the intended transmitter.

N2: Network Operator Byte

The N2 byte is allocated for Tandem Connection Monitoring for the VC2, VC-12, and VC-11 level.

K4: Extended Signal Label

Bit 1 of the K4 byte is allocated for an extended signal label. Bits 12 to 19 of the 32 bit frame multiframe (see *K4 Structure* on page 641) contain the extended signal label.

Bit 2 of the K4 byte is allocated for virtual concatenation. Bits 1 to 5 of the 32 bit frame multiframe (see *K4 Structure* on page 641) contain the LO virtual concatenation frame count while bits 6 to 11 contain the LO virtual concatenation sequence indicator.

Bits 3, and 4 of the K4 byte are unassigned and reserved for APS signaling for protection at the lower order path level.

Bits 5 through 7 of the K4 byte are allocated for optional use.

Bit 8 of the K4 byte is unassigned and reserved for a lower order path data link.

VT Payload Pointer

The VT Payload Pointer provides a method of allowing flexible and dynamic alignment of the VT SPE within the VT Superframe.

V1 byte						V2 byte									
-				۸			_	_				<u>۸</u>			~
Ν	ew D	ata I	lag	SI	oits				Po	ointe	r Val	ue			
_		^	~	<i></i>	~	_				,	^				~
1	2	з	4	5	6	7	8	9	10	11	12	13	14	15	16

TU-2	0 1 1 0	0 0	10 Bit Pointer Value
TU-12	0 1 1 0	1 0	10 Bit Pointer Value
TU-11	0 1 1 0	1 1	10 Bit Pointer Value

► New Data Flag

NDF is enabled when at least 3 out of 4 bits match "1001". NDF is disabled when at least 3 out of 4 bits match "0110".

► Pointer Value

The pointer value indicates the offset between the V2 byte and the first byte fo the VC-2/VC-1. The pointer bytes are not counted in the offset calculation. The pointer is a binary number with the following range:

Path	Rai	nge
TU-2	0	427
TU-12	0	139
TU-11	0	103

10G Ethernet

The OTN Overclocked technology provides the capability to transparently transport 10G base-R Ethernet signals into OPU2 as specified in ITU-T. Two optical rates are provided:

- ► 11.0957 Gbits/s, +/- 100 ppm, designated OTU2e
- ► 11.0491 Gbits/s, +/- 100 ppm, designated OTU1e

The OTU2e uses the mapping scheme of CBR10G into OPU2 as defined in G.709. The client signal, 10GbE LAN and the OPU fixed stuff bytes are accommodated into an OPU-like signal designated OPU2e. This signal is then wrapped in an ODU2e and then in an OTU2e signal.

The OTU1e uses the mapping scheme of CBR2G5 into OPU1 as defined in G.709. The client signal, 10GbE LAN is accommodated into an OPU-like signal designated OPU1e (note that the fixed stuff bytes are not left free) this is why the 10GbE signal can be transported at a lower rate than OTU2e. This signal is then wrapped in an ODU1e and then in an OTU1e signal.

The transparent transport of the 10G base-R means that the full 10G Ethernet data rate i.e. 10.3125 Gb/s is transported over OTN. This means that the following information is transported:

- ► PCS 64B/66B coded information
- IPG (inter-frame filler), MAC FCS, Preamble and SFD (start of frame delimiter) and Ordered Sets (Remote Fault indication)

The OTN clocking is derived from the Ethernet client signal which is +/-100 ppm, this is outside the clock tolerance allocated by the G.709 standard which translates in unspecified jitter performance thus limiting the application to Point to Point data path.

The following figure presents a typical network application

The following figure presents a typical test application.

The Ethernet layer provides the equivalent functionality of the BERT Framed Layer 2 Test application supported on EXFO's Datacom product family with the particularity that there is no Ethernet Physical port as such. The Ethernet frame has its Ethertype field set to 0x88B7.

VLAN

Special VID/B-VID values (IEEE Std 802.1Q-1998)

ID	Description
0	The null VLAN ID. Indicates that the tag header contains only user priority information; no VLAN identifier is present in the frame. This VID value must not be configured as a PVID, configured in any Filtering Database entry, or used in any Management operation.
1	The default PVID value used for classifying frames on ingress through a Bridge Port. The PVID value can be changed on a per-Port basis.
4095	Reserved for implementation use. This VID value shall not be configured as a PVID, configured in any Filtering Database entry, used in any Management operation, or transmitted in a tag header.

VLAN/B-VLAN Priority

0	000 - Low Priority	4	100 - High Priority
1	001 - Low Priority	5	101 - High Priority
2	010 - Low Priority	6	110 - High Priority
3	011 - Low Priority	7	111 - High Priority
Next-Gen - Generic Framing Procedure (GFP)

Generic framing procedure (GFP), defined in ITU recommendation G.7041/Y.1303, is a framing mechanism to transport packet-based client signals, such as Ethernet, Fibre Channel, ESCON, FICON, over fixed-data-rate optical channels. As such, GFP provides a single, flexible mechanism to map these client signals into SONET/SDH and OTN networks, as shown in figure below.

Client Signal Mapping over GFP

Prior to the introduction of GFP, several methods had been used to transport packet services over SONET/SDH networks. The first method was Asynchronous Transfer Mode (ATM) Adaptation Layer 5 (AAL 5) over SONET/SDH. ATM is a very efficient switching and multiplexing technology, whose transfer rates scale with SONET/SDH rates. However, ATM does not make the most efficient use of bandwidth because the payload data is separated into groups of 48 bytes, called cells, with an additional 5-byte header of software overhead. It became immediately apparent that almost 10% of the bandwidth would be lost. In addition, certain types of data required even more ATM overhead.

Other methods have focused on using point-to-point protocol (PPP). The IP traffic coming to an Ethernet port is encapsulated over a PPP link and multiple ports can be encapsulated over multilink PPP (ML-PPP) links. By using an HDLC framing, the PPP traffic is transported over the SONET/SDH payload. These methods have been standardized within the IETF through the following Requests for Comments (RFC): RFC 1662, RFC 1990 and RFC 2615. The ITU-T expanded this work by specifying the use of LAPS (very similar protocol to PPP/HDLC) and specifying IP over LAPS in X.85/Y.1321 and Ethernet over LAPS in X.86/Y1323. All these methods for encapsulating traffic suffer from the weaknesses of HDLC framing; i.e., limited protection from frame corruption and the introduction of variable packet sizes because of its trailer.

GFP has been standardized to better optimize the transport of Ethernet and other data services over SONET/SDH networks, taking into account both the pros and cons of ATM and PPP/HDLC and leveraging two new emerging SONET/SDH capabilities, VCAT and LCAS, that will be discussed later in this document.

GFP Mapping

Two types of mapping are currently available for GFP: framed-mapped (GFP-F) and transparent-mapped (GFP-T), whose mappings keep the same basic frame structure, as will be shown in the next sections. The decision on which mode to use is dependent on the underlying service to be transported.

- ➤ Frame-Mapped GFP (GFP-F): mapping mechanism in which one client signal frame is received and mapped in its entirety into one GFP frame. Therefore, with this adaptation mode, the GFP-F frame size is variable as it is directly related to the incoming client payload. In fact, with GFP-F, the entire client frame must be buffered in order to determine its length. GFP-F is usually used to support Layer 2 frames like Ethernet MAC that are tolerant to some latency. The ITU G.7041 defines the following frame-mapped user payloads supported through GFP-F:
 - ► Frame-Mapped Ethernet
 - ► Frame-Mapped PPP
 - ► Frame-Mapped Multiple Access Protocol over SDH (MAPOS)
 - ► Frame-Mapped IEEE 802.17 Resilient Packet Ring
 - ► Frame-Mapped Fibre Channel FC-BBW
- Transparent-Mapped GFP (GFP-T): mapping mechanism that facilitates the transport of 8B/10B block-coded client signals like Gigabit Ethernet (GbE), Fibre Channel, ESCON, FICON, and DVB-ASI. With GFP-T, individual characters of a client signal are decoded from the client signal and then mapped into fixed-size GFP frames (64B/65 coded superblocks). This approach avoids the buffering of an entire client frame before it can be mapped into a GFP frame, which reduces latency and in turn makes it ideally suited for SAN applications that require very low transmission latency.

The figure *GFP-T* vs *GFP-F* Features below provides a functional comparison between GFP-F and GFP-T, while figure *GFP-T* vs. *GFP-F* Frames below provides a comparison of the GFP frames for both modes.

GFP-T vs GFP-F Features

Ethernet	ddd/dl	MAPOS	ESCON	Other client signals				
Frame	GFP client-specific aspects (client-dependent) Transparent mapped 1							
	GFP common aspects (client-independent)							
	SONET/	SDH pat	h		OTN	DDUk	path	

GFP-T vs. GFP-F Frames

Functionally, GFP consists of both common and client-specific aspects. Common GFP aspects apply to all GFP-adapted traffic (i.e., both GFP-F and GFP-T) and cover functions such as packet data unit (PDU) delineation, data link synchronization and scrambling, client PDU multiplexing, and client-independent performance monitoring. Client-specific aspects of GFP cover issues such as mapping of the client PDU into the GFP payload, client-specific performance monitoring, as well as operations, administration, and maintenance (OA&M). This is illustrated in figure *Client Signal Mapping over GFP* on page 647.

GFP Frame Structure

As illustrated in figure below, Two basic GFP frame types have been defined: GFP client frames and GFP control frames. GFP client frames are categorized into two types: client data frames (CDFs) and client management frames (CMFs). CDFs are used to transport the client data, while CMFs are used to transport information associated with the management of the client signal or GFP connection.

As for GFP control frames, at this time, only one category has been defined by the standard so far; i.e., GFP idle frames.

The GFP generic frame structure is presented in figure below.

GFP Generic Frame Structure

Each GFP frame type consists of three main components: the core header, the payload header, and the payload information field.

The core and payload headers form the GFP header, whereas the payload information field represents the customer traffic carrying the data services. The payload header carries information about the payload type (i.e., Ethernet, Fibre Channel, etc.) that it is carrying, while the core header carries information about the size of the GFP frame itself.

Each header contains a header error correction (HEC) calculation, allowing for the correction of single errors; that is, any errors that occur in the core header or in the payload header can potentially be corrected by the HEC, through the network element. This creates a very robust mapping scheme, which ensures that GFP frames can get transported across a network without customer traffic loss.

► Core Header

The GFP core header consists of a two-octet length field, specifying the length of the GFP frame's payload area in octets, and a two-octet field containing a CRC-16 error-check code.

- ➤ Payload Length Indicator (PLI): The PLI is a two-byte field indicating the size in bytes of the GFP payload area. It indicates the beginning of the next GFP frame in the incoming bit-stream as an offset from the last byte in the current GFP core header. PLI values in the range of 0 to 3 are reserved for GFP internal use and are referred to as GFP control frames. All other frames are referred to as GFP client frames.
- Core HEC (cHEC): The cHEC is a two-byte field containing a cyclic redundancy check (CRC-16) sequence that protects the integrity of the core header. The cHEC sequence is computed over the core header bytes using standard CRC-16. The CRC-16 enables both single-bit error correction and multibit error detection.

> Payload Header

The payload header is a variable-length area, 4 to 64 octets long, intended to support data-link management procedures specific to the transported client signal. The payload header contains two mandatory fields, the Type field and Type Header Error Correction (tHEC) field. The payload header also supports an additional variable number of subfields referred to, as a group, as the extension header.

➤ Payload Type Identifier (PTI): A three-bit subfield that identifies the type of GFP client frame. The following table lists the currently defined user frames.

PTI	Description
000	Client Data Frame
100	Client Management Frame
Others	Reserved

➤ **Payload FCS Indicator (PFI)**: A one-bit subfield indicating the presence (1) or absence (0) of the payload FCS field. The following table lists the currently defined PFI values.

PFI	Description
0	FCS Absent
1	FCS Present

► Extension Header Identifier (EXI): A four-bit subfield identifying the type of GFP extension header. Three kinds of extension headers are currently defined:

EXI	Description	Function
0000	Null Extension Header	Indicates that no extension header is present.
0001	Linear Extension Header	A two-octet extension header that supports sharing of the GFP payload across multiple clients in a point-to-point configuration. The linear extension header consists of an eight-bit channel ID (CID) field, used to indicate one of 256 communication channels (i.e. clients) at a GFP termination point, and an eight-bit spare field reserved for future use.
0010	Ring Extension Header	The use of this field is under consideration. Similar to linear, the current proposal being considered is to allow the sharing of the GFP payload across multiple clients; however, this would only apply to ring configurations.
0011 to 1111	Reserved	

➤ User Payload Identifier (UPI): An eight-bit field identifying the type of payload conveyed in the GFP payload information field:

UPI	Client Data	Client Management
0000 0000	Reserved and not available	Reserved
0000 0001	Mapped Ethernet Frame	Client Signal Fail (Loss of Client Signal)
0000 0010	Mapped PPP Frame	Client Signal Fail (Loss of Character Synchronization)

Glossary

Next-Gen - Generic Framing Procedure (GFP)

UPI	Client Data	Client Management
0000 0011	Transparent Fibre Channel	
0000 0100	Transparent FICON	
0000 0101	Transparent ESCON	
0000 0110	Transparent GbE	
0000 0111	Reserved for future use	
0000 1000	Frame-Mapped IEEE 802.17	
	Resilient Packet Ring	
0000 1011	Frame-Mapped Fibre Channel FC-BBW	
0000 1100	Asynchronous Transparent Fibre Channel	
0000 1101	Framed MPLS Unicast	
0000 1110	Framed MPLS Multicast	Reserved for future use
0000 1111	Framed IS-IS	
0001 0000	Framed IPv4	
0001 0001	Framed IPv6	
0001 0010	Framed DVD-ASI	
0001 0011	Framed 64B/66B Ethernet	
0001 0100	Framed 64B/66B Ethernet Ordered Set	
0001 0101 through	Reserved for future standardization	
1111 0000 through 1111 1110	Reserved for proprietary use	

- ➤ **Type HEC (tHEC) Field**: A two-octet field that contains a CRC-16 sequence to protect the integrity of the type field. The tHEC sequence is computed over the core header bytes using standard CRC-16. As with the cHEC, CRC-16 enables both single-bit error correction and multibit error detection.
- Channel Identifier (CID): A one-byte field that is only available when the EXI field is configured to Linear. The CID byte is used to indicate one of 256 communication channels at a GFP termination point.
- ➤ Spare: A one-byte field that is only available when the EXI field is configured to Linear. This field is reserved for future use.
- Extension HEC (eHEC): A two-byte field that contains a CRC-16 check sequence that protects the integrity of the contents of the extension. CRC-16 enables both single-bit correction and multibit error detection.

The figure below explains how (in GFP-F) the transmitter encapsulates one entire frame of the client data.

GFP-F vs. GFP-T Frame Structure

> Payload Information Field

The payload area (also referred to as payload information field) contains the framed client signal. This variable-length field may include from 0 to 65,535 – X octets, where X is the size of the payload header (including the extension header, if present) and the payload FCS field (if present).

Figure *GFP-T vs. GFP-F Frames* on page 650 shows the GFP-T and GFP-F frame structures. As shown, Both GFP-T and GFP-F frame types share a common core header, payload header, and payload FCS (optional), and they differ in the way in which the client is mapped into this payload area.

► Payload FCS (pFCS)

This is an optional four-octet-long frame-check sequence. It contains a CRC-32 check sequence that is designed to validate the entire content of the payload area. The FCS field presence is signalled by the PFI bit located in the Type field of the payload header. The FCS does not correct any errors; it just indicates the presence of error(s).

In GFP-F, the transmitter encapsulates one entire frame of the client data into one GFP frame. In this case, the basic frame structure of a GFP client frame is used, including the required payload header.

In GFP-T, however, rather than buffering an entire client-data frame, the individual characters of the client signal are demapped from the client block codes and then mapped into periodic fixed-length GFP frames. The transparent GFP client frame uses the same structure as the frame-mapped GFP, including the required payload header.

GFP Summary

GFP has been standardized to better optimize the transport of Ethernet and other data services over SONET, taking into account both the pros and cons of ATM and PPP/HDLC framing mechanisms. As described in this section, GFP represents a robust mapping mechanism that allows for the mapping of multiple client-data types into SONET/SDH payload (SPEs). This technology has been embraced by network equipment and service providers as it provides an efficient way of providing interoperable data-services transport over the existing SONET/SDH install base. The versatility provided by GFP allows SONET/SDH networks to offer transport services for a multiple of services, as shown in figure below.

Multiservice SONET/SDH Network

That being said, the answer to a truly efficient packet-transport mechanism comes via the combination of GFP and a bandwidth-optimizing technology such as VCAT or LCAS, as we will see in the next sections.

Next-Gen - Virtual Concatenation (VCAT)

SONET/SDH multiplexing combines low-speed digital signals (DS1, DS2, DS3 for SONET; E1, E3, and E4 for SDH) with the required overhead to form building-block frames called STS-1 SPE (SONET) and STM-1 (SDH). To enable higher-bandwidth transport than these basic rates allow individually, multiple SPEs can be combined and transported across the SONET/SDH network as a single connection, with the first SONET container payload pointer set to normal mode and the subsequent payload pointers set to concatenation mode, thus linking all the units together.

The following table outlines supported contiguous concatenation for both SONET and SDH. For the SONET standard, these are denoted as STS-Xc, and for SDH as VC-4-Xc.

SONET	SDH	Payload Capacity (Mb/s)
STS-1	VC-3	48.38
STS-3c	VC-4	149.76
STS-6c	VC-4-2c	299.52
STS-9c	VC-4-3c	449.28
STS-12c	VC-4-4c	599.04
STS-24c	VC-4-8c	1198.08
STS-48c	VC-4-16c	2396.16
STS-192c	VC-4-64c	9584.64

SONET	SDH	Payload Capacity (Mb/s)
VT 1.5	VC-11	1.6
VT 2	VC-12	2.17
VT 6	VC-2	6.78

Lower-rate virtual tributary signals have also been defined for both SONET and SDH, as shown in the table below:

Although contiguous concatenation has been successfully introduced and deployed for years, it poses some major deficiencies when attempting to transport packet-based signals. First, in contiguous concatenation, the concatenated bandwidth requires the timeslots to be consecutive. Second, it also requires that the network elements involved in the transport of the traffic support this function from the source to the destination node, including every intermediate node. Third, data-service rates are not well matched to these defined containers, hence using GFP with current contiguous concatenation schemes results in sub-optimal use of the bandwidth, as Ethernet and Fibre Channel data rates are not properly matched to these channels (e.g., 100M Ethernet service mapped over an STS-3c or VC4 results in approximately 33% of wasted bandwidth).

To address these limitations, a complementary technology — virtual concatenation (VCAT) — was developed and later defined in ANSI T1.105, ITU G.707, and ITU G.783 recommendations. Two forms of virtual concatenation were defined; i.e., high-order and low-order VCAT. This introduced additional flexibility to SONET/SDH by allowing for the non-contiguous concatenation of high-order or low-order payload frames to better scale the requirements for incremental client-data streams. This means that the concatenated payload does not need to be formed by consecutive timeslots in the transport path. In addition, this new concatenation capability allows the network element involved in the

transport of the traffic to be unaware of concatenated nature of the signal. As such, only the termination points in the transport path must support the VCAT functionality.

In essence, virtual concatenation is an inverse multiplexing procedure whereby the contiguous bandwidth is broken into individual SPEs at the source transmitter and logically represents them in a virtual concatenation group (VCG). Control packets, which contain the necessary information for reassembling the original data stream at its destination PTE, are inserted in some of the currently unused SONET/SDH overhead bytes (H4 byte for high-order, and Z7 (SONET) and K4 (SDH) for low-order). This information contains the sequence order of the channels and a frame number, which is used as a time stamp. The VCG members are transported as individual SPEs across the SONET/SDH network with all the intelligence required to handle virtual concatenation located at the end points of the connections (i.e., at the path termination equipment, or PTE). The receiving end-point (PTE) is responsible for reassembling the original byte stream. This allows SONET/SDH channels to be routed independently through the network without requiring any acknowledgement of the virtual concatenation. In this manner, virtually concatenated channels may be deployed on the existing SONET/SDH network with a simple end-point node upgrade.

As presented in the table below, VCAT provides a much more efficient use of the transport bandwidth for data user interfaces. With VCAT, an OC-48 link can carry two full Gigabit Ethernet signals with 95% of the link used through seven virtual STS-3c/VC-4s each, instead of just one Gigabit Ethernet signal with 42% of the link used through an STS-48c/AU-4-16c.

Service	Bit Rate	Utilization	Utilization with VCAT
Ethernet	10 Mb/s	STS-1/VC-3 (20%)	VT1-5-7v (89%)/VC12-12v (92%)
Fast Ethernet	100 Mb/s	STS-3c/VC-4 (67%)	STS-1-2v/VC-3-2v (100%)
Gigabit Ethernet	1000 Mb/s	STS-48c/VC-4-16c (42%)	STS-3c-27v/VC-4-7v (95%)
Fibre Channel	200 Mb/s	STS-12c/VC-4-4c (33%)	STS-1-4v/VC-3-4v (100%)
Fibre Channel	1000 Mb/s	STS-48c/VC-4-16 (42%)	STS-3c-27v/VC-4-7v (95%)
ESCON	200 Mb/s	STS-12c/VC-4-4c (33%)	STS-1-4v/VC-3-4v (100%)

In summary, virtual concatenation enables SONET/SDH transport pipes to be filled more efficiently with data services by grouping individual SONET/SDH containers into a virtual high-bandwidth "link", matched to the required service bandwidth. The following sections will provide a more in-depth look at the inner workings of high-order and low-order VCAT frame structures.

High-Order Virtual Concatenation (HO VCAT)

HO VCAT provides bandwidth for links that require speeds greater than 51.84 Mb/s, but do not lend themselves to one of the standard contiguous concatenation bandwidth configurations. HO VCAT is realized under SONET and SDH by the PTE, which combines either multiple STS-1/STS-3c SPEs (for SONET) or VC-3/VC-4s (for SDH), therefore making it ideally suited for transport of 100M, Gigabit Ethernet, and Fibre Channel rates.

HO VCAT rates are designated by STS-m-nv or VC-m-nv, where the nv indicates a multiple n of the STS-m/VC-m base rate.

► HO VCAT Frame Structure

As mentioned, a HO VCG super-container can be formed by using STS-1 or STS-3c in SONET and VC-3 (AU-3) or VC-4 (AU-4) in SDH. This means that a SONET virtually concatenated payload STS-1/3c-Xv or an SDH VC-3/4-Xv can transport X*48384/149760 kb/s, as shown respectively in figure *STS-1/3c-Xv VCG* on page 665 and figure *VC-3/4-Xv VCG* on page 665, assuming the stuff bytes remain untouched.

In either case, the value of X can be between 1 and 256. Each SONET SPE or SDH VC used to create a VC contains its individual path overhead (POH). Among these bytes is the H4 byte, used to specify the virtual concatenation multiframe indicator (MFI) and sequence indicator (SQ).

VC-3/4-Xv VCG

► HO VCAT Multiframe Indicator (MFI)

As illustrated in figure below, A two-stage multiframe mechanism is used to cover differential delays of 0 μ s to 256 ms. The two stages can be functionally represented by a 12-bit counter. In the H4 structure, Bits 5 to 8 of H4 bytes are used to form Multiframe Indicator Stage 1 (MFI1). MFI1 is incremented for every basic frame and counts from 0 to 15. Multiframe Indicator Stage 2 (MFI2) is an eight-bit counter based on Frame 0 (bits 1 to 4) and Frame 1 (bits 5 to 8). MFI2 is incremented once every time MFI1 completes a cycle from 0 to 15. MFI2 counts from 0 to 255. The result is a two-stage multiframing process that yields a total of 4096 frames (16 x 256 = 4096) per 512-ms cycle (4096 x 125 μ s = 512 ms).

H4 High-Order Path Multiframe Structure

► High-Order Path Sequence Indicator

In addition to the MFI, the H4 byte also carries the sequence indicator information. The sequence indicators are assigned by the source node (PTE) and interpreted by destination node (PTE). The sequence indicator (SQ) identifies the order in which the STS-1/STS-3c of a SONET STS-1/STS-3c-Xv is assembled to create the contiguous container (STS-1/STS-3c-Xc), as demonstrated in figure below. Similarly, SQs are used to identify the order of VC-3/VC-4s used to create the VC-3/4-Xc in SDH.

Sequence Indicator in High-Order Path VCAT Multiframe

The eight-bit SQ, supporting a range from 0 to 255, is formed by using the H4 bytes (bits 1 to 4 of frame 14 and 15) in the first multiframe stage (MFI1), as shown in figure *H4 High-Order Path Multiframe Structure* on page 666. Each VCG member is assigned an SQ. Normally, the first timeslot associated to a VCG, composed of STS-1/3c-Xv or VC-3/4-Xv, is

assigned number 0, the second one is assigned number 1, and so on for the remainder of the VCG, up to X-1. So, for a STS-1-21v the sequence indicator would go from 0 to 20.

In the event that the terminating equipment is unable to recover the frame or the sequence, or if there is too much differential delay, the system is equipped to generate alarms (LOA and LOS) to the management system to highlight these conditions.

Low-Order Virtual Concatenation (LO VCAT)

LO VCAT provides bandwidth for links that require speeds greater than 1.6 Mb/s (VT 1.5/VC-12), but less than 51.84 Mb/s. LO VCATs are designated by VT-1.5/2/6-nv for SONET and VC-11/12-nv for SDH.

LO VCAT is typically used for sub-rate 10M, sub-rate 100M, and 100 Mb/s Ethernet data services.

► LO VCAT Frame Structure

As described above, low-order paths are used to form VCGs to transport payloads that do not efficiently fit into HO VCAT STS-1/3c or SDH VC-3/VC-4 containers. These LO VCAT payloads are defined in the following table.

SONET	SDH	Rate	Capacity
VT1.5	VC-11	1600 kb/s	1600 to 102400 kb/s
VT2	VC-12	2176 kb/s	2176 to 139264 kb/s
VT3	-	3328 kb/s	3328 to 212992 kb/s
VT6	VC-2	6784 kb/s	6784 to 434176 kb/s

A VCG can be created by using the SONET VTn-Xv or the SDH VC-11/12-Xv, where the value of X can range between 1 and 64 (see figure *SONET VTn-Xv* on page 669 and *SDH VCn-Xv* on page 669).

To define its multiframe, LO VCAT uses a similar concept as that described above for HO VCAT groups. For the LO VCGs, low-order path overhead bytes Z7 (bit 2) [SONET] and K4 (bit 2) [SDH] are used to support the multiframe structure and specify the MFI and SQ values.

► LO VCAT Multiframe and Sequence Indicator (SQ)

Bit 2 of Z7/K4 is used to convey LO VCAT information. It forms a serial string of 32 bits (over 32 four-frame multiframes), as defined in ANSI T1.105 [19] and ITU G.707 (see figure *LOP Z7/K4 Bit 2 Multiframe Structure* on page 671). This string is repeated every 16 ms (32 bits x 4 x 125 s/bit) or every 128 frames. This process is repeated until the frame count reaches 32. This means that the total number of frames for a full cycle is 128 frames x 32 = 4096 frames.

The following fields define the frame:

- ► Frame count is contained in Bits 1 to 5 of the 32-bit string.
- ➤ Sequence indicator is contained in Bits 6 to 11 of the 32-bit string.
- Remaining bits (12 to 32) are reserved for other applications. These bits must be set to 0 and must be ignored by the receiver when VCAT is activated without LCAS.

The entire cycle is provided by a frame count that is divided into 32 steps of 16 ms, yielding a total of 512 ms for the length of the multiframe.

The sequence indicator identifies the sequence or the order in which the individual VTn or VC-n of the VTn-Xv or VC-n-Xv is assembled to form the contiguous container VTn-Xc or VC-n-Xc, as displayed in figure *SONET VTn-Xv* on page 669 and figure *SDH VCn-Xv* on page 669, respectively. Each member of the VCG has a fixed unique sequence indicator in the range of 0 to (X–1). The sequence indicator for the first VTn or VC-n within the VCG is 0, while the second VTn or VC-n uses sequence indicator 1, and so on up to the last member (SQ = X-1).

In the event that the terminating equipment is unable to recover the frame or the sequence, or if there is too much differential delay, the system is equipped to generate alarms to the management system to highlight these conditions.

Bit Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	192	0 21	22	2 23	32	1 25	26	27	28	29	30	31	32	1	l	Z7/K4
CTRL Packet	F	ram	ie C	Cou	nt	Se	que	nce	lino	dica	itor									Res	erve	ed E	Bits									J	ſ	Structure

LOP Z7/K4 Bit 2 Multiframe Structure

VCAT Differential Delay

VCAT payload can be split and sent along different paths through the network. Therefore, it is entirely possible that these different paths will not cover the same distance and may contain a different number of network elements along their route. This would mean that members of the VCG do not reach the termination point (end PTE) at the same time. In order for the terminating equipment to reassemble the payload, it must be able to compensate for the difference in payload arrival times. This arrival time difference is known as the differential delay.

Differential delay is the relative arrival time measurement between the members of a VCG. This means that in a next-generation SONET/SDH network, buffering is required at the terminating end of a VCG connection in order to realign the data stream. For high-order VCAT paths, the differential delay is measured by examining the multiframe indicator (MFI) present in the path overhead of each VCG member. For low-order VCAT paths, the frame-count information is used to determine differential delay.

The VCAT standards define the maximum differential delay between members of a VCG to be 256 ms. However, given the amount of buffering required at the terminating points, it is often the case that next-generation SONET/SDH PTEs support less than this maximum, hence making VCAT testing an important consideration when verifying the performance of these network elements.

VCAT Summary

In short, virtual concatenation provides a means of creating "right-sized" SONET/SDH containers that better match the bandwidth requirements of data client signals such as Ethernet and Fibre Channel. In addition, the flexible nature of VCAT allows service providers to create these right-sized pipes from the unused bandwidth/timeslots present in their network.

All the intelligence needed to create and handle a virtual concatenation is located at the end points of the connections (i.e., at the PTEs). The receiving end-point PTE is responsible for reassembling the original byte stream. This allows SONET/SDH channels to be routed independently through the network without requiring any acknowledgement of the virtual concatenation. In this manner, virtually concatenated channels may be deployed on the existing SONET/SDH network with a simple end-point upgrade.

Next-Gen - Link-Capacity Adjustment Scheme (LCAS)

LCAS, as defined per ITU-T recommendation G.7042, is a complementary technology to virtual concatenation. LCAS allows for the dynamic changing of the size of a VCAT group. To do so, signaling messages are exchanged within the same SONET/SDH overhead bytes used for VCAT (H4 for HO VCAT and Z7/K4 for LO VCAT) between the source PTE to the end-point PTE in order to change the number of tributaries being used by a virtually concatenated group (VCG). For example, the number of tributaries can be increased or decreased in response to an identified change in service-bandwidth requirement, or in response to a fault condition of an existing VCG member.

Increasing VCG Size Using LCAS

LCAS works by ensuring synchronization between the sender (PTE), referred to as the source node, and receiver (PTE), referred to as the sink node, during the increase/decrease of the size of a virtually concatenated circuit, in such a way that it doesn't interfere with the underlying client data service. Should failures occur on an individual member of a group, the size of the group can be reduced temporarily, instead of taking the entire group out of service (which would be the case if LCAS were not enabled – the entire VCG would be declared as "failed" in the event of a failure of one VCG members). With LCAS, once the defect is repaired, the group size can be restored to full bandwidth without affecting the underlying service.

In addition to providing a resiliency mechanism for VCAT, LCAS gives service providers the flexibility to tailor service bandwidth as required. For example, if a certain customer requires additional bandwidth in the late evenings for file transfers (i.e., banking institutions), the service provider can provide a value-added service by provisioning increased bandwidth for a predefined period. Therefore, by dynamically altering the bandwidth of SONET/SDH transport pipes, LCAS allows network designers to adjust bandwidth based on quality of service (QoS) or other priority considerations.

As with VCAT, LCAS is only required at the terminating points of a circuit and the remainder of the network is oblivious to its presence. In order for LCAS to operate, two transmission paths in opposite directions must be established in order to terminate the protocol (see figure below).

LCAS Protocol Transmission

Each of these transmission paths link the network elements (NE) located at each end of the circuit. In the LCAS protocol, one NE is designated as the Source and one is designated as the Sink. This defines an origination path. Another source/sink pair, in the opposite direction, must also be created to serve as a return path. Between two NEs, the LCAS information exchange always proceeds from the Source (So) to the Sink (Sk). The information is packaged in a control packet (CTRL) that contains data about the source members, as well as transferred information from the sink. Figure *LCAS Protocol Transmission* on page 674 represents a NE1 source that sends a CTRL packet [1] to the NE2 sink. The NE2 sink receives the CTRL packet and processes it. In addition to the result of this processing, the detected status of its own members is shared with the NE2 source via an internal communication path [2]. At this point, using the return path, the NE2 source sends its own CTRL packet [3], which contains its own CTRL information as well as the NE2 sink information. The LCAS protocol loop is closed when the NE1 sink shares the information that is received from the NE2 sink to the NE1 source via the internal communication path [4]. This information transfer is also done in the same manner if the described scenario originates from the NE2 Source.

LCAS Control Packets

Below is the list of ITU-defined control packets for both directions of an LCAS signaling link.

FIXED	Indicates that this end uses fixed bandwidth (non-LCAS mode).
ADD	Indicates that this member is about to be added to the group.
NORM	Indicates that there is no change; steady state.
IDLE	Indicates that this member is not part of the group or about to be removed.
EOS	Indicates the end of sequence; normal transmission.
DNU	Means do not use payload; indicates that the Sk side reported FAIL status.

ITU-Defined LCAS Control Packets

Sink to Source: Depicted as Message [3] in figure *LCAS Protocol Transmission* on page 674

MST	Information from Sk to So about the status of all members of the same VCG. It reports the member status from Sk to So with two states: OK or FAIL (1 status bit per member). $OK = 0$, FAIL = 1. Since each control packet contains only a limited number of bits for communicating the MST field, this information is spread across multiple control packets; i.e., an MST multiframe.
RS-Ack	When a renumbering of the sequence numbers of the members sending in CTRL field NORM, DNU, EOS, or when a change of the number of these members is detected at the Sk, a notification to the So per VCG has to be performed by toggling (i.e., change from 0 to 1 or from 1 to 0) the RS-Ack bit.

Common LCAS Messages for Path [1] and [3]

CRC-8	To simplify the variation of the changes in the virtual concatenation overhead, a CRC is used to protect each control packet. The CRC check is performed on every control packet after it has been received, and the content is rejected if the test fails. If the control packet passes the CRC test, then its content is used
	the control packet passes the CRC test, then its content is used immediately.

LCAS Example 1: Capacity Increase

The bandwidth of a VCG can be increased through the LCAS' ability to enable in-service addition of one or more members in a VCG. This bandwidth increase is typically controlled by the user via a network management system. The steps detailed in figure below are used to perform this bandwidth increase.

➤ Step 0: A member needs to be added to an existing VCG that is LCAS-enabled. In this example, the member to add is STS-1[3,2], or AU-3[3,2].

Glossary

Next-Gen - Link-Capacity Adjustment Scheme (LCAS)

- Step 1: The management system is used to configure the member at the source and sink NE.
 - ➤ The source automatically sets the SQ to 255, the highest possible number at the source and the sink NE. (based on VCAT standard)
 - ► The sink sets the MST to FAIL.
- Step 2: The management system configures LCAS state machine to ADD.
 - ➤ In the source, the SQ is automatically set to 4, the next highest SQ available, and the CTRL is set to ADD.
 - ➤ The source waits for the sink to send MST = OK for the member with SQ = 4. While waiting for this MST = OK message, the source will continue to send a CTRL = ADD for this member.
- > Step 3: The source receives MST = OK for member SQ = 4.
 - ➤ The source sends EOS to the last member added, indicating to the sink that this is indeed the last member of the VCG, and sends NORM for the previously defined last member (of course, this is assuming that no fault occurs on this member during that time).
 - ➤ The new member begins to carry traffic in the first frame after the last byte in the frame transporting CTRL = NORM/EOS change.
- **Note:** If multiple members were added, all members would be set to NORM, except for the last one in the sequence, which would be set to EOS.
 - Step 4: The sink detects the transition from ADD to NORM/EOS for the new member
 - ➤ The sink sends RS-ACK to the source to acknowledge the new sequence.
 - > The sink sets the MST to be consistent with the new sequence.
 - ► Following the proper delay compensation, the source is allowed to evaluate the new member status when it receives the RS-Ack.

LCAS Example 2: Capacity Reduction

There are two methods for LCAS to support the capacity reduction of a VCG: automatic temporary removal of one or more member(s) due to a network fault, or manual deprovisioning of one or more member(s) to permanently reduce the bandwidth supported by the VCG.

► Automatic Temporary Removal

The temporary removal of a member is automatically handled by the LCAS protocol, as presented in figure below and associated steps. This capability provides VCAT with its resiliency mechanism as the size of the group can be reduced temporarily, instead of taking the entire group out of service (which would be the case for VCGs without LCAS enabled). Once the defect is repaired, the group size can be restored to full bandwidth without affecting the underlying service.

Bandwidth Reduction (Temporary Removal)

► Temporary Removal

 Step 1: A fault is detected at the sink for a member (i.e., STS-1 [3,2], AU-3 [3,2]).

At the sink, the fault can take the form of a member status unavailable (MSU) or transport signal degraded (TSD). An MSU would be generated by an AIS or LOP for example. The TSD would be errors detected on the path crossing a certain threshold.

If the source of these members was sending a NORM or EOS in this condition, the sink would start sending a MST = FAIL for the specific SQ.

Typically, a hold-off timer can be configured to delay the reporting of MST = FAIL to avoid transient error occurrences.

► Step 2: Member removal

At the sink NE and upon the detection of the MSU, the member would be removed immediately. However, if the failure is related to a TSD, the member would be removed only when the sink NE receives the DNU from the source NE.

At the originating source NE a detection of the MST = FAIL will trigger the replacement of the NORM/EOS by a DNU condition. Within the remaining active member, the member with the highest SQ will send EOS in the CTRL field.

► Restoration

► Step 1: Fault clears

When the defect that caused the temporary removal is terminated and is detected at the sink, the sink will start sending a MST = OK for that member.

Upon detection of the MST = OK, the source will either replace the DNU condition by an NORM condition, or replace the DNU condition with an EOS condition, and the preceding member, which was sending CTRL code EOS, will send NORM in the CTRL field.

► Step 2: Payload activation

The final step after recovering from a temporary removal is to start using the payload area of that member again. The first container frame to contain payload data for the member is the container frame immediately following the container frame that contained the last bit(s) of the control packet containing the first CTRL code (NORM or EOS) in the CTRL field for that member.

► Member Permanent Removal

The bandwidth of a VCG can be permanently reduced using the LCAS' ability to enable in-service removal of one or more member(s) from the VCG. This bandwidth reduction is controlled by the user via a network management system. The steps detailed in figure below are used to perform this reduction of bandwidth.

Bandwidth Reduction (Permanent Removal)

- **Note:** The removal of a member must be done at the source in order for the operation to be hitless. If it is done at the sink first, the traffic will be corrupted from the time the member is removed (sink generates MST = FAIL) and the sink receives a DNU generated from the source.
 - Step 1: One or more member(s) need to be removed from an existing VCG. In this example, again we are using STS-1 [3,2], AU-3 [3,2].

This operation must be initiated from a management system.
Step 2: At the source, the management system deletes the member from the VCG.

The CTRL field is set to IDLE, while the SQ is automatically set to 255.

Depending on which member is deleted in the VCG, the SQ for the remaining members may be renumbered. For example, if the member that is removed is the highest number in the VCG, the members' SQs will not be renumbered. However, if a member other than the last is removed, then SQ renumbering will occur in line with the new order.

The source will send a new CTRL word (changed from NORM to EOS) for the last member of the VCG.

► Step 3: At the sink, the CTRL word and SQ are received.

When the CTRL = IDLE signal is detected, the MST for the member is set to FAIL and the RS-Ack is toggled.

 Step 4: At the sink, the management system deletes the member from the VCG.

10B_ERR	438, 453
56K	270, 273, 370
64K	270, 273, 370

Α

4, 622, 634
4, 622, 634
39
581
470, 483
469, 482
105, 106
563
, 381, 384,
7, 226, 233
248, 252
260, 263
118, 120
47
115
114
113
47
138, 144
, 316, 336,
145
288
528
469, 482
463
6, 478, 488
51

apply to top page	51
APS236	5, 328, 625
APS channel	
APS signaling	
APS/Advanced Line OH TX/RX (SONE	T) 236
APS/PCC	
architecture	240, 329
architecture/bridge request	
arrow	
down	47
end	47
left	
page down	
page up	
right	
top	47
up	47
arrow buttons	
description	
assembly hardware revision	
AU-AIS	338, 342
AU-LOP	338, 342
auto	
auto add at startup	106, 479
automatic protection switching	625, 637
AUX	22, 561
available options	
average	

В

backplane 526
backward 187, 196
bandwidth 403
bandwidth usage (%) 431, 448
bantam 67, 71
battery 39
BBE 508, 511
BBER 508, 512
Bell
BERT tabs 405
Binary 160, 166, 182, 200, 406
binary 187, 196, 199, 204, 266, 272, 356, 395
BIP-2 257, 263, 347, 353
BIP-8 623, 624, 627, 635, 638
BIP-N*24
BIT
Bit Error 408
bit error 410
Bit-Oriented Messages 286
bit-oriented messages 281
Bits 1-4 244, 334
Bits 5-8 (Sync. Status Message) 244, 334
block 400
BNCxi, 67, 71
bottom page 50
BPV 140, 144
bridge 142, 522, 523
bridge request 329
BroadCast 401, 402
Burst 215, 217, 225, 227, 247, 249, 259, 261,
307, 309, 317, 319, 337, 339, 349,
351, 360, 362
button
Apply 546
Apply ExSQ 463
Apply SQ 459
Back63
Cancel 52

Copy SQ to ExSQ 463

Finish63, 70, 74, 78, 82, 86, 90, 91, 96, 102 107, 110	<u>}</u> ,
Generate	4
help52	2
Next	3
OK5	2
Resequence ExSQ 46	3
Resequence SQ	9
Send 155, 158, 172, 180, 214, 224, 246	,
258, 306, 316, 336, 348, 359	
send	0
Setup	3
Toggle RS-Ack	8
B-VID	6
B-VLAN Priority	6
•	

С

C	414
C2 255, 256, 345, 346, 367, 368, 628, 0	639
calibration	
certificate	558
interval	558
calibration date	545
calibration failed	427
Cancel	. 52
cancelled	427
caution	
of personal hazard	5
of product hazard	5
C-bit	295
СЕ х	, xii
channel	448
Channel Codeword	300
channel ID	329
channel identifier	657
channel/destination node id	238
cHEC	455
cHEC correctable 434, 4	450
cHEC uncorrectable 434, 4	450
CID 86, 107, 435, 443, 451, 4	456
circuit	290

class 1 class 1M		xi xi
cleaning		
front nanel		557
client		448
client data frames	447	454
client data frames FCS	435	451
client management frames	447.	454
client management frames FCS	435.	451
Client Offset RX		515
Client Offset TX		513
Clock Configuration		129
Clock Mode	129,	526
External		526
Internal		526
Recovered		526
clock mode		521
internal		521
recovered		521
Clock Synchronization		520
CMF	436,	452
СМІ		138
code	. 199,	204
Codeword		298
Command	286,	287
command	469,	482
common problems		561
common tabs		491
computation method		542
Configuration		393
configuration		546
configuration section		62
connection		
clock signal		22
Electrical SONET/DSn/SDH/PDH		21
Ethernet 10/100/1000Base-T		23
Gig-E		24
OTN/OC-N/STM-N		19
connection 1000Base-X	•••••	24
connector		64
Continuous216, 226, 248, 261, 308, 1	318, 3	339,
351, 362, 408		

continuous 140, 155, 158, 172, 180, 2 246, 258, 276, 288, 294, 336, 348, 359, 376, 382, 396, 398, 426, 434, 438, 47	214, 2 306, 386, 4, 498	24, 316, 390, 8
Control Codeword		299
conventions, safety		5
Copy SQ to ExSQ		463
core header	455,	653
Count		47
count	289,	428
Coupled		127
CRC LOMF	375,	379
CRC-3		486
CRC-4	376,	378
CRC-6	276,	278
CRC-8		486
CSF-Loss of client signal	436,	452
CTRL	476,	482
cumulative offset		495
Current		286
current		286
current performance report message		291
current value	492,	495
customer service		567
CV	140,	144
CW		156

D

D1 222, 314, 623,	635
D2 222, 314, 623,	635
D3 222, 314, 623,	635
D4 through D12 235, 327, 625,	637
DAPI . 162, 168, 169, 174, 178, 179, 186, 1	94,
195	
data communication channel	623
data communications channel 625, 635,	637
data path	136
data path selector	62
date	136
DCC 623, 625, 635,	637
DCI	452

decoupled	67,	80,	84,	88,	93	, 98
decrement						493
Default		52,	161	, 18	35,	202
default						443
Default Test Preferences						530
defect selection				41	2,	418
defined tab						51
delay						428
delay control						462
delta						449
description						545
Destination MAC Addres	s					395
destination node ID						329
differential delay			461	, 46	66,	467
disable all						462
disable all overwrite(s)				47	'0,	483
discarded frames			446	, 44	8,	458
disruption count						413
Divider Ratio						527
DM						509
DS0 mode				27	'0,	273
DS0/64K						269
DS0/64K RX						273
DS0/64K TX						270
DS1						68
DS1 RX						278
DS1 TX						275
DS1/1.5M						269
DS3						68
DS3 FEAC RX						301
DS3 FEAC TX						297
DS3 RX						295
DS3 TX						293
DS3/45M						269
DSn tabs						269
DSn/PDH				. 13	3,	542
Dual RX						126
Duration 130, 136, 21	5, 2 [.]	17,2	225,	227	7, 2	247,
249, 259, 261	, 30	7, 3	309,	31	7,	319,
337, 339, 349,	351	, 36	0, 3	62		
duration (s)				48	30,	490

E		
E0 mode		370
E0/64 RX		373
E0/64K		369
E0/64K TX		370
E168, 222, 314, 62	3,	635
E1 TX		375
E1/2M		369
E1/2M RX		378
E268, 235, 327, 62	6,	637
E2/8M		369
E2/8M RX		383
E2/8M TX		381
E3		. 68
E3/34M		369
E3/34M TX 38	5, 3	387
E4		. 68
E4 TX		389
E4/140M		369
E4/140M RX		391
EB50	6,	510
E-bit	6, 3	378
EC50	6,	510
edit	···· !	552
EFS	6,	510
eHEC	•••••	456
eHEC correctable43	7, 4	453
eHEC uncorrectable43	7, •	453
enable		273
enable all 462, 475, 476, 47	8, 4	488
enable auto-negotiation	6, 4	457
enable bulk filled override	•••••	530
enable delay	•••••	461
Enable DS0 68, 69, 72, 73, 81, 8	5, .	270
Enable E068, 69, 72, 73,	81,	, 85
enable E0		370
enable FDL		280
enable FEC	9,	154
enable HP-PLM		346
enable HP-TIM		343
enable HP-UNEQ		346

enable LCAS	105
enable LP-PLM 35	7, 367
enable LP-TIM	5, 366
enable LP-UNEQ 35	7, 367
enable OPU-MSIM	203
enable OPU-PLM	204
enable PLM-P	256
enable PLM-V	267
enable RS-TIM	312
enable scrambler 94, 98, 10	9, 157
Enable stream	394
enable TCM 49	7, 500
enable TC-TIM	503
enable TIM 169, 17	9, 195
enable TIM-P	253
enable TIM-S	220
enable TIM-V	265
enable trace218, 250, 262, 310, 340, 35	2, 363
enable UNEQ-P	256
Enable UNEQ-V	267
enabled 48	0, 490
equipment returns	567
ERDI-CD 338, 343, 350, 36	1, 366
ERDI-PCD	8, 253
ERDI-PD 338, 343, 350, 355, 36	1, 366
ERDI-PPD 24	8, 253
ERDI-PSD 24	8, 253
ERDI-SD 338, 342, 350, 354, 355, 36	1, 365
ERDI-VCD	0, 264
ERDI-VPD	0, 264
ERDI-VSD	0, 264
error analysis 11	8, 120
error measurement	47
error monitoring	115
Error/Alarm RX	399
Error/Alarm TX	396
ES 50	6, 510
ESD	9
ESR	8, 512
Ethernet	134
event	136
EXFO Web site	562

SONET/SDH Application

EXI. 86, 95, 101, 107, 433, 441, 449, 450, 450 exit	6 4 4
expected format220, 253, 265, 312, 343, 355, 366	,
expected message 220, 253, 265, 312, 343, 355, 366, 503	,
expected path signal label 256, 267, 346, 357 367	,
waatad aaylaad turaa 20	
zpecied payload type	4
ExSQ 106, 464	4 4
ExSQ	4 4 2
ExSQ	4 4 2 6
ExSQ	4 2 6 4
ExSQ	4 2 6 4 7
ExSQ	4 2 6 4 7 6
ExSQ	4 4 2 6 4 7 6 7

F

F1	222, 314, 623, 635
F2	. 255, 345, 368, 629, 640
F3	
FAIL	
failed	
False Carrier	
FAQs	
far-end	510
far-end block error	
FAS 160, 165, 166,	213, 219, 305, 311, 376,
378, 382, 38	3, 386, 387, 390, 391
fastest member	
fault indication	
fault indication code.	
Favorites	
F-bit	
FCC	x
FCS	400, 451
FDI	
FDL PRM Current RX .	
FDL PRM RX	

FDL PRM TX 288
FDL RX
FDL TX
FEAC
FEBE
FEC RX 156
FEC TX 154
FEC-CORR 156
FEC-CORR-BIT 155
FEC-CORR-CW 155
FEC-CORR-SYMB155
FEC-STRESS-CW 155
FEC-UNCORR 156
FEC-UNCORR-CW155
file 552
Finish 70, 74, 78, 82, 86, 90, 91, 96, 102, 107,
110
FOPR
FOPT 472
format 218, 250, 262, 310, 340, 352, 363
forward 187, 196
frame 448
Frame Configuration 394
frame rate 403
Frame Size 394
frame size 403
Frame Size Count 403
frame type 440
frame-mapped GFP 649
framing 68, 69, 72, 73, 76, 81, 85, 275, 293,
375, 381, 385, 389, 521, 523, 622,
634
framing bit 276, 278
Frequency 516
frequency . 115, 116, 143, 146, 151, 152, 516,
525
frequency (bps) 149, 513
Frequency (MHz) 527
Frequency Offset 517
frequency offset 146, 152, 525
frequency offset (ppm) 141, 149, 513

front panel, cleaning			557
FTFL	183,	187,	196

G

G1 GCC0 GCC1	255, 345, 368,	629, 640 161, 167 185
GCC2		
Generate		
generated		4/5, 4/6
generated count		
generic framing proce	edure	
GFP		429, 647
GFP Channel RX		
GFP Channel Stats RX		454
GFP Channel Stats TX		
GFP Channel TX		435
GFP Client RX		457
GFP Client TX		444
GFP frame structure		651
GFP Frames RX		449
GFP Frames Stats RX		447
GFP Frames TX		432
GFP mapping		649
GFP OH RX		455
GFP OH TX		440
GFP Overview TX		431
GID mismatch		471, 484
Global		133
global configuration		530
glossary		577
GMP RX		209
GMP TX		208
GMT		528
grid view		62
group member		461, 466
group members		460, 464
group size		459, 463
GTE		271

-

Н

Н3	6, 46,	414
H1 235, 243, 327, 333	, 624,	636
H2 235, 327	, 624,	636
НЗ 235, 327	, 624,	636
H4 255, 345, 368	, 629,	640
H4-LOM	. 338,	342
Hardware Options	· · · · · · · · · · · · · · · · · · ·	545
HDB3		138
help	3, 52,	554
hide keyboard		554
higher-order path overhead		638
higher-order VC-N path trace		638
HO VCAT		664
hold-off timer		490
HOP	. 211,	303
HOP OH TX/RX (SDH)		344
HOP OH TX/RX (SONET)		254
HOP pointer adjust RX (SONET/SDH)		495
HOP pointer adjust TX (SONET/SDH).		492
HOP RX (SDH)		341
HOP RX (SONET)		251
HOP TX (SDH)		335
HOP TX (SONET)		245
HP-PLM		342
НР-РОН		638
HP-RDI	. 338,	342
HP-REI	. 335,	341
HP-TIM		342
HP-UNEQ	. 338,	342

I

IC	X
ID	
id	
identification label	
Idle	287, 293, 296, 400
idle	
idle frames	
inactive	
increment	

information	
injected payload type	
input presence	
insert	
inserting a module	
installed software packages	
interface1	13, 446, 457, 554
interface type	
Internal	
internal	
Invalid	
invalid frames	
Invert	
invert	531
Invert Polarity	
ISO	

J

JO	
J0 Trace	
J0 trace	310, 312, 622, 634
J1	255, 345, 368
J1 Trace	
J1 trace250, 253, 340, 343,	363, 366, 627, 638
J2	
J2 Trace	
J2 trace	352, 355, 630, 641
Jabber/Giant	
jammed bit 8	
JC	
JC1 to JC3	
JC1 to JC6	201, 206
job information	

Κ

К1	235, 237, 327, 329, 625, 637
К2	235, 239, 327, 329, 625, 637
КЗ	
К4	
K4 structure	641
keyboard	53

L		
label, identification		563
laser		xi
laser on	530,	561
laser, safety		7
last		428
last alarm scan date	119,	120
last trib scan		121
launch test		114
layer	412,	418
LBO 68, 72, 76,	139,	521
LCAS 470,	483,	673
LCAS configuration	459,	463
LCAS control packets		675
LCAS Sink		481
LCAS Sink Alarm		484
LCAS Sink Configuration		489
LCAS Sink MST/RS-Ack Control		487
LCAS Sink Overview		482
LCAS Source		468
LCAS Source Alarm		471
LCAS Source Configuration		479
LCAS Source Error		473
LCAS Source MST/RS-Ack Control		477
LCAS Source Overview		469
LCAS Source SQ/CTRL Control		475
LED		
C		46
Ethernet		134
Global		133
Н	46,	414
LASER		20
Log Full		133
Other		134
Pattern		134
Port		133
RX		20
Status		46
status		25
Level (Vref = 1.21 Vpp)		145
Level (Vref = 6.00 Vpp)		145

LFD	450
line 116,	211
line coding	523
Line OH TX/RX (SONET)	. 234
line overhead	624
Line TX (SONET)	. 223
linear	449
Link Activity	. 287
Link Down	. 399
link down	. 397
link loss	. 458
link status	458
live traffic	409
LO VCAT	. 668
10A	467
LOA threshold	. 467
load	552
Load Configuration	59
load key	. 546
LOC	526
local	. 528
Local Fault	. 397
local fault	. 399
location	. 544
LOCS	452
LOF 117, 159, 163, 216, 219, 308, 311, 3	375,
379, 381, 384, 385, 388, 389,	392,
524	
Log Full	. 133
LOH	. 624
LOM 159, 163, 248, 252, 460, 464,	465
LOMF	379
loopback	. 277
LOP OH TX/RX (SDH)	. 356
LOP OH TX/RX (SDH, TU-3 path)	. 367
LOP OH TX/RX (SONET)	. 266
LOP pointer adjust RX (SONET/SDH)	. 495
LOP pointer adjust TX (SONET/SDH)	. 492
LOP RX (SDH)	. 353
LOP RX (SDH, TU-3 path)	. 364
LOP RX (SONET)	. 263
LOP TX (SDH)	. 347

LOP TX (SDH, TU-3 path)	
LOP TX (SONET)	257
LOP-P	
LOP-V	
LOS 115, 139,	, 143, 148, 151, 524
lower-order path overhead	d 641
LP_TIM	
LP-PLM	
LP-RDI	. 350, 354, 361, 365
LP-REI	. 347, 353, 358, 364
LP-RFI	350, 354
LP-TIM	
LP-UNEQ	. 350, 354, 361, 365

Μ

M0 235, 327, 625
M1 235, 327, 625, 637
main window 29
maintenance 557
front panel 557
general information 557
Manual214, 224, 246, 258, 306, 316, 336, 348, 359
manual
manual control 478, 488
manual toggle count 478, 488
mapping 69, 73, 81, 85, 89, 94, 99, 104
SDH 61
SONET 60
mapping efficiency (%) 431, 448
Max. Negative Offset 517
max. negative offset 146, 152
Max. Positive Offset 517
max. positive offset 146, 152
maximum
measurement unit 462, 467
member 460, 461, 464, 466, 469, 471, 473,
475, 477, 479, 482, 484, 486, 487,
489, 554
member description 554
message218, 250, 262, 310, 340, 352, 363, 499

MFAS	165,	166
minimize		32
minimum		428
mismatch	450,	451
mismatch '0'	· · · · · · · ·	410
mismatch '1'		410
Mode 215, 217, 225, 227, 247, 249, 2	259, 2	61,
307, 309, 317, 319, 337, 3	339,	349,
351, 360, 362		
mode		426
module		
insertion		11
removal		11
module description		544
Module Information		544
Mon		522
mon		142
Monitor		415
monitor		523
MS	116,	303
MS BIP-N*24		636
MS DCC		637
MS orderwire		637
MS-AIS	318,	320
MSOH		636
MS-RDI	318,	320
MS-REI	321,	637
MST 469, 478,	482,	488
Multicast	401,	402
Multi-Channel SDT		127
multiframe indicator		629
Multiplex Section APS/Adv OH TX/RX	(SDH)	328
Multiplex Section OH TX/RX (SDH)		326
multiplex section overhead		636
Multiplex Section RX (SDH)		320
Multiplex Section TX (SDH)		315

Ν

N1		629,	640
N2		356,	641
ND	F	494,	496

near-end		506
network operator		640
network operator byte		641
new		552
New Data Flab (NDF)		494
New Data Flag		496
new data flag6	532,	643
new pointer value		494
next generation		133
next-generation tabs		429
NI/CSU Emulation		127
NJO		201
no defect time 4	1 12,	419
No NDF		496
No New Data Flag		496
nominal frequency (bps) 141, 1	49,	514
none	371,	374
Non-LCAS 4	ł79,	489
Normal		126
null 4	1 33,	449
N-Unicast 4	1 01,	402

OC-12	84, 91, 104
OC-192	84, 91, 104
OC-3	84, 91, 104
OC-48	84, 91, 104
OC-768	88, 91
ODI	499, 502
ODU multiplexing	548
ODU OH RX	191
ODU OH TX	182
ODU RX	189
ODU TCM RX	175
ODU TCM TTI RX	178
ODU TCM TTI TX	173
ODU TCM TX	170
ODU TTI/FTFL RX	
ODU TTI/FTFL TX	186
ODU TX	180
ODU-AIS	181, 190

ODU-BDI		181,	190
ODU-BEI			189
ODU-BIP-8			189
ODU-BSD		181,	190
ODU-BSF		181,	190
ODU-FSD		181,	190
ODU-FSF		181,	190
ODU-LCK		181,	190
ODU-LOFLOM		181,	190
ODU-OCI		181,	190
ODU-TIM			190
OEI		498,	501
offset unit		146,	152
ОК			52
OOF 159, 163, 275, 279	9, 293, 296,	308,	311
00M		159,	163
OOM1		464,	465
OOM2		464,	465
operation mode		240,	330
operator identifier		188,	196
operator specific162, 168	, 178, 186,	188, 1	194,
196			
OPU OH RX			205
OPU OH TX			200
OPU RX			203
OPU TX			197
OPU-AIS		199,	204
OPU-CSF		199,	204
OPU-MSIM		199,	203
OPU-PLM			203
orderwire	623, 626,	635,	637
Other			134
Other CMF			452
OTN			133
OTN Intrusive	. 66, 92, 97,	108,	128
OTN tabs			153
OTU OH RX			166
			160
OTU OH TX	• • • • • • • • • • • • • • • • • • • •		
OTU OH TX OTU RX			163
OTU OH TX OTU RX OTU TTI RX			163 168
OTU OH TX OTU RX OTU TTI RX OTU TTI TX			163 168 162
OTU OH TX OTU RX OTU TTI RX OTU TTI TX OTU TX			163 168 162 157

OTU IAE 159, 164
OTU1
OTU1e (11.049G) 109
OTU1f (11.27G)
OTU2
OTU2e (11.096G) 109
OTU2f (11.317G) 109
OTU-3
OTU391
OTU-AIS 159, 163
OTU-BDI 159, 164
OTU-BEI
OTU-BIAE 159, 164
OTU-BIP-8165
OTU-TIM 164
output 552
Output Presence 527
output presence 139, 147, 522
oversize 400
Overwrite . 162, 186, 188, 199, 218, 244, 250,
310, 334, 340, 405
overwrite 440
overwrite control 470, 483
overwrite enable 475, 476, 478, 488
overwrite selected favorite content

Ρ

page selection 51
page up 47
PASS
path 51, 69, 73, 81, 85, 89, 94, 99, 104, 465
path overhead 254, 266, 627
path signal label 267, 357, 639
path signal label (C2) 119, 256, 346, 367
path signal label (V5) 120
path status 640
path trace 641
path user channel 640
Pattern 134
pattern . 69, 73, 82, 86, 90, 96, 102, 107, 110,
212, 214, 312, 314

Pattern #	406
pattern configuration	445
Pattern Loss	409
Pattern RX	409
pattern tabs	393
Pattern TX	405
pavload	. 64
pavload content	374
pavload FCS	658
pavload FCS indicator	654
pavload header	653
pavload information field	658
pavload type	204
pavload type identifier	653
P-bit 294.2	295
PDH tabs	369
PDI-P 248 2	252
Performance Monitoring (PM)	504
performance report message	290
performance report messages	288
Period215 217 225 227 247 249 259 20	61
	o , ,
307 309 317 319 337 339 3	349
307, 309, 317, 319, 337, 339, 3 351 360 362	349,
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 136
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453 456 451
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453 456 451 397
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453 456 451 397
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453 456 451 397 396
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453 456 451 397 396 554
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453 456 451 397 396 554 485
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453 456 451 397 396 554 485 489
307, 309, 317, 319, 337, 339, 3 351, 360, 362 persistent CRC	349, 436 484 453 456 451 397 396 554 485 489 472
307, 309, 317, 319, 337, 339, 3 351, 360, 362 persistent CRC	349, 436 484 453 456 451 397 396 554 489 472 479
307, 309, 317, 319, 337, 339, 3 351, 360, 362 persistent CRC	349, 436 484 453 456 451 397 396 554 489 472 479 455
307, 309, 317, 319, 337, 339, 3 351, 360, 362 persistent CRC	349, 436 484 453 456 451 397 396 485 489 472 479 455 2252
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period	349, 436 484 453 456 451 397 396 485 489 472 479 455 252 252
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period persistent CRC pFCS 437, 4 PFI Mismatch PHY alarm generation PHY error injection play PLCR PLCR threshold PLCT threshold PLM-P PLM-V PM PM PM PLM-V PM PM PM PM PM PLM-V PM	436 436 484 453 456 451 397 396 554 485 485 485 485 472 479 455 2264 455
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period persistent CRC pFCS 437, 4 PFI Market PHY alarm generation PHY error injection play PLCR PLCR threshold PLCT threshold PLM-P PLM-V PM PM PLM-V PM PM PM PL PLM-V PM PM PM PM Solution Solution </td <td>349, 436 484 453 456 451 397 396 554 485 489 472 479 455 2264 455 2264</td>	349, 436 484 453 456 451 397 396 554 485 489 472 479 455 2264 455 2264
307, 309, 317, 319, 337, 339, 3 351, 360, 362 period persistent CRC pFCS 437, 4 PFI 441, 4 PFI mismatch PHY alarm generation PHY error injection play PLCR PLCR threshold PLCT threshold PLM-P PM PM TTI trace 183, PCH	349, 436 484 453 456 451 397 396 455 489 472 479 455 2264 479 455 2264 194 252

pointer	492 495	624	636
pointer action	,,	624	636
pointer decrement			496
pointer increment			496
pointer jump			494
pointer step			493
pointer value		633,	643
Port			133
Port RX (Electrical Interfaces	5)		142
Port RX (Optical Interfaces)	, 		150
Port TX (Electrical Interfaces	5)		138
Port TX (Optical Interfaces).	, 		147
Port TX (optical interfaces).			147
position and sequence indic	ator		640
Power			116
Power (dBm)			150
Power Level			145
pre-defined selection			44
Previous			286
Priority		286,	287
PRM		· · · · · · ·	287
PRM bit event counts			290
PRM bit events			289
problems			561
product			
identification label			563
specifications			562
protected channel		239,	329
provisioned member		470,	483
PSI		201,	202
PTI	441,	454,	456

R

RAI 275, 279, 375, 379, 381, 38	84, 385, 388,
389, 392	
RAI MF	375, 379
Range	116, 150
Rate 47, 214, 224, 246, 258, 30	6, 316, 336,
348, 359, 408	

rate 136, 140, 155, 158, 172, 180, 214, 224,
246, 258, 276, 294, 306, 316, 336,
348, 359, 376, 382, 386, 390, 396,
397, 434, 438, 446, 457, 474, 498
rates 577
RDI
RDI-L
RDI-P248, 252
RDI-V
ready 427
Recalibrating the unit558
recalibration558
received 478
received count 478
received message220, 253, 265, 312, 343, 355,
366, 503
received payload type204
received value478
record553
Recovered 129, 526
recovered521
REF OUT
reference member 462, 467
Regenerator Section OH TX/RX (SDH) 313
regenerator section overhead
Regenerator Section RX (SDH)
Regenerator Section TX (SDH)
REI-L 117, 223, 229
REI-P
REI-V
relative
relative delay 467
Remote Control
remote DUI 105, 479, 489
remote error indicator
Remote Fault
remote status
remove all
removing a module
Report Format
Keport Header
report settings

Report Title	43
request	237 329
RES 161 167 183 185	201 206
Resequence $EvSO$	/63
Reserved PLI Frames	
Reserved PTI Frames	
reset	/128
reset all	
reset to display default pages layout	570
Response	
Results	200, 207
SDT	421
return merchandise authorization (RN	ЛА) 567
RFI-V	260, 264
RJ-48c	, 67. 71
Round Trip Delay	426
round trip delay	425
Round Trip Delay (RTD)	425
RS	116, 303
RS BIP-8	 635
RS DCC	635
RS orderwire	635
RS trace message	634
RS user channel	635
RS-Ack	483, 488
RSOH	634
RS-TIM	311
RTD	425
running	427
runt	400
RX	522
RX Live Traffic	531
RX Tuning	151

S

S1.		37
saf	ety	
	caution	. 5
	conventions	. 5
	laser	. 7
	warning	. 5

SAPI 162, 168, 169, 174, 178, 179, 186, 1 195	94,
save	552
SB Correctable	453
SB Correctable (Post)	438
SB Correctable (Pre)	438
SB Uncorrectable	453
Script	59
script line editing	554
script tools	553
SDH tabs	303
SDT	411
SDT - Monitor	415
SDT - Results	421
Seconds	47
section	211
Section OH TX/RX (SONET)	221
section overhead (SONET)	622
Section RX (SONET)	219
Section TX (SONET)	213
sections	44
SEF117, 216,	219
selected logo	43
SEP	509
SEPI	509
serial number	545
service and repairs	567
service centers	568
Service Disruption	414
Service Disruption Time (SDT)	411
Service Disruption Time (SDT) - Monitor	415
Service Disruption Time (SDT) - Results	421
SES 506,	510
SESR 508,	512
set all 272, 274, 372,	374
SFP24,	545
shipping to EXFO	567
show keyboard	554
signal	64
signal label	628
signal rates	577
single	426

slot ID	544
slowest member	467
SM	167
SM TTI trace	168
Smart Mode	111
smart scan 112,	113
smart scan in-progress	113
SmartMode 59, 113,	115
legend	123
SmartMode Report	45
software option key	546
SONET tabs	211
SONET/SDH	133
SONET/SDH HOP	539
SONET/SDH Intrusive 66, 83, 87, 103,	128
SONET/SDH LOP.	541
sort	48
Source MAC Address	395
source node ID	329
source node id	239
spare	657
spare bit	384
spare bits 377, 380, 382, 386, 388, 390,	392
special VID values	646
specification	
electrical interfaces	569
Ethernet Add/Drop Interfaces	573
Ethernet interfaces	574
optical interfaces	570
synchronization interfaces	572
specifications	569
specifications, product	562
SO106, 460, 461, 464, 466, 469, 471, 473,	475.
477, 482, 484, 485, 486, 487	,
SQ controls	459
SQ in UMST	472
SOM	465
SONC	485
SS Bits	243
SSMB	637
standard	505
Start application	27
гг	1

Start Time 12	26,	130
state 40	69,	482
Statistics RX		402
Statistics TX		401
Status		46
status 113, 427, 470, 478, 62	29,	640
STM-0e		80
STM-1	91,	104
STM-1 Channel	13,	326
STM-16	91,	104
STM-1e		80
STM-256	. 88	, 91
STM-4	91,	104
STM-64	91,	104
Stop Time		130
stopped		113
storage requirements		557
Stream		394
STS-1 fixed stuff columns		530
STS-1 REI-L		625
STS-1e		80
STS-3e		80
STS-n REI-L		625
successful		428
summary report		44
summary tabs		125
Superblock Statistic 42	31,	448
switching mode2	36,	328
SYMB		156
Symbol		400
symbols, safety		5
synchronization status		625
synchronization status message		117
synchronization status message byte		637
System Tab		519

Т

tab	
alarm summary	132
Application Preferences	528
APS/Advanced Line OH TX/RX (SO	NET). 236

Client Offset RX		515
Client Offset TX		513
Clock Synchronization		520
Configuration		393
Default Test Preferences		530
DS0/64K RX		273
DS0/64K TX		270
DS1 RX		278
DS1 TX		275
DS3 FEAC RX		301
DS3 FEAC TX		297
DS3 RX		295
DS3 TX		293
E0/64 RX		373
E0/64K TX		370
E1 TX		375
E1/2M RX		378
E2/8M RX		383
E2/8M TX		381
E3/34M TX	385,	387
E4 TX		389
E4/140M RX		391
Error/Alarm RX		399
Error/ALarm TX		396
FDL PRM Current RX		291
FDL PRM RX		290
FDL PRM TX		288
FDL RX		285
FDL TX		280
FEC RX		156
FEC TX		154
GFP Channel RX		451
GFP Channel Stats RX		454
GFP Channel Stats TX		439
GFP Channel TX		435
GFP Client RX		457
GFP Client TX		444
GFP Frames RX		449
GFP Frames Stats RX		447
GFP Frames TX		432
GFP OH RX		455

GFP Overview TX	. 431
GMP RX	. 209
GMP TX	. 208
HOP OH TX/RX (SDH)	. 344
HOP OH TX/RX (SONET)	. 254
HOP pointer adjust RX (SONET/SDH)	. 495
HOP pointer adjust TX (SONET/SDH)	. 492
HOP RX (SDH)	. 341
HOP RX (SONET)	. 251
HOP TX (SDH)	. 335
HOP TX (SONET)	. 245
LCAS Sink	. 481
LCAS Sink Alarm	. 484
LCAS Sink Configuration	. 489
LCAS Sink MST/RS-Ack Control	. 487
LCAS Sink Overview	. 482
LCAS Source	. 468
LCAS Source Configuration	. 479
LCAS Source Error	. 473
LCAS Source MST/RS-Ack Control	. 477
LCAS Source Overview	. 469
LCAS Source SQ/CTRL Control	. 475
Line OH TX/RX (SONET)	. 234
Line TX (SONET)	. 223
LOP OH TX/RX (SDH)	. 356
LOP OH TX/RX (SDH, TU-3 path)	. 367
LOP OH TX/RX (SONET)	. 266
LOP pointer adjust RX (SONET/SDH)	. 495
LOP pointer adjust TX (SONET/SDH)	. 492
LOP RX (SDH)	. 353
LOP RX (SDH, TU-3 path)	. 364
LOP RX (SONET)	. 263
LOP TX (SDH)	. 347
LOP TX (SDH, TU-3 path)	. 358
LOP TX (SONET)	. 257
Module Information	. 544
Multiplex Section APS/Adv OH TX/RX (328	SDH)
Multiplex Section OH TX/RX (SDH)	. 326
Multiplex Section RX (SDH)	. 320
Multiplex Section TX (SDH)	. 315
ODU OH RX	. 191

ODU OH TX 182
ODU RX 189
ODU TCM RX 175
ODU TCM TTI RX 178
ODU TCM TTI TX 173
ODU TCM TX 170
ODU TTI/FTFL RX 194
ODU TTI/FTFL TX 186
ODU TX
OPU OH RX 205
OPU OH TX 200
OPU RX
OPU TX 197
OTU OH RX 166
OTU OH TX 160
OTU RX 163
OTU TTI RX 168
OTU TTI TX 162
OTU TX 157
Pattern RX 409
Pattern TX 405
Performance Monitoring (PM) 504
port 137
Port RX (Electrical Interfaces) 142
Port RX (Optical Interfaces) 150
Port TX (Electrical Interfaces) 138
Port TX (Optical Interfaces) 147
Port TX (optical interfaces) 147
Regenerator Section OH TX/RX (SDH) 313
Regenerator Section RX (SDH) 311
Regenerator Section TX (SDH) 305
Remote Control 549
Round Trip Delay (RTD) 425
RTD 425
Section OH TX/RX (SONET) 221
Section RX (SONET) 219
Section TX (SONET) 213
Service Disruption Time (SDT) 411
Service Disruption Time (SDT) - Monitor415
Service Disruption Time (SDT) - Results 421
Software Options 546
Statistics RX 402

Statistics TX	
Summary	
TCM RX	
TCM TX	
test logger	
test summary	
Tools	
VCAT RX Diff Delay	
VCAT RX Overview	
VCAT TX Diff Delay	
VCAT TX Overview	
tab configuration	
tab name	
tabs	
TC access point identifier	
TC-access point identifier	503
TC-BIP	
TC-IAIS	
TC-IEC	
TC-LTC	
TCM	183, 184, 640
TCM ACT	
TCM level	. 170, 173, 175, 178
TCM RX	
TCM TX	
TCMi	
TCMi TTI trace	
TCMi-BDI	
TCMi-BEI	
TCMi-BIAE	
TCMi-BIP-8	
-	
TCMi-IAE	
TCMi-IAE TCMi-LTC	
TCMi-IAE TCMi-LTC TCMi-TIM	
TCMi-IAE TCMi-LTC TCMi-TIM TC-RDI	
TCMi-IAE TCMi-LTC TCMi-TIM TC-RDI TC-REI	
TCMi-IAE TCMi-LTC TCMi-TIM TC-RDI TC-REI TC-TIM	
TCMi-IAE TCMi-LTC TCMi-TIM TC-RDI TC-REI TC-TIM TC-UNEQ	
TCMi-IAE TCMi-LTC TCMi-TIM TC-RDI TC-REI TC-TIM TC-UNEQ TC-VIOL	
TCMi-IAE TCMi-LTC TCMi-TIM TC-RDI TC-REI TC-TIM TC-UNEQ TC-VIOL technical specifications	
TCMi-IAE TCMi-LTC TCMi-TIM TC-RDI TC-REI TC-TIM TC-UNEQ TC-VIOL technical specifications technical support	176 171, 177 171, 177 171, 177 499, 502 498, 500 502 499, 502 500 500 500 502 500 502 500 502 500

temperature for storage		557
term 142,	522,	523
termination mode 68, 72,	142,	522
bridge	522,	523
Mon		522
monitor		523
term	522,	523
test	64,	133
test case report		45
test configuration		126
Test controls		37
Test Description		128
Test global status		35
Test Mode		126
test mode 66, 71, 75, 79, 83, 87, 91	I, 92,	97,
103, 108		
Test Name		126
test name		62
Test Pattern		406
test pattern		531
test period	413,	419
test report	,	42
Test Setup		59
test setup		62
Test Status		126
test time display mode		529
tHEC		456
tHEC correctable	437.	453
tHEC uncorrectable	437,	453
Through		128
throughput		403
time	136,	291
time format		528
time options		528
time zone		528
timeout count	470,	478
Timer Configuration		130
timeslot 118,	221,	234
TIM-P		252
TIM-S		219
TIM-V		264
TLCR		485

ТІ СТ		472
Togale RS-Ack	478.	488
tone	272.	372
ToolBox	· - · -,	11
Tools		551
top page		50
Total	431.	448
total	401,	402
Total Count	, 401,	403
total error count		400
total events		135
total frames		448
trace	638,	641
trace message		634
traffic		64
transmitted count	483,	488
transmitted value		488
transparent-mapped GFP		649
transport layer	431,	448
transportation requirements	557,	564
tree view		62
trib scan		114
trib scan in-progress		113
tributary		120
TRN		545
troubleshooting		561
TS16 AIS	375,	379
TU-AIS	361,	365
TU-LOP 350, 354,	361,	365
ΤΧ		520
TX Rate		394
Туре	.407,	408
type51, 148, 155, 158, 159, 171, 172,	180,	181,
213, 223, 305, 335, 395, 39	6, 39	7
type header	.441,	456
type HEC field	•••••	657

U

UAS	508,	512
UMST	472,	485
Unassigned		287

undersize	400
UNEQ-P	248, 252
UNEQ-V	260, 264
unexpected count	478
UniCast	401, 402
Unit	517
unit	428
unit recalibration	558
UPI 86, 95, 101, 107, 432, 4	37, 442, 449, 450,
456	

USA	528
user	623
user channel	529, 635
user defined CMF	436
User Duration	130
user information	549
User Pattern	406
user payload identifier	655
user-defined UPI	437
UTC	528
utilization	403

V

V5	266, 356, 357, 630	, 641
Valid		. 448
valid count		, 292
Value		. 406
VC path overhead		. 641
VCAT	430	, 660
VCAT differential dela	y	. 671
VCAT RX Diff Delay	-	. 466
VCAT RX Overview		. 463
VCAT TX Diff Delay		. 461
VCAT TX Overview		. 459
Verdict		
FAIL		. 423
PASS		. 423
VID		. 646
view report after gene	eration	43
virtual concatenation		. 660
VLAN		, 646

VLAN Priority	646
VLAN, priority	395, 646
VT path overhead	630
VT path trace	630
VT payload pointer	632, 643

W

wait-to-restore timer	490
warranty	565
certification	566
exclusions	566
general	565
liability	566
null and void	565
wavelength	148

Х

Χ	. 28	, 34
XFP	45,	561

Ζ

Z0	. 222, 314, 622, 634
Z1	
Z2	
Z3	
Z4	
Z5	
Z6	
Ζ7	
Z7 Structure	630
zero code suppression	

NOTICE

通告

CHINESE REGULATION ON RESTRICTION OF HAZARDOUS SUBSTANCES 中国关于危害物质限制的规定

NAMES AND CONTENTS OF THE TOXIC OR HAZARDOUS SUBSTANCES OR ELEMENTS CONTAINED IN THIS EXFO PRODUCT 包含在本 **EXFO** 产品中的有毒有害物质或元素的名称和含量

Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006

O 表示该有毒有害物质在该部件所有均质材料中的含量均在 SJ/T11363-2006 标准规定的 限量要求以下。

Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in SJ/T11363-2006

表示该有毒有害物质至少在该部件的某一均质材料中的含量超出 SJ/T11363-2006 标准规定的限量要求。

	Toxic or hazardous Substances and Elements					
	有毒有害物质和元素					
Part Name 部件名称	Lead	Mercury	Cadmium	Hexavalent Chromium	Polybrominated biphenyls	Polybrominated diphenyl ethers
	铅 (Pb)	汞 (Hg)	隔 (Cd)	六价铬 (Cr VI)	多溴联苯 (PBB)	多溴二苯醚 (PBDE)
Enclosure 外壳	0	0	0	0	0	0
Electronic and electrical sub-assembly	Х	0	Х	0	Х	Х
电子和电子组件						
Optical sub-assembly ^a	Х	0	0	О	0	0
光学组件 ^a						
Mechanical sub-assembly ^a	0	0	0	0	0	0
机械组件 ^a						

a. If applicable. 如果适用。

Х

MARKING REQUIREMENTS 标注要求

Product	Environmental protection use period (years)	Logo
产品	环境保护使用期限(年)	标志
This Exfo product 本 EXFO 产品	10	
Battery ^a 电池 ^a	5	5

a. If applicable. 如果适用。

		www.EXFO.com · info@exfo.com
CORPORATE HEADQUARTERS	400 Godin Avenue	Quebec (Quebec) G1M 2K2 CANADA Tel.: 1 418 683-0211 · Fax: 1 418 683-2170
EXFO AMERICA	3701 Plano Parkway, Suite 160	Plano TX, 75075 USA Tel.: 1 972 907-1505 · Fax: 1 972 836-0164
EXFO EUROPE	Omega Enterprise Park, Electron Way	Chandlers Ford, Hampshire S053 4SE ENGLAND Tel.: +44 2380 246810 · Fax: +44 2380 246801
EXFO ASIA-PACIFIC	100 Beach Road, #22-01/03 Shaw Tower	SINGAPORE 189702 Tel.: +65 6333 8241 · Fax: +65 6333 8242
EXFO CHINA	Room 2711, Trade Center, No. 4028 Jintian Road, Futian District	Shenzhen 518035 P. R. CHINA Tel.: +86 (755) 8203 2300 · Fax: +86 (755) 8203 2306
	Beijing Global Trade Center, Tower C, Room 1207, 36 North Third Ring Road East, Dongcheng District	Beijing 100013 P. R. CHINA Tel.: +86 (10) 5825 7755 · Fax: +86 (10) 5825 7722
EXFO SERVICE ASSURANCE	270 Billerica Road	Chelmsford MA, 01824 USA Tel.: 1 978 367-5600 · Fax: 1 978 367-5700
TOLL-FREE	(USA and Canada)	1 800 663-3936

© 2011 EXFO Inc. All rights reserved. Printed in Canada (2011-09)

