■ THREE PHASE POWER QUALITY ANALYSER

3 49.99Hz

3

Ens IIII

n

RMS THO CF

530

() 361.0 v (2) 354.2 v (3) 355.5 v

SOOL SEED INFOLL

CERE

34

C.A 8332B C.A 8334B

ENGLISH

User's manual

MEANING OF SYMBOLS USED IN THE INSTRUMENT ▲ : WARNING ! Please refer to the User's Manual before using the instrument. In this User's Manual, the instructions preceded by the above symbol, should they not be carried out as shown, can result in a physical accident or damage the instrument and the installation. ▲ : Earth ▲ : Double insulation ▲ : Conform to WEEE 2002/96/EC standard Thank you for acquiring a C.A 8332B or C.A 8334B three phase power quality analyser.

- To obtain the best possible service from your instrument :
- **read** these operating instructions carefully,
- **comply** with the precautions for use.

\triangle PRECAUTIONS FOR USE \triangle

- Read carefully all the notes preceded by <u>A</u> symbol.
- If you don't use this instrument according the user's manual, you can compromise the safety, and you can go in dangerous situation.
- The safety of all the system which include this instrument is the system owner responsability.
- For your safety, use only tests leads delivered with the instrument : they are conform to EN 61010-031 (2002) standard.
- Before each use, check the good state of test leads.
- For your safety, use only accessories delivered with the instrument or approuved by the supplier.
- Respect the climatic conditions for use (see § 6).
- This instrument can be used on category-IV installations for voltages not exceeding 600V (AC or DC) in relation to the earth (as per EN 60664-1).
- The use of accessorie (sensor) with lower category (CAT III for example) reduce the set use (Instrument with sensor) at this category (CAT IV begin CAT III for example).
- Ensure the measurement leads and sensors are disconnected before removing the battery.
- Use battery packs supplied by the maker.

INSTALLATION CATEGORIES

Definition of installation categories (cf IEC 664-1 publication) :

- <u>CAT III</u>: CAT III circuits are power supply circuits that can support major transient overvoltage. <u>Example</u> : industrial unit or machine power supply.
- <u>CAT IV</u>: CAT IV circuits can support very hight transient overvoltage. <u>Exemple</u> : power input.

WARRANTY

Our guarantee is applicable for **three years** after the date on which the equipment is made available (extract from our General Conditions of Sale, available on request).

CONTENTS

1.	INTRO	DUCTION	4
2.	PRESE		4
	2.1	Unit	4
	2.2	Display	5
	2.3	Presentation of the different battery states	6
3.	INITIAL	OPERATION	7
	3.1	Configuration of the instrument	7
4.	DISPL/	Y MODES	12
	4.1	Waveforms Mode	12
	4.2	Harmonics Mode	15
	4.3	Power / Energy Mode W	17
	4.4	Transient mode C.A 8334B only)	19
	4.5	Alarms Mode 🛆	21
	4.6	Recording Mode	22
	4.7	Screen Memorisation	25
	4.8	Printing	26
	4.9	Help ?	26
	4.10	Logiciel "QualistarView"	26
5.	GENER	AL SPECIFICATIONS	27
	5.1	Dimensions and weight	27
	5.2	Power supply	27
	5.3	Climatic conditions	27
	5.4	Compliance with international standards	27
6.	FUNCT	IONAL CHARACTERISTICS	28
	6.1	Reference conditions	28
	6.2	Electrical specifications	28
	6.3	Specifications of the sensors (with C.A 8332B/34B)	32
7.	MAINT		37
	7.1	Recharging the battery	37
	7.2	Cleaning the housing	37
	7.3	Calibration testing	37
	7.4	Repairs	37
8.	TO OR	DER	38
9.			40
	9.1	Front view of the instrument	40
	9.2	Mathematical formulae used to compute the various parameters	41
	9.3	Setup DPU 414 printer	47
		-	

1. INTRODUCTION

C.A 8332B and C.A 8334B are three phase power quality analysers which are compact and shock-resistant. Their ergonomic design and the simplicity of their user interface make their use pleasant and intuitive.

They not only enable the user to obtain an instant image of a network's principal characteristics but also to monitor their variation over a period of time. Their multi-task measurement system simultaneously handles all the measurement functions of the various magnitudes, detection, continuous recording: and their display without any constraints.

They are intended for the technicians and engineers of the test and maintenance teams working in industry and the administration, for measurements, enabling them to carry out checks and diagnostic work on single phase, two phase or three phase low voltage networks.

The principal measurements made are:

- Measurement of AC rms voltages up to 480V (phase-to-neutral) or 960V (phase-to-phase) for two-wire, three-wire or four-wire networks.
- Measurement of alternating RMS currents up to 6500A rms.
- Measurement of the frequency of 50Hz, 60Hz (10Hz to 70Hz) networks.
- Calculation of neutral current by vector summing of phase current for star configurations.
- Calculation of peak factors for currents and voltages.
- Calculation of the K factor for currents (transformers).
- Calculation of short-term flicker for voltages.
- Calculation of the phase unbalance for voltage and current (three-phase networks only).
- Measurement of harmonic angles and rates (with respect to fundamental value) for voltage, current or power (C.A 8334B only), up to level 50. Calculation of overall harmonic distortion factors.
- Measurement of active, reactive and apparent power per phase and their aggregate. Calculation of the power, shift and tangent factor.

Total amount of energy generated and received from a moment chosen by the operator.

- Monitoring of the average value of any parameter, calculated over a period running from 1 sec to 2 hours. Storage of values over an unlimited period in the instrument memory.
- Recording, time stamping and characterisation of disturbance: Swells, dips and interruptions, overrun of power and harmonic thresholds...
- Detection of transients and recording of the associated waveforms (C.A 8334B only).

2. PRESENTATION

2.1 Unit (see § 9. Appendix)

- ① Display on a LCD colour screen with graphic representation of network parameters in the mode chosen using the keys ⑤ (see § 2.2).
- 2 6 variable function keys to modify the current display mode
- ③ 4 keys which allow the user to:

access the instrument configuration parameters (see § 3.1)

memorise the current screen and access screens already stored in the memory

- print the measurement results on an external printer (see "To order" paragraph)
- obtain assistance on the current display mode functions in the language chosen by the user
- ④ ON / OFF key
- ⑤ Keys for choosing the display mode at any time:

- Transients: display of waveforms, motor startup current (Inrush) and interruption (C.A 8334B only).
- Harmonics: representation of the harmonic ratios of voltage, current and power (C.A 8334B only), order by order,
 - determination of harmonic current produced by non-linear loads,
 - analysis of the problems caused by harmonics according to their order (heating of neutrals, conductors and motors, etc.) (C.A 8334B only)

- Waveforms : representation of voltage and current waveforms or vector representation (Fresnel diagram) used for: - the identification of signal distortion signatures,
 - the display of amplitude and phase unbalance for voltage and current
 - the checking of connections in the correct phase order

Power / Energy: - the display of power levels and the associated parameters (power factor, displacement and tangent), - energy metering, - Four quadrants measurement to discern produced /consumed active energies and inductive / capacitive reactive energies. مە - time-related representation as bar charts or curves, of mean power levels or of the mean value of Recording: any other parameter, - mains voltage stability check, - management of power consumed and generated (most economical choice with energy distributor), - monitoring of harmonic variations, Δ - a list of the alarms recorded according to the thresholds programmed during configuration, Alarms: - logging of supply network interruption with half-period resolution (Vrms, Arms, Urms), - determination of energy consumption overruns, - checking of compliance with energy supply quality contract. 6 4 keys: shows and () which enable movement of the cursor, browsing or the selection of data.

- O Validation key
- ⑧ Network supply connector
- (9) IR RS232 bidirectional optical output for transferring data to a PC (bidirectional) or printing to a dedicated printer (DPU 414 SEIKO).
- 0 4 voltage inputs situated on the top of the instrument
- ③ 3 current inputs on the top of the instrument to enable the use of ammeter sensors (MN clamp, C clamp, Amp*FLEX*, PAC clamp.)
- Protective case

2.2 Display

Measurement values associated with curves

Important parameters concerning the instrument:

- Display mode
- The frequency of the measured network
- The proportion of memory occupied for certain modes
- The current date and time
- The battery charge status (see § 2.3)

Selection of the curves to display by pressing on the keys

- 3U displays the three compound voltages U12, U23, U31,
- **3V** displays the 3 phase-to-phase voltages V_{1N}, V_{2N}, V_{3N},
- **3A** displays the three phase currents and 4A with the neutral current of a three-phase system,
- L1, L2 or L3 display the current and voltage in turn on phase 1, 2 or 3.

<u>Nota</u>: the stability of the display requires the first measured magnitude of each selection.

Instant values of signals at an instant "t", at the intersection of the cursor and the curves. The cursor is moved along the time scale with the keys ().

Selection of the measurement type using the variable function keys 2, situated below the screen:

- **RMS** True RMS measurement
- THD Overall harmonic distortion factor
- CF Crest factor

max/min Extreme and average values

Simultaneous display of the various measurements

Fresnel diagram of signals

The calculation of the DPF, Tan, KF, φ, UNB, Min, Max, VAR, Harmonics, PST, and DF parameters and the frequency measurement can only be performed if Ch 1, with voltage V1, is connected to the network.

2.3 Presentation of the different battery states

1. Battery charging

3. INITIAL OPERATION

The instrument is initially started up by pressing on the key, the startup screen indicates the instrument software version and its serial number.

If there is no AC mains supply, the instrument can operate with batteries only, provided they are correctly charged.

The instrument's batteries are charged when it is connected to the AC mains supply.

Note: When the equipment is stopped using the backey, a confirmation is requested if the equipment is in the process of recording.

3.1 Configuration of the instrument 🔳

The instrument must be configured the first time it is used and then whenever necessary. The configuration is saved in the non-volatile memory when the instrument is switched off (with _____ key).

When the () key is pressed, the following choices appear:

			25/0	01/02/16:2	25 💧 100%
	DATE CONT COLO CALC CONN CURR COMN RECO ALAR CLEA NOMI	: / TIME RAST / LI URS ULATION IECTION ENT SENS MUNICATIO RDING M RING OF (NAL FREQ	GHT PARAMETE OR N DATA UENCY	RS	
Français	English	Deutsch	Italiano	Español	Portugues

- Choose the language used with the variable function keys 2, situated just below the screen.

- Select the other configuration settings with the keys

- Validate with the key 🗡

The settings available are presented in the following paragraphs.

3.1.1 Date / Time

10/10/2000 16:45

- Select the number to be modified with the () keys, it will appear in bold type.
- Modify the value of the number selected with the $\overbrace{\clubsuit}^{\bigstar}$ keys
- Validate the setting with the \frown key, the Configuration menu will once again be displayed on the screen.

Note: The time and date systems may be chosen by the user.

3.1.2 Light/Contrast

Two bargraphs appear in this display

- Choose Light or Contrast with the keys
- The setting is chosen with the (4) keys and the setting level indicated on the bargraph.
- Validate the setting with the 🖓 key, the Configuration menu will once again be displayed on the screen.

3.1.3 Colours

			25/07/01 1	0:25 📲 10)0%
Phase voltage	1	۲		>	
Phase current	1	۲		>	
Phase voltage	2	۲		>	
Phase current	2	۲		>	
Phase voltage	3	<		>	
Phase current	3	۲		>	
Neutral current		۲		>	

- Choose the colour with the keys
- Validate the setting with the $\overbrace{\smile}$ key, the Configuration menu will once again be displayed on the screen.

3.1.4 Calculation parameters

- Choose the method with the 🕢 keys Validate the setting with the 🖓 key, the Configuration menu will once again be displayed on the screen.

3.1.5 Connection

- 1. Three phase, triangle network: only power totals are representative of the actual situation
- 2. Three-phase star network: the neutral current is not calculated. It is necessary to connect neutral to obtain representative power levels per phase.

V1 must be connected in any type of connection since the display is synchronised from V1 and the network frequency measured by V1.

Synchronisation of the display of curves in "Waveform" mode

Display selection (vertical right menu)	Reference channel for synchronisation
3U	U1
3V	V1
4A / 3A	A1
L1	V1
L2	V2
L3	V3

3.1.6 Current sensor

3.1.7 Communication

Transmission speed 57600 BDS

- Choose from the values: 300, 2400, 4800, 9600, 19200, 38400, 57600 or 115200 bauds with the keys

- Validate the setting with the very key, the Configuration menu will once again be displayed on the screen.

For the transfer of data between Qualistar and a PC, the communication speeds must be identical at both ends.

3.1.8 Recording

Four different recording configurations can be stored

- 1. Choose the recording configuration using the keys
- Move through the chosen field using the (<) keys and validate the parameters using the keys; the field to be modified is shown in bold
- Validate the setting with the key, the Configuration menu will once again be displayed on the screen.

If these lines are not validated, all the harmonic orders will be recorded.

3.1.9 Alarm

A programmed alarm must be set to ON to be taken into account (general activation or deactivation of alarms is generated in mode).

Alarm programming

Choose the parameters associated with an alarm from the parameters proposed; phases survey, threshold value and minimum duration filtering can be programmed

NB: The programmed hysteresis is common to all alarms.

1. Select the modifiable field using the 4 keys.

2. Activate or adjust the threshold values using the keys; the field to be modified appears in bold

3. Validate the setting with the *vel* key, the Configuration menu will once again be displayed on the screen.

NB : When an alarm is "OFF":

- 1) The parameters previously used are kept in the memory and reappear if the alarm is selected again.
- 2) To move quickly from one programmed alarm to another:
 - simply position the cursor on the alarm numbers column and use

Modifying one or several characteristics of an alarm set to ON switches it automatically to OFF.

NOTA : Only alarms on V_{RMS}, U_{RMS} and A_{RMS} (except for neutral current) can be programmed with a minimum threshold overrun duration of up to 1/100s.

3.1.10 Recorded data delete

When data delete is selected, the following question is displayed:

- Choose the relevant answer with the (4) keys
- Validate the setting with the ver key

When the data is deleted, the instrument configuration returns to the default setting (maker's configuration) and the following are deleted:

- all detected alarms,
- all screen photos taken,
- all the captured transient states (on C.A 8334B only),
- and all recordings made.

/! The instrument will automatically switch itself off once the data have been deleted.

3.1.11 Rated frequency

Rated frequency of network: 50 Hz or 60 Hz

This parameter determines the correction coefficients used for calculating power and energy, with AmpFlex sensor.

- Choose the rated frequency using the keys
- Validate the adjustment using the 🔶 key: the screen displays the "Configuration" menu again.

4.1 Waveforms Mode

- Press on the display mode key

- The following screen is displayed:

Measurement of rms voltage on a three phase system:

Values measured for each curve every second (same colour), according to the measurement type chosen with the variable function keys ②, situated directly below the screen.

The curves to be displayed are selected by pressing on the keys:

- **3U** displays the three phase-phase voltages of a three phase system,
- **3V** displays the three single voltages of a three phase system,
- **3A** displays the three phase currents of a three-wire, three phase system,
- /! The neutral current is not a direct measurement but the resulting total of the 3 currents measured.
- L1, L2 and L3 respectively display the current and voltage on phases 1, 2 and 3.

Instant values of signals at an instant "t", at the intersection of the cursor and the curves. The cursor is moved along the time scale with the 4 keys.

The measurement type is selected using the variable function keys 2, located beneath the screen.

All these measurements are valid in 3U, 3V, 3A, L1, L2, L3

Important: The choice of curves to be displayed (keys) depends on the type of connection (see § 3.1.5):

- 4-wire, three phase: 3U, 3V, 4A, L1, L2, L3
- 3-wire, three phase: 3U, 3V, 3A, L1, L2, L3
- Two-phase: 2V, 3A, L1, L2
- Single phase: No choice (L1)
- This comment is valid for all display modes.

Measurement of phase to phase RMS voltages on the 3 phases

■ Measurement of RMS current on the 3 phases and the neutral of a 4-wire three phase system

Measurement of overall harmonic distortion factors for voltage

Measurement of extreme and average current values

Peak values refreshed every 250ms but calculated every second.

A Max and Min values are measured from the power on or the last ye key pressed

Nota : The Max and Min measurements are calculated every half period (e.g. : every 10ms for a 50Hz signal). The Avg measurements are calculated every second. However, the Max, Avg and Min measurements are refreshed every 250ms.

Simultaneous display of all the different current measurements Summary of RMS, DC, THD, CF and KF parameters

<u>∽</u> 4	9.99Hz		1770	04/01 10:36	1 00%	
	1	2	3	N		
RMS DC	10.4 +0.0	18.4 +0.0	16.9 0.3	11.6 a≃ –0.3 a=	∧ 3U	
THD	27.7	3.0	1.6 🤋	5	3V <mark>4A</mark>	
CF	1.61	1.40	1.45			
KF	1.92	1.03	1.00 -		\sim	— Calculation of the K factor for transformer downgrade
DF	25.9	2.9	1.5 🤋	ζ —		 Distortion factor
RMS	S THD	CF	max min		\otimes	

- **Note:** The K factor only concerns current. Similarly, the flicker value only concerns voltage. $3V \rightarrow PST$, flicker calculated on short term 3A and $4A \rightarrow KF$ factor L1, L2 and L3 flicker and KF factor DC current values only for the PAC 93 clamp
- Display of the Fresnel diagram or vector diagram

On each phase L1, L2, L3: display of Vn and An on a Fresnel diagram.

Display Filter	Reference vector for the
(RH vertical menu)	Fresnel diagram
3U	U1
3V / 2V	V1
4A / 3A / 2A	A1
L1	A1
L2	A2
L3	A3

4.2 Harmonics Mode

- Press on the display mode key

- The following screen is displayed:

Selection of harmonic analysis measurement using the variable function keys located directly under the screen:

1. Harmonic analysis of the phase-phase or single voltages of the three phases of a three phase network V or

Values measured for each phase (harmonic N°3: Vh03):

- Percentage in relation to the fundamental
- RMS value,Phase angle in relation to the fundamental,

according to the measurement type chosen (V) with the variable function keys situated just below the screen.

Selection of expert mode **-0+** (see 4. in § 4.2), for the three phases **3L** or **L1**, **L2** or **L3** by pressing on the keys.

Cursor enabling selection up to harmonic order 50, with the keys, as soon as order 25 is reached, the 25 to 50 range appears (order 0 represents the DC component).

2. Harmonic analysis of the current of one of the phases of a three phase network

On phases L1, L2, L3 display of:

- the THD,
- and the parameters concerning the harmonic order under consideration:
 - percentage in relation to the fundamental

Δ

- RMS value and phase angle in relation to the fundamental component
- MIN and MAX values of the percentage to fundamental

3. Harmonic analysis of the power of one of the phases of a three phase network

(C.A 8334B only).

V/A

The bars representing the harmonics have signs.

Since the bar selected is negative, pictogram G indicates that it is a harmonic emitted (by convention, positive harmonics are received and negative harmonics emitted). The sign is only available in harmonic power measurement.

4. Harmonic analysis in expert mode (C.A 8334B only)

Press on the Area key to select "-.+" and on the variable function key

Note:

V

- in the first column, the harmonics inducing a negative sequence are indicated,

the following is displayed (ditto for

A

):

- in the second column, those inducing a nil sequence (added into the neutral)
- in the third column, those inducing a positive sequence.

The influence of harmonics on heating of the neutral or on rotating machines can thus be analysed.

Expert function is possible in V and A

4.3 Power / Energy Mode W

- Press on the display mode key W

The instrument enables:

- Active energy measurement : produced and consumed (negative and positive)
- Measurement of reactive power: capacitive or inductive
- Measurement of apparent power:
- To start energy aggregation, press
- To stop energy aggregation, press _____, the date and time appear on the top, right of the screen
- To reset the counters to zero, press on

Starting and stopping energy aggregation

The following screen presents the principal values characterising power and energy

Choice of power parameters

Note: The display is automatically adjusted for a display in W, VA, VAR or kW, kVA, kVAR It is possible to switch to other display modes without stopping the aggregation.

■ G Key

This function key is used to display produced or consumed power or energy on each type: active, reactive and apparent.

W	50.00Hz 17/04/01 10:49:21	 	7/04/01_10:55 17/04/01_10:55	100% 5:08	
kW Wh	1) +1.353 0000000	② +3.769 0000000			 After a key is pressed, the indication of the date and time of accumulation stoppage appears, the energy values are then frozen for once and for all. It will necessary to press the ways key again to recover the
kvar Varh	€0.757 €0000000 ÷0000000	€0.242 €0000000 ŧ0000000	€0.120 ≰0000000 ‡0000000	L2 L3 Σ	possibility of starting another accumulation of energy (by pressing the C key).
kVA VAh	1.672 0000000	3.796 0000000	3.450 0000000		
W	PF	<u>n</u>	լինել	¥	

If the 6 key is pressed, the energy is produced (from load to source); othewise, the energy consumed is produced (from source to load). The accumulated energy is therefore given on 8 different meters (per channel) :

- active energy consumed
- reactive inductive energy consumed
- reactive capacitive energy consumed
- apparent energy consumed

- active energy produced
- reactive inductive energy produced
- reactive capacity energy produced
- apparent energy produced

In **3L** display mode, the PF, DPF (Displacement Power Factor) or $\cos \varphi$ values and the tangent can be displayed by pressing on the **PF** function key phase by phase (on all 3) and total.

W	50.00Hz	17	17/04/01 10:59			
	1	2	3			
Power factor — PF	0.634	0.998	0.995	3L		
DPF or Cosine φ DPF	0.742	0.999	0.999	L1 L2 L3		
Tangent ϕ — Tan	-0.439	+0.050	+0.035	\sim		
W	PF	C	௹			

+ W

Nota:

/!\

Four quadrants power diagram

When the active energy is negative the reactive energy polarity generates "inverted" physical behaviour (inductive or capacitive).

4.4 Transient mode (on C.A 8334B only)

Press on the display mode key

Transient states can be displayed as curves. All the channels (6) are stored in memory for each transient state (irrespective of the connection configuration).

It is possible to capture up to a maximum of ${\bf 50}$ transient states.

The function keys enable the user to:

- capture search programming for a new transient with
- display a captured transient with
- delete a captured transient with

■ The screen below, accessed with the key, shows the programming to capture a new transient (if a search is currently in process, the user can stop it by pressing on 100)

				Whe
<u>6</u> ~~		25/07/01 10:56	100%	displa
				state
SEAR	CH FOR NEW TRAN	ISIENTS	l	state
SLOTS AVAI	LABLE 5	50		Num
				in rea
START	: 21/06/25 10:55			
END	: 22/06/25 10:55			Trans
V threshold	:1%			
A threshold	:1%			Pres
Number	:1			
NAME	: T E S <u>T</u>			- Set
				100
				- Ch
		ř 🔒	YY	
				\leq

When scanning for transient states, a progression bar is displayed, indicating the ratio between the number os transient states already found and the programmed number of transient states.

Number of transient states that can still be recorded (refreshed in real time).

Transient search start and end time

Press on the ()) keys to select the parameters and on the

- keys to modify them.
- Setting trigger thresholds : 1%, 2%, 5%, 10%, 20%, 50%, 100%, for voltage and current.
- Choice of the name and number of transients with the keys:
 - selection of the character place (a maximum of 7 characters)
 - selection of the alphanumeric value

Validate with the 🔶 key

If tripping is on current, a recording of the voltage and current waveform is made on all the measurement channels (6 in all).

		THRESHOLD								
	100%	50%	20%	10%	5%	2%	1%			
MN 200A clamp meter	200	100	40	20	10	4	2			
MN 100A clamp meter	100	50	20	10	5	2	1			
Clamp meter C	1000	500	200	100	50	20	10			
AmpFLEX	2900	1400	580	290	140	58	29			
Clamp meter PAC	1000	500	200	100	50	20	10			
Clamp meter MN 5A Adaptator 5A	[(Primary × 5) ÷ (Secondary)] × (Percentage ÷ 100)									
Voltage	480	240	96	48	24	9,6	4,8			

The scree	en below can be accessed with the	📄 key	and displays a transient previously stored in the memory.
~~~	■ = 17/04/01 14:39	100%	
			Displays the memory occupied by transients stored
SELECT	ION OF TRANSIENT		
			Transient time and date recording
C6	05/07/01 14:31:41		Press on the keys to select the transient and validate
C5	05/07/01 14:31:41		
C3	05/07/01 14:31:21	·	with the $\langle \boldsymbol{\leftarrow} \rangle$ key
C2	05/07/01 14:31:04		$\bigtriangledown$
C1	05/07/01 14:31:04		The keys are also used to select a transient to be deleted
			( ); then validate with ); then validate with
		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	

#### Storing trigger

The threshold T in percent, define an envelope width over and under the last cycle of signal V and A.

Let **S(t)** depend on a **T**-periodic signal and **L** be the half-width of the selected tube. The sample having value **S(t_o)** is then considered to be "transient state recording triggering" if and only if **S(t_o-T) - L**; **S(t_o-T) + L** [ and the apparatus is not already processing a transient state.

The screen below displays the transient selected on the previous screen:



#### ■ After selecting 3V



- Representation on the screen of 4 periods of 256 counts/periods with 1 cycle before the trigger and 3 cycles after
- Display of the date and time the transient was recorded

The curves to be displayed are selected by pressing on the keys:

- 3V displays the three single voltages during the transient,
- **4A** displays the three currents and the neutral current during the transient,
- L1, L2 or L3 display the single current and voltage in turn on phase 1, 2 or 3.

Instant values of signals at an instant "t", in relation to the cursor on the time scale with the  $(\rm keys$ 

NB : The "Trigger" sample is included within the time interval **[0 ; T/8[** (where **T** is the signal period).

This key allows the user to return to the transient selection screen

#### After selecting L1



#### 4.5 Alarms Mode 🗘

- Press on the display mode key 🛆

- The next screen presents the various alarms stored.

Note: The threshold values must first have been programmed in the (m) mode



*Note:* All the alarms recorded can be exported to a PC with the operating software. Up to 4096 alarms can be captured. The alarm values recorded in W, VAR, PF, DPF and Tan? are in absolute values.

<u>Note</u> : The type of connection selected in the () mode has no influence on the possibilities of choosing the alarm target and monitored parameter. The user is responsible for making pertinent choices.

#### 4.6 Recording Mode

This mode enables all the parameters previously configured in the (m) mode to be recorded.

The function keys available in this mode enable:

- a new record to be made with
- an record to be displayed with
- an record to be deleted with

#### Saving selected parameters



**Note:** the start and end dates are adjusted according to the chosen recording integration period. "PERIOD" does not refer to a sampling period but to an integration period (average). **Note :** The device calculates in real time the storage needs of the recording and if necessary displays the message "Not enough memory".

#### Selecting or deleting a record

Press the 으 mode key:

The screen below can be accessed with the key and displays a record previously stored in the memory.



*Tip!:* It is possible to display a measurement being recorded by selecting the name of the recording. To refresh the screen, press the mode key a (caution: loss of cursor position and zoom).

The following screen opened using a key, is a way of consulting a recording previously stored in memory.

The device makes an automatic correction if the programming dates and times do not match:

- the current date
- the current time

- the set recording integration period (it is advisable to set times that are multiples of the integration period).

**Note:** the instrument automatically corrects the start and end time in order to improve the readability of the time scales of the recording mode (graph representation).

#### Selecting a graphic display for recorded measurements

Recordings of measurements are displayed in graphic form

Selecting the "TEST" record (see "selecting a record") gives access to the screen below which allows the selection of the measurement to be displayed:



An example of the graphic display of V RMS measurements



- When the  ${\bf V}~{\bf RMS}$  key is pressed, the following screen is displayed:

Display of the average voltage for each of the 3 voltages, hourby-hour by moving the cursor with the  $\langle 4 \rangle \langle 4 \rangle$  keys.

3 phases or each individual phase can be selected using the keys

Returns the user to the screen where the measurement to be displayed is selected



/ When the display integration period is different from the recording integration period:

- The displayed **Avg** value is the average of the measurements for each recording integration period in a display integration period - The extreme values are the minimum and maximum recording integration periods in a display integration period.

- When the L1 phase is selected, the following screen is displayed:

#### Graphic display of average power



Energy measurement for a determined period



Average value of the active power on the L1 phase, by moving the cursor with the  $\operatorname{cursor}$  keys:

Note: Hold the selected key down to switch to fast forward

The energy over a selected period can be deduced from the average power records:

- function key when the cursor is - Press on the positioned on the start instant of the energy calculation
- Move the cursor with the () keys to select the end instant

The energy value is displayed, with end dates and times.

In this way, it is possible to make an energy measurement over several recording ranges in the 4 quadrants.

Note: All the data concerning a recording campaign can be exported to a PC using the software «QualiStarView».

Note: The	⊕	and	-∕⊖_	keys are u	used for	changing	the display	integration	period o	f the displa	ayed r	neasuren	nent and
the time sc	ale of the	graph	ics.										

Display integration period	Graph scale
2 hours	over 5 days
1 hour	over 2 1/2 days
15 minutes	over 15 hours
10 minutes	over 10 hours
5 minutes	over 5 hours
1 minute	over 1 hour
20 seconds	over 20 minutes
5 seconds	over 5 minutes
1 second	over 1 minute

Note: The minimum display integration period is limited by the recording integration period.

The recording integration period of 2 minutes is a special case. In this case, only the following display integration periods are possible: 10 minutes, 1 hour and 2 hours.

#### 4.7 Screen Memorisation 🗐

The real lows 8 or 12 displays to be saved (according to the instrument model) for recall or display later on.

■ A long press (about 3 s) on this key freezes the current screen:

The finished.

This icon is replaced by **we** if there is no space left in the memory to record the photo.

**Note:** These screens can be stored on a PC via the QualiStartView operating software.



■ A short press (about 1 s) on this key gives access to the menu of screens already saved:



To exit from the display of the recorded screen and return to the display of the recorded screen menu, press the very again.

*Important note:* the various storage spaces of C.A 8332B and C.A 8334B are of a fixed size and are completely independent of one another (partitioned). There are 4 spaces for C.A 8334B (alarms, photographs, transient states and recordings) versus 3 for C.A 8332B (less the transient states).

### 4.8 Printing

The key allows a screen to be printed immediately on a dedicated printer connected to output 9



The dedicated printer for the Qualistar is "DPU 414 - SEIKO" (see § 9.3)

#### 4.9 Help 🕐

The ? key allows the user to obtain help in the selected language for the current display mode.

(?)	27/07/01 15:34	100%	
PF	Display of PF, DPF and Tan		
w	Active power		Example:
Wh	Active energy consumed		While the C display is in use, one press on the ? key
VAR	Reactive power		displays the information opposite.
VARh	Reactive energies consumed		
VA	Apparent power		
VAh	Apparent energy consumed		
C	Start of cumulated energy metering		
டு	End of cumulated energy metering		
	Reinitialization of cumulated energy metering		
$\Delta \nabla$	Choice of measurement target (3L,L1,L2,L3,Sigma	0	

#### 4.10 QualistarView software

The QualistarView software is running on Windows 9x, NT4, Me, 2000 and XP.

Run Setup.exe

#### Setup of serial communication:

#### - On Qualistar (**Setup** mode)

- On the software "Qualistar View" (Submenus : Options > Communication)

Nota: the communication speed must be the same on the Qualistar and the "QualistarView" software.

Once the speed has been configured start retrieving the **Qualistar** configuration (Submenu: Options > Setup **Qualistar**) to see how the serial communication works.

The data imports from **Qualistar** (to the PC) generate backups of files specific to **Qualistar View** of which the extensions are as follows:

- ".mon" (for a recording)

- ".trs" (for a transient state)

- ".bmp" (for a screenshot)

- ".ala" (for a complete or customized alarms log)

- ".per" (for the recording of a measurement and a data channel to which a display integration period is assigned other than the recording integration period of **Qualistar**)

- ".trt" (for a recording to which a voltage transformer ratio of 1 to 2999 has been applied)

#### **Dimensions and weight** 5.1

■ 240 x 180 x 55mm 2,1kg with batteries

#### 5.2 Power supply

#### AC mains supply

With an internal mains adaptor Range for use: 85-265V 50/60Hz Max. power: 40VA

#### Battery power

Allows the instrument connected to the AC supply to be used in the event of a power interruption. Type: NiMH 3500mAh Output: 4-wire (2 for temperature probe) Rated voltage: 9.6V Charge time: approx. 5hrs Temperature for use : 0°...+50°C Recharging temperature : +10°...+40°C Storage temperature : -20°C...+50°C ( duration ≤ 30 days) -20°C...+40°C ( duration form 30 to 90 days) -20°C...+30°C ( duration from 90ays to 1 year).

The battery starts to charge when the mains supply adaptor is connected. When the battery is charged, the instrument uses the current supplied via the mains supply without drawing on the battery.

#### **Climatic conditions** 5.3

#### 5.3.1 Environmental conditions



#### 5.3.2 Altitude

Use: 0..0.2000 m Storage: 0...10 000 m

#### 5.4 Compliance with international standards

#### 5.4.1 Electrical safety (as per NF EN 61010-1:2001)

#### - Double insulation:

- Measurement category: IV
- Pollution level: 2
- Assigned voltage: 600 V RMS
- Inside use

#### 5.4.2 Electromagnetic compatibility

- Immunity: as per NF EN 61236 1 : 2006
- Influence THD at 10V/M : 4.5%
- Radiation field resistance: as per IEC 1000-4-3
- Electric shock resistance: as per IEC 1000-4-5
- Voltage interruption as per IEC 1000-4-11

#### 5.4.3 Mechanical protection

- Operating position: Indifferent
- If dropped: as per NF EN 61010-1

- Rigidity: as per NF EN 61010-1
- Impermeability: IP 50 as per NF EN 60529 A1 (electrical IP2X for the terminals)
  - 27

- Electrostatic discharges: as per IEC 1000-4-2
- Emission as per NF EN 61236 1 : 2006
- Fast transients resistance: as per IEC 1000-4-4
- Conducted RF interference: as per IEC 1000-4-6

#### 6.1 Reference conditions

Influence parameter	Reference conditions
Ambient temperature	23°C ± 3K
Humidity	45% RH
Atmospheric pressure	860 to 1060 hPa
Phase voltage	230 V rms and 110 V rms ±2% without DC
Current circuit input voltage other than Amp <i>Flex</i>	$0.03 \text{ V} \le \text{I} \le \text{In} = 1 \text{ V} \text{ rms}$ without DC (< 0.5%)
Amp Flex current circuit input voltage	$11.8 \text{mV} \le \text{I} \le \text{In} = 118 \text{ mV} \text{ rms}$ without DC (< 0.5%)
Frequency of electricity network	50 and 60 Hz ±0.1 Hz
V/I phase shift	0 degree or 90 degrees
Harmonics	< 0.1%

The uncertainties given for power and energy measurements are maximum for  $\cos \phi = 1$  or  $\sin \phi = 1$  and are typical for the other phase shifts.

#### 6.2 Electrical specifications

Sampling frequency: 12.8 kHz per channel at 50 Hz (256 samples per period)

#### 6.2.1 Voltage inputs

- Operating range: phase phase: 960 V RMS
  - phase neutral: 480 V RMS
- $\blacksquare$  Input impedance : 340 k $\Omega$  between phase and neutral
- Admissible overload : 1.2 Vn permanently
  - 2 Vn for 1 sec

#### 6.2.2 Current inputs

- Operating range: 0-1 V
- Input impedance: 100 k $\Omega$  for the circuit other than Amp*Flex* and 12.4 k $\Omega$  for circuit Amp*FLEX*

- Admissible overload: 1.7 V

#### 6.2.3 Characteristics of the device alone (without the current sensors)

Measurement		Measuring Range		Dislplay	Error in the
		Minimum	Maximum	Resolution	range
Frequ	uency	40Hz	69Hz	0,01Hz	±(0,01Hz)
Single TRM	IS Voltages	6V	480V	0,1V	±(0,5%+0,2V)
TRMS Co Volt	omposite ages	10V	960V	0,1V	±(0,5%+0,2V)
DC Voltages		6V	680V	0,1V	±(1%+0,5V)
Other	Other than	I _{nom} ÷ 1000	1,2 × I	0,1A I < 1000A	±(0,5%+0,2A)
TRMS	Amp <i>FLEX</i> [A]	[A]	1A I ≥ 1000A	±(0,5%+1A)	
Current	AmpELEY	101	6500A	0,1A I < 1000A	
	AMPFLEX 10A	IOA		1A I ≥ 1000A	±(0,5 %+1A)
DC Currents (clamp meter PAC)		10	1700A ⁽¹⁾	0,1A I < 1000A	±(1%+1A)
		IA	TTUUA	1A I ≥ 1000A	

(1)  $1,2 \times 1000 \times \sqrt{2} = 1700A$ 

Measurement		Measuring range		Display	Error in the
		Minimum	Maximum	Resolution	range
Peak	Other than Amp <i>FLEX</i>	00	1,7 × I _{nom} [A] ⁽¹⁾	0,1A I < 1000A	+(1%+1^)
Current	Amp <i>FLEX</i>		9190A ⁽²⁾	1A I ≥ 1000A	Ξ(1/0+1Λ)
	Other than	I _{nom} ÷ 100	1,2 × I _{nom}	0,1A I < 1000A	±(1%+0,5A)
TRMS half	Amp <i>FLEX</i>	[A]	[A] [A]	1A I ≥ 1000A	±(1%+1A)
current ⁽⁵⁾		100A	6500A	0,1A I < 1000A	±(1,5%+4A)
				1A I ≥ 1000A	
Single Pea	ak voltages	6V	680V ⁽³⁾	0,1 V	±(1%+0,5V)
Peak composite voltage		401/	1260\/ ⁽⁴⁾	0,1V U < 1000V	+(1%+0.5)/)
		100	13007	1V U ≥ 1000V	⊥ ±(1/0+0,3V)
TRMS half p to phase	period phase voltage ⁽⁵⁾	6V	480V	0,1V	±(0,8%+0,5V)
TRMS half p to ground	period phase d voltage ⁽⁵⁾	10V	960V	0,1V	±(0,8%+0,5V)
Peak	factor	1	9,99	0,01	±(1%+0,02)

1) 1.2 x Inom x  $\sqrt{2}$  = 1.7 x Inom

2) 6500 x √2 = 9190A

3) 480 x √2 = 680V

4) 960 x √2 = 1360V

5) Caution : The absolute offset value must not exceed 14% of the peak amplitude.

In other words,  $s(t) = S x sin (\omega t) + O$ , giving us  $IOI \le 0.14 x S$  (with positive S).

The half period values are the MAX and MIN values of the waveform mode and the VRMS, URMS and ARMS values (other than the neutral current) are used in the Alarm mode.

Measurement		Etendue de mesure		Résolution	Erreur dans le
		Minimum	Maximum	d'affichage	référence
	Other than	0147	00001/14	1 digita	$\pm$ (1%) Cos $\phi \ge 0.8$
Active	Amp <i>FLEX</i>	Uvv	9999600	4 digits	±(1,5%+10pts) 0,2 ≤ Cos φ < 0,8
Powers	AmpELEY	014/	00001/14/	1 digita	±(1%) Cos φ≥0,8
	Ampriex	Uvv	9999600	4 digits	±(1,5%+10pts) 0,5 ≤ Cos φ < 0,8
Other than       AmpFLEX       Powers       AmpFLEX				±(1%) Sin φ≥ 0,5	
	Amp <i>FLEX</i>	UVAR	9999KVAR	4 digits	$\pm$ (1,5%+10pts) 0,2 $\leq$ Sin $\phi$ < 0,5
	Amp <i>FLEX</i>	0VAR	9999kVAR	4 digits	±(1,5%) Sin φ≥0,5
					±(2,5%+20 pts) 0,2 ≤ Sin φ < 0,5
Apparen	t power	0	9999kVA	4 digits	±(1%)
Dementforden			1	0.001	$\pm(1,5\%)$ Cos $\phi \ge 0,5$
Power factor	-1	0,001		±(1,5%+0,01) 0,2 ≤ Cos φ < 0,5	
Tangent VA ≥ 50VA		20.76	22.76	0,001 Tan φ < 10	1/19 000 1
		-32,70	32,76	0,01 Tan φ≥ 10	±(1) sur φ

Measurement		Measuring range		Display	Error in the
		Minimum	Maximum	Resolution	reference range
	Other than	0\\/b	9999M\\\/b	4 digits	±(1%) Cos φ≥0,8
Active	Amp <i>FLEX</i>	00011	33331010011	4 digits	$\pm(1,5\%)$ 0,2 $\leq$ Cos $\phi$ < 0,8
energy	AmpElEY	0\\/b	0000MW/b	4 digits	±(1%) Cos φ≥0.8
	AmpFLEX	UVVh	33331010011	4 uigits	$\pm(1,5\%)$ $0,5 \le \cos \phi < 0,8$
Other tha Amp <i>FLE</i> Energies réactives	Other than	0\/APb	9999MVARh	4 digits	±(1%) Sin φ≥0,5
	Amp <i>FLEX</i>	<b>x</b>			±(1,5%) 0,2 ≤ Sin φ < 0,5
	AmpELEY	0VARh	9999MVARh	4 digits	±(1,5%) Sin φ≥0,5
	Ampreex				$\pm (2,5\%)$ 0,2 $\leq$ Sin $\phi$ < 0,5
Apparen	t energy	0VAh	9999MVAh	4 digits	±(1%)
Unbal (three phas	lance se system)	0%	100%	0,1%	±(1%)
Phase	angle	-179°	180°	1°	±(2°)

Measurement	Measuring range		Display	Error in the
measurement	Minimum	Maximum	Resolution	range
Harmonics ratios (V _{RMS} > 50V) (I _{RMS} > I _{nom} ÷ 100) rang ∈ [1 ; 50]	0%	999 %	0,1%	±(1%+0,5%)
Harmonics angles				±(3°) rang ∈ [1 ; 25]
<u>(V_{RMS} &gt; 50V)</u> (I _{RMS} > I _{nom} ÷ 100)	-179°	-180°	f	±(10°) rang ∈ [26 ; 50]
Total harmonics ration rang £ 50	0%	999 %	0,1%	±(1%+0,5%)
Factor K	1	99,99	0,01	±(5%)

#### 6.2.4 Nominal range of use

 $\label{eq:constraint} \begin{array}{l} Frequency: 40 \mbox{ to 70Hz} \\ Harmonics: THD (I): 0 \mbox{ to 40\%} \\ THD (U): 0 \mbox{ to 20\%} \\ \mbox{Magnetic field: 0 \mbox{ to 400A/m}} \\ Electrical field: 0 \mbox{ to 3V/m} \\ Relative humidity: 10 \mbox{ to 90\%, free of condensation.} \end{array}$ 

#### 6.3 Specifications of the sensors (with C.A 8332B/34B)

#### Sensor characteristics C193 (Accessories)

- Nominal range: 1000A AC for  $f \le 1 \text{ kHz}$
- Measurement range: 3A to 1200A AC (I > 1000A not permanent)
- Input/Ouput ratio: 1mV AC/ A AC
- Maximum clamping capacity: 52mm
- NF EN 61010-2-032, 600V CAT IV, POL 2
- Reference conditions

Ambiant temperature	23°C ±3 K
Humidity	20% to 75% of RH
Frequency	4865Hz
Distortion factor	< 1% without superimposed DC current
Magnetic field of external origin	< 40A/m (earth's magnetic field)

#### Error in the reference conditions *

Primary current (in A AC)	310A	10100A	1001200A
Precision (in % of the input signal)	≤ 0.8%	≤ 0.3%	≤ 0.2%
Phase shift (in °)	≤ 1°	≤ 0.5°	≤ 0.3°

* Make a logarithmic interpolation between each specified value

■ Variations in the nominal field of use (to be added to the error under reference conditions)

Ambiant temperature from -10°C to +50°C	≤ 200 ppm/K or 0.2% per 10K
Humidity from 10 to 90%	< 0.1%
Frequency in relation to accuracy	3048Hz : < 0.5% 651000Hz : < 1% 15kHz : < 2%
Positions of the cable in the jaws	< 0.1% for f ≤ 400Hz
Adjacent conductor carrying a 50Hz AC current	≤ 0.5mA/A
Distortion of crest factor $\leq 6$ and current $\leq$ 3000A peak	< 1%
Distortion DC current ≤ 15A	< 1%
superimposed on the nominal current	~ 1/0

Overloads : Frequency derating beyond 1kHz :

$$I \max \le 1000A \times \frac{1}{f (kHz)}$$

- Specifications of the AmpFLEX A193 (accessories)
  - Nominal range : 3000A AC
  - Measurement range : 10A to 6500A AC
  - Input/Ouput ratio : 140mV AC/3000A AC at 50Hz Note : the ouput is proportional to the amplitude and the frequency of the measured current
  - Note : the ouput is proportional to the amplitude and the nequency of the measured curren
  - Diameter of the sensor: 140mm Ø / length 450mm or 250mm Ø / length 800mm
     NF EN 61010-1 and 2 (electrical safety) 1000V CAT III or 600V CAT IV, POL 2
  - Reference conditions

Ambient temperature	18°C à 28°C
-	
Humidity	20% to 75% of RH
Position of conductor in the sensor	centered
	oontoroa
Continuous magnetic field	< 40A/m (earth's magnetic field)
External alternative magnetic field	none present
External electric field	none present
Frequency	from 10Hz to 100Hz
Периспеу	
Type of signal measured	sinusoidal

■ Error in the reference conditions

Primary current (in A AC)	10A100A	100A6500A
Precision (in % of the input signal)	≤ <b>3%</b>	≤ 2%
Phase shift at 50 Hz (in °)	≤ 1°	≤ 0.5°

■ Variations in the nominal working range (to be added to the error under reference conditions)

Influencing factors	Influence range	Error
Temperature	-20°C to +60°C	0.2% per 10 K
Relative humidity	10% to 90% RH	0.5%
Frequency response	10Hz20kHz	0.5%
Position of conductor in clamp	Any position on the internal perimeter of the undeformed sensor	2% (4% near the latching system)
Adjacent conductor carrying an AC current	Conductor in contact with the sensor	1% (2% near the latching system)

#### Characteristics of PAC93 sensors (accessories)

- Rated calibre: 1000A AC, 1400A DC
- Measurement range: 10A to 1000A AC, 10A to 1400A PEAK AC+DC
- Input/output ratio: 1mV/A
- Maximum clamping capacity: one 39 mm Ø cable (two 25 mm Ø cables), a 50 x 12 mm busbar section
- NF EN 61010-2, 600V CAT III, POL 2 or 300V CAT IV, POL 2

# Using C.A 8332B / C.A 8334B (600V CAT IV) with PAC 93 sensors (600V CAT III or 300V CAT IV) involve the set 600V CAT III or 300V CAT IV.

#### Reference conditions

Temperature	18°C to 28°C
Relative humidity ratio	20% to 75% RH
Battery voltage	9V ±0.1V
Position of the conductor in the sensor	centered on the clamp marks
Magnetic field	DC magnetic field
AC external magnetic field	none
External electrical field:	none
Frequency range	≤ 65Hz
Type of signal measured	sinusoidal

#### Error in the reference range

Primary current	10100A	100800A	8001000А АС 8001400А реак
Accuracy	≤ 1.5% +1A	≤ <b>3%</b>	≤ 5%
Primary current	10100A	1001000A	
Phase angle	≤ <b>2</b> °	≤ 1.5°	

#### ■ Variation in the rated utilisation range (to be added to the reference range error)

Influence parameter	Influence range	Error
Temperature for use	18°C28°C	ZERO: ≤0.2A/K
		SCALE: ≤ 300ppm/K or 0.3%/10K
Battery voltage	6.5V to 10V	≤ 1A/V
	10% and 90% RH	$\leq$ 0.5% of the reading
Position of a 20 mm Ø 20 conductor	DC at 440Hz	< 0.5% of the reading
	DC at 1Hz	< 1% of the reading
	DC at 2Hz	< 3% of the reading
	DC at 5Hz	< 10% of the reading
Live adjacent conductor	50 and 60Hz	< 10mA/A AC (23 mm from the clamp)
External field	400A/m	< 1.3A
Rejection in common mode (in AC)	50 to 400Hz	> 65dB
Remanence in DC	+1400A DC at -1400A DC	< 4mA/A
Frequency of the measurement signal	65Hz to 440Hz	-2%
	440Hz to 1kHz	-5%
	1kHz to 10kHz	-4dB

#### OVERLOADS

Derating in frequency beyond 1kHz Imax  $\leq$  1000A x 1 / f (kHz)

#### Specifications of the MN93A sensors (accessories)

Maximum clamping capacity: 20 mm

■ NF EN 61010-2-032, 600V CAT III, POL 2 or 300V CAT IV, POL 2

# Using C.A 8332B / C.A 8334B (600V CAT IV) with MN 93A sensors (600V CAT III or 300V CAT IV) involve the set 600V CAT III or 300V CAT IV.

Reference conditions

Ambiant temperature	23°C ±3 K
Humidity	20% to 75 % of RH
Frequency	from 4865 Hz
Distortion factor	< 1% (without superimposed DC current)
Magnetic field of external origin	< 40 A/m (earth's magnetic field)
Position of the cable	Centered

#### Error in the reference conditions

#### Calibre 100A

- Nominal current :		100A AC		

- Measurement range : 100mA to 120A AC
- Input / Output ratio : 10mV AC / A AC

Primary current (A AC)	100mA1A	1A120A
Accuracy (as % of the input signal)	≤ 0.7% + 2mA	≤ 0.7%
Phase shift	≤ 1.5°	≤ 0.7°

#### Calibre 5A

- Nominal current : 5A AC
- Measurement range : 5mA to 6A AC

- Input / Output ratio : 200mV AC / A AC

Primary current (A AC)	5mA50mA	50mA500mA	500mA6A
Accuracy	≤ 1% + 0.1mA	≤ 1%	≤ 0.7%
(as % of the input signal)			
Phase shift	≤ 1.7°	≤ 1°	≤1°

#### ■ Variation in the nominal working range (to be added to the error under reference conditions)

Influencing factor	Measurement influencing
Ambiant temperature	≤ 200ppm/K or 0.2%/10K
Humidity (10 90%)	< 0.2%
Frequency (40Hz 1kHz)	< 0.7%
Frequency (1kHz 3kHz)	< 2%
Position of conductor in clamp	< 0.5% to 50/60Hz
Adjacent conductor carrying a 50Hz AC current	< 15mA/A

■ Overloads : Continuous maximum current from 100A to frequency ≤ 1kHz Frequency derating beyond 1 kHz :

Output maximal voltage (saturated secondary) from 8V max. peak.

#### ■ Specifications of the adapter box 5A (accessories)

Nominal range : 5 A

■ Measurement range : 1 mA to 6 A

Input / Output ratio : 0,2 mV AC / mA AC

■NF EN 61010-2, 300V CAT III or 150V CAT IV, POL 2

Using C.A 8332B / C.A 8334B (600V CAT IV) with adapter box 5A (300V CAT III or 150V CAT IV) involve the set 300V CAT III or 150V CAT IV.

Reference of conditions

Ambiant temperature	23°C ± 3K
Humidity	50% to 85% of HR
Frequency	48 to 500 Hz
Magnetic field of external origin	< 40 A /m (earth's magnetic field)
Other channels	No connected

#### Error in the reference conditions

Primary current (A AC)	1mA 50mA	50mA 6A
Accuracy (as % of the input signal)	≤1%	≤0,5%
Phase shift	≤1°	≤0,2°

Variation in the nominal working range (to be added to the error under reference conditions)

Influencing factor	Measurement influencing
Ambient temperature	≤ 0,1% / 25K
Frequency (30 Hz 48 Hz)	< 0,2% + 0,2°
Frequency (48 Hz 500 Hz)	< 0,1% + 0,1°
Frequency (500 Hz 1 kHz)	< 0,3% + 0,2°
Frequency (1 kHz 5 kHz)	< 0,5% + 1°

#### Permanent Overload : 10 A

#### ■ Specifications of the MN93 sensors (accessories)

- Nominal range: 200A AC for  $f \le 1 \text{ kHz}$
- Measurement range: 2A to 240A AC (I > 200A not permanent)
- Input/Ouput ratio: 5mV AC/ A AC
- Maximum clamping capacity: 20mm
- NF EN 61010-2-032, 600V CAT III or 300V CAT IV, POL 2

# Using C.A 8332B / C.A 8334B (600V CAT IV) with MN 93 sensors (600V CAT III or 300V CAT IV) involve the set 600V CAT III or 300V CAT IV.

Reference conditions

 $\triangle$ 

Ambiant temperature	23°C ±3 K
Humidity	20% to 75 % of RH
Frequency	4865 Hz
Distortion factor	< 1% without superimposed DC current
Magnetic field of external origin	< 40 A/m (earth's magnetic field)

Error in the reference conditions

Primary current (in A AC)	210 A	10100 A	100240 A
Accuracy (as % of the input signal)	≤ 3% +1A	≤ 2.5% +1A	≤ 1% +5 mV
Phase shift (in °)	≤ 6°	≤ 3°	≤ 2°

#### ■ Variations in the nominal working range (to be added to the error under reference conditions)

Ambiant temperature from -10°C to +50°C	≤150 ppm/K or 0.15% per 10 K			
Humidity from 10 to 90%	<0.2%			
Frequency in relation to accuracy	40 Hz1 kHz : < 3% 1 10 kHz : < 12%			
Positions of the cable in the jaws	-0.5% to 50/60 Hz			
	<0.5 % to 50/00 Hz			
a 50 Hz AC current	≤ 15 mA/A			
Distortion DC current < 20 A superimposed on the nominal current	< 5%			
Distortion of crest factor $\leq 3$ and peak current = 200 A	≤ <b>3</b> %			

• Overloads : Frequency derating beyond 1 kHz :

#### MAINTENANCE AND CALIBRATION OF CAPTORS

- Clean with a sponge moistened with soapy water and rinse in the same way with clean water, then dry it quickly.
- Keep the jaw gaps of the clamps (MN93A, MN93, C193 and PAC 93) perfectly clean using a cloth; slightly oil the visible metal parts to avoid rust.
- Check the calibration every 2 years.

# 7. MAINTENANCE

Yor maintenance, use only specified spare parts. The manufacturer will not be held responsible for any accident occuring following a repair done other than by its After Sales Service or approved repairers.

#### 7.1 Recharging the battery

The instrument's batteries are charged when it is connected to the AC mains supply.

For safety and trouble-free operation of the charger, the battery must be changed when de-energised with the equipment turned off and there must be a delay of at least one minute without the battery being connected.
 Do not dispose of the battery on a fire.

 $\triangle$  Do not expose the battery to heat exceeding 100°C.

Do not short circuit the battery terminals.

#### 7.2 Cleaning the housing

Clean the unit with a cloth and a little soapy water. Clean off with a damp cloth.

ightarrow Do not use solvents.

#### 7.3 Metrological check

#### 

This instrument should be checked at least once a year. For checks and calibrations, contact one of our accredited metrology laboratories (information and contact details available on request), at our Chauvin Arnoux subsidiary or the branch in your country.

#### 7.4 Repairs

For all repairs before or after expiry of warranty, please return the device to your distributor.

# 8. TO ORDER

Power Quality Analyser :	С	Α	8	3	3	3	2	В										
	С	Α	8	3	3	3	4	в		T	7				Ē			
Instrument comes complete (as per grill) with: <ul> <li>1 QualiStarView software</li> <li>1 DB9F standard optical lead</li> <li>4 x 3m leads fitted with banana plugs</li> <li>4 crocodile clips</li> <li>1 mains lead</li> <li>and these operating instructions</li> </ul> Versions French		<b>A</b>	8	3		3	4	В	F.1	RN		X	×					
Set of 3 x C 193 clamps (1000 A - Ø 52 mm)												. C	Х					
Set of 3 x Amp <i>FLEX</i> A 193 (3000 A - Ø 140 m Set of 3 x Amp <i>FLEX</i> A 193 (3000 A - Ø 250 m Set of 3 x MN 93A clamps (100 A - 5 A - Ø 20 Set of 3 x PAC 93 clamps (1400 A - Ø 42 mm)	m / m / mm	450 800 1)	) m ) m	nm le nm le	one	g) . g) .			·····	 		. A . A . M . P	1 2 N A					
Languages of operating instructions																		
French														. F	R			
English (by default)														G	В			
German					••••									. A	L			
Italian					••••										Т			
Spanish	•••••				••••					•••••				E	S T			
French, German or Spanish (by default) English Italian Swiss	 	·····							 	 						F G I C		
Or:																		
Power Quality Analyser C.A 8332-F with MN cla	mp															P0	1. <b>1605</b>	.01B
Power Quality Analyser C.A 8334-F with MN cla	mp															P0	1. <b>1606</b>	.01B
Power Quality Analyser C.A 8332-F with Amp FL	.EX	· · · · ·			••••										•••••	P0	1.1605	.02A
Power Quality Analyser C.A 8332-Int with MN cl	. <b>E</b> A am	n			••••	•••••			•••••	•••••					•••••	F0	1. <b>1606</b>	.02A
Power Quality Analyser C.A 8334-Int with MN cl	am	р														P0	1. <b>1606</b>	.03B
Power Quality Analyser C.A 8332-Int with Amp	LE.	<b>X</b>			••••											P0	1. <b>1605</b>	.04A
Power Quality Analyser C.A 8334-Int with Amp	LE.	<b>X</b>			••••											P0	1. <b>1606</b>	.04A
■ Accessories																		
Set of 3 x C 193-F clamps					••••											P0	1. <b>1203</b>	.27B
Set of 3 x MN 93A-F clamps	•••••				••••					•••••						P0	1.1204 1.1205	.31B
Set of 3 Amp <b>FLEX</b> A193 - F Ø 800 mm	•••••				••••					•••••						FU	1.1205	.36B
Set of 3 x PAC 93-F clamps										·····						P0	1. <b>1200</b>	.76B
Set of 3 x C 193-Int clamps																P0	1.1203	.21B
Set of 3 x MN 93A-Int clamps					••••											P0	1. <b>1204</b>	.32B
Set of 3 Amp <i>FLEX</i> A 193 - Int Ø 450 mm					••••										•••••	P0	1.1205	.23B
Set of 3 x PAC 93-Int clamps	•••••			•••••	••••					•••••						۲0 مو	1.1205	.24B
5A C.A 833x adaptor unit	•••••									•••••			•••••			P	01.101	9.59
5A C.A 833x secura adaptor unit																P	01. <b>10</b> 1	9.90
Shoulder bag for N°6 cable																P	01. <b>298</b>	30.51
Shoulder bag for instrument N°21					••••											P	01. <b>298</b>	0.55

#### Spare parts

4 Leads with banana plug RD + BL + GN + YE	P01. <b>2951.91</b>
4 Leads with banana plugs RG + NR + BL + BC	P01. <b>2951.33</b>
Crocodile clips RD + BL + GN + YE	P01. <b>1019.62</b>
Crocodile clips RG + NR + BL + BC + VJ	.P01. <b>1018.49A</b>
Carrying bag N°22	P01. <b>2980.56</b>
C.A 833x strap	P01. <b>2980.57</b>
C 193 RD clamp	.P01. <b>1203.22B</b>
C 193 BK clamp	.P01. <b>1203.23B</b>
C 193 GN clamp	.P01. <b>1203.24B</b>
C 193 YE clamp	.P01. <b>1203.25B</b>
C 193 BL clamp	.P01. <b>1203.26B</b>
MN 024 PD damp	D01 1201 22B
MN 93A FK clamp	D01 1204.33D
MN 93A DN Clamp	D01 1204.34B
MN 95A GN Glamp	D01 1204.33B
MN 95A TE clamp	D01 1204.30B
	.1 01.1204.378
MN 93 RD clamp	.P01. <b>1204.24B</b>
MN 93 BK clamp	.P01. <b>1204.25B</b>
MN 93 GN clamp	.P01. <b>1204.26B</b>
MN 93 YE clamp	.P01. <b>1204.27B</b>
MN 93 BL clamp	.P01. <b>1204.28B</b>
PAC 02 PD down	D01 1200 798
PAC 93 KD Gamp	D01 1200.70B
PAC 95 Dr. Cidilip	DO1 1200.79D
DAC 03 VE clamp	D01 1200.00D
DAC 03 BL clamp	DO1 1200.01D
	.1 01.1200.020
Amp <i>FLEX</i> A193 Ø 450 mm RD	.P01. <b>1205.25B</b>
Amp <i>FLEX</i> A193 Ø 450 mm BK	.P01. <b>1205.26B</b>
Amp <i>FLEX</i> A193 Ø 450 mm GN	.P01. <b>1205.27B</b>
Amp <i>FLEX</i> A193 Ø 450 mm YE	.P01. <b>1205.28B</b>
Amp <i>FLEX</i> A193 Ø 450 mm BL	.P01. <b>1205.29B</b>
Amp <b>FI FX</b> A193 Ø 800 mm RD	P01 1205 30B
Amp <b>FL FX</b> A193 Ø 800 mm RK	P01 1205.31B
Amp <b>FLEX</b> A193 Ø 800 mm GN	P01 1205.31D
Amp <b>FLEX</b> A193 Ø 800 mm VE	P01 1205.32B
Amp <b>FLEX</b> A193 Ø 800 mm Bl	P01 1205.33D
RS232 DB9F optical lead	P01. <b>2951.90</b>
Ni-MH 35 Wh battery pack	P01. <b>2960.24</b>
2P EUR mains lead	P01. <b>2951.74</b>
Printer DPU 414 - SEIKO	.P01. <b>1029.03A</b>

#### 9.1 Front view of the instrument



#### 9.2 Mathematical formulae used to compute the various parameters

#### Half-period voltage and current RMS values

Vdem [i] = 
$$\sqrt{\frac{1}{NechDemPer}} \cdot \sum_{n: Zéro}^{Zéro suivant} V[i] [n]^{2}$$

Udem [i] =  $\sqrt{\frac{1}{NechDemPer}} \cdot \sum_{n: Zero}^{Zero suivant} U[i] [n]^2$  Compound rms voltage half-period i + 1 phase

Adem [i] = 
$$\sqrt{\frac{1}{NechDemPer}} \cdot \sum_{n: Z \neq ro}^{Z \neq ro suivant} A[i]$$
 [n] ²

Rms current half-period i + 1 phase

Single rms voltage half-period i + 1 phase

NechDemPer : number of samples in the "lobe" in question (between two consecutive zeros) n : sample (0; 255) i : phase (0; 1; 2)

#### Min / max values for voltage and current

Vmax [i] = max (Vdem [i]), Vmin [i] = min (Vdem [i]), Umax [i] = max (Udem [i]), Umin [i] = min (Udem [i]), Amax [i] = max (Adem [i]), Amin [i] = min (Adem [i]), (Avg calculation over 1 s : cf "1s rms values...")

#### Peak values for voltage and current (updated on each waveform refresh)

 $\begin{array}{l} \mbox{Vpp} \ [i] = max \ (V \ [i] \ [n]), \ Vpm \ [i] = min \ (V \ [i] \ [n]), \ n \in [0 \ ... \ NECHPER-1] \\ \mbox{Upp} \ [i] = max \ (U \ [i] \ [n]), \ Upm \ [i] = min \ (U \ [i] \ [n]), \ n \in [0 \ ... \ NECHPER-1] \\ \mbox{App} \ [i] = max \ (A \ [i] \ [n]), \ Apm \ [i] = min \ (A \ [i] \ [n]), \ n \in [0 \ ... \ NECHPER-1] \\ \end{array}$ 

#### Peak factors for current and voltage.

Vcf [i] =  $\frac{\max (Vpp [i], Vpm [i])}{\sqrt{\frac{1}{NECHPER} \cdot \sum_{n=0}^{NECHPER \cdot 1} V[i] [n]}} Peak factor single voltage i + 1 phase$ 

Ucf [ i ] = 
$$\frac{\max (Upp [i], Upm [i])}{\sqrt{\frac{1}{NECHPER} \cdot \sum_{n=0}^{NECHPER \cdot 1} U[i] [n]}} Peak factor phase-phase voltage i + 1 phase$$

Acf [i] = 
$$\frac{\max (App [i], Apm [i])}{\sqrt{\frac{1}{NECHPER} \cdot \sum_{n=0}^{NECHPER \cdot 1} A[i] [n]}} Peak factor current i + 1 phase$$

#### 1 sec RMS values for voltage and current

$$Vrms [i] = \sqrt{\frac{1}{NechSec}} \times \sum_{n: Zéro}^{NechSec - 1} V[i] [n]^{2}$$
Single rms voltage i + 1 phase; Vavg [i] = Vrms [i]  
$$Urms [i] = \sqrt{\frac{1}{NechSec}} \times \sum_{n: Zéro}^{NechSec - 1} U[i] [n]^{2}$$
Compound rms voltage i + 1 phase; Uavg [i] = Urms [i]

Arms [i] =  $\sqrt{\frac{1}{NechSec}} \times \sum_{n: Zéro}^{NechSec - 1} A[i] [n]^2$  Effective current phase i + 1; Aavg [i] = Arms [i]

2

Reverse voltage

Arms [3] = 
$$\sqrt{\frac{1}{NechSec}} \times \sum_{n: Z \neq ro}^{NechSec - 1} (A[0] [n] + A[1] [n] + A[2] [n])$$

#### Voltage and current unbalace

$$V_{+} = \frac{1}{3} (VF [0] + a . VF [1] + a^{2} . VF [2])$$
 Direct voltage (complex notation  $a = e^{j\frac{2\pi}{3}}$ )

 $V_{-} = \frac{1}{3} (VF [0] + a^{2} . VF [1] + a . VF [2])$  $Vunb = \frac{|Vrms_{-}|}{|Vrms_{+}|}, Aunb = \frac{|Arms_{-}|}{|Arms_{+}|}$ 

#### Calculation of the total harmonic distorsion factor (THD)

Vthd [i] = 
$$\frac{\sqrt{\sum_{n=2}^{50}} \text{Vharm [i] [n]}^2}{\text{Vharm [i] [1]}}$$
, Uthd [i] =  $\frac{\sqrt{\sum_{n=2}^{50}} \text{Uharm [i] [n]}^2}{\text{Uharm [i] [1]}}$ , Athd [i] =  $\frac{\sqrt{\sum_{n=2}^{50}} \text{Aharm [i] [n]}^2}{\text{Aharm [i] [1]}}$ 

i : phase (0; 1; 2) n : rang (2...50)

#### ■ Calculation of harmonic bins (see p 11 FT/2)

By FFT (16 bits) 1024 samples on 4 cycles without windowing (CEI 1000-4-7). From real and imaginary parts, each bin ratio is calculated on each phase Vharm[3][51], Uharm[3][51] and Aharm[3][51] in proportion to the fundamental value and the phase angles Vph[3][51], Uph[3][51] et Aph[3][51] between each bin and the fundamental. This calculation is done with the following principle:

module in % : mod_k = 
$$\frac{C_k}{C_1} \times 100$$
 angle in degree:  $\varphi_k = \arctan\left(\frac{a_k}{b_1}\right)$   
with
$$\begin{cases}
c_k = |b_k + ja_k| = \sqrt{a_k^2 + b_k^2} \\
b_k = \frac{1}{512} \sum_{s=0}^{1024} F_s \times sin\left(\frac{k\pi}{512}s + \varphi_k\right) \\
a_k = \frac{1}{512} \sum_{s=0}^{1024} F_s \times cos\left(\frac{k\pi}{512}s + \varphi_k\right) \\
c_0 = \frac{1}{1024} \sum_{s=0}^{1024} F_s
\end{cases}$$

 $c_k$  is the amplitude of frequency component  $f_k = \frac{k}{4} f_1$ 

Fs sampled signal

- co is the DC component
- k is the ordinal number (spectral bin)

Multiplying the voltage harmonic factor with the current harmonics factor gives the power harmonic factor. Differentiating voltage harmonic phase angle with current harmonic phase angle gives power harmonic phase angle. VAharm[3][51], VAph[3][51

#### Nota : Available only for C.A 8334B

#### Distortion factor calculation (DF)

Two global values giving the relative quantity of harmonics are computed: the THD in proportion to the fundamental and the DF in proportion to the RMS value.

$$Vdf[i] = \frac{\sqrt{\sum_{n=2}^{50} Vharm[i] [n]^{2}}}{Vrms[i]} , Udf[i] = \frac{\sqrt{\sum_{n=2}^{50} Uharm[i] [n]^{2}}}{Urms[i]} , Adf[i] = \frac{\sqrt{\sum_{n=2}^{50} Aharm[i] [n]^{2}}}{Arms[i]}$$

K factor

Akf [i] = 
$$\frac{\sum_{n=1}^{n=50} n^2}{\sum_{n=1}^{n=50} Aharm [i] [n]^2}$$
K factor for the i + 1 phase  $\sum_{n=1}^{n=50} Aharm [i] [n]^2$ 

#### Different power levels 1 sec

W [i] = 
$$\frac{1}{NechSec}$$
 ·  $\sum_{n=0}^{NechSec-1}$  V[i] [n] · A [i] [n] Active power i + 1 phase

VA [ i ] = Vrms [i] · Arms [i] Apparent power i + 1 phase

VAR [i] = 
$$\frac{1}{NechSec} \cdot \sum_{n=0}^{NechSec-1} VF[i]$$
 [n - NECHPER / 4] · AF [i] [n] Reactive power i + 1 phase

ou VAR [i] =  $\sqrt{VA[i]^2 - W[i]^2}$  if computation method with harmonics

W [3] = W [0] + W [1] + W [2]	Total active power
VA [3] = VA [0] + VA [1] + VA [2]	Total apparent power
VAR [3] = VAR [0] + VAR [1] + VAR [2]	Total reactive power

#### Various ratios

DPF [i] = cos ( $\phi$ [i]) i + 1 phase displacement factor

Tan [i] = tan ( $\phi$ [i]) i + 1 phase tangent

$$\cos (\phi [i]) = \frac{\sum_{n=0}^{NechSec \cdot 1} VF[i] [n] \cdot AF[i] [n]}{\sqrt{\sum_{n=0}^{NechSec \cdot 1} VF[i] [n]^{2}} \cdot \sqrt{\sum_{n=0}^{NechSec \cdot 1} AF[i] [n]^{2}}}$$

Cosine angle between voltage fundamental and i + 1 phase current

 $PF[3] = \frac{PF[0] + PF[1] + PF[2]}{3}$  Total power factor

 $DPF[3] = \frac{DPF[0] + DPF[1] + DPF[2]}{3}$  Total shift factor

 $Tan [3] = \frac{Tan [0] + Tan [1] + Tan [2]}{3}$  Total tangent

#### Various types of energy

<u> $1^{\underline{st}}$  case : consumed energies (W[i]  $\geq 0$ )</u>

Wh [0] [i] =  $\sum_{Tint} \frac{W[i]}{3600}$  Active energy consumed i + 1 phase

VAh [0] [i] =  $\sum_{Tint} \frac{VA[i]}{3600}$  Apparent energy consumed i + 1 phase

VARhL [0] [i] =  $\sum_{Tint} \frac{\text{VAR}[i]}{3600}$  for VAR [i] > or = to 0 Recative inductive energy consumed i + 1 phase

VARhC [0] [i] =  $\sum_{Tint} \frac{-VAR[i]}{3600}$  for VAR [i] < or = to 0 Reactive capacitive energy consumed i + 1 phase

Total active energy consumed Wh [0][3] = Wh [0] [0] + Wh [0][1] + Wh [0] [2]

Total apparent energy consumed

VAh [0][3] = VAh [0] [0] + VAh [0][1] + VAh [0] [2]

Total reactive capacitive energy consumed VARhC [0][3] = VARhC [0] [0] + VARhC [0][1] + VARhC [0] [2]

Total reactive inductive energy consumed VARhL [0][3] = VARhL [0] [0] + VARhL [0][1] + VARhL [0] [2]

#### <u> $2^{nd}$ case : generated energies (W[i] $\geq 0$ )</u>

Wh [1][i] = 
$$\sum_{Tint} \frac{W[i]}{3600}$$
 Active energy generated i + 1 phase

VAh [1] [i] =  $\sum_{Tint} \frac{VA[i]}{3600}$  Apparent energy generated phase i + 1

VARhL [1] [i] =  $\sum_{Tint} \frac{-VAR[i]}{3600}$  for VAR [i] < or = to 0 Reactive inductive energy generated phase i + 1

VARhC [1] [i] =  $\sum_{Tint} \frac{VAR[i]}{3600}$  for VAR [i] > or = to 0 Reactive capacitive energy generated phase i + 1 phase

Total active energy generated

Wh[1][3] = Wh[1][0] + Wh[1][1] + Wh[1][2]

Total apparent energy generated

VAh[1][3] = VAh[1][0] + VAh[1][1] + VAh[1][2]

Total reactive capacitive energy generated

VARhC[1][3] = VARhC[1][0] + VARhC[1][1] + VARhC[1][2]

Total reactive inductive energy generated

VARhL[1][3] = VARhL[1][0] + VARhL[1][1] + VARhL[1][2]

#### Hysteresis

Hysteresis is a filter principle often used after threshold detection stage. A correct setting of hysteresis value avoid repeated state changing when the measure is varying close to the threshold.

The event detection is activate when the measure is going over the threshold but it can only be deactivated if the measure goes under the threshold minus the value of the hysteresis.

The default hysteresis value is 2% of the reference voltage but it may be set in the range of [1%, 5%] depending of the voltage stability on the network.

#### - Swell detection



- Sag or interruption detection



# Minimum scale values (in waveform mode) and minimum displayed values.

Current sensor type	Minimum displayed current value[A]	Minimum current scale value [A]
AmpFLEX 3000A	9	60
1000A PAC clamp	1	10
1000A C clamp	0,5	10
200A MN 93 clamp	0,5	2
100A MN 93A clamp	0,2	1
5A MN 93A clamp	(Primary × 5) ÷ (Secondary × 1000)	(Primary $\times 5 \times 10$ ) ÷ (Secondary $\times 1000$ )
5A Adaptor	(Primary × 5) ÷ (Secondary × 1000)	$(Primary \times 5 \times 10) \div (Secondary \times 1000)$

For all types of current sensors :

 $A_{RMS} \leq [Minimum value of displayed current] \Rightarrow A_{RMS} = 0$ 

For the MN93A clamp (rating 5A) and adaptor 5A :

Primary ∈ [1 ; 2999] Secondary ∈ {1 ; 5}

> [Minimum displayed current value]  $\leq 0,2 \Rightarrow$  [Minimum displayed current value] = 0,2 [Minimum current scale value]  $\leq 1 \Rightarrow$  [Minimum current scale value] = 1

The minimum displayed voltage value is 5V

$$V_{_{RMS}} \le 5V \Rightarrow V_{_{RMS}} = 0$$
  
 $U_{_{RMS}} \le 5V \Rightarrow U_{_{RMS}} = 0$ 

#### 9.3 Setup DPU 414 printer

To setup the DPU414 printer, press ON and On Line at the same time.

Continue ? : Push 'On-line SW' Write ? : Push 'Paper feed SW' Dip SW-1 1 (OFF) : Input = Serial 2 (ON ) : Printing Speed = High 3 (ON ) : Auto Loading = ON 4 (OFF) : Auto LF = OFF 5 (ON ) : Setting Command = Enable 6 (OFF) : Printing 7 (ON ) : Density 8 (ON ) : = 100 % Continue ? : Push 'On-line SW' Write ? : Push 'Paper feed SW' Dip SW-2 1 (ON ) : Printing Columns = 40 2 (ON ) : User Font Back-up = ON 3 (ON ) : Character Select = Normal 4 (ON ) : Zero = Normal 5 (ON ) : International 6 (OFF) / Character 7 (ON ) : Set 8 (ON ) : = France Continue ? : Push 'On-line SW' : Push 'Paper feed SW' Write ? Dip SW-3 1 (ON ) : Data Length = 8 bits 2 (ON ) : Parity Setting = No 3 (OFF) : Parity Condition = Even 4 (ON ) : Busy Control = H∕W Busy 5 (OFF) : Baud 6 (ON ) : Rate 7 (ON ) : Select 8 (OFF) : = 19200 bps Continue ? : Push 'On-line SW' : Push 'Paper feed SW' Write ? DIP SW setting complete !!



02 - 2010 Code 689142E01 - Ed 3

DEUTSCHLAND - Chauvin Arnoux GmbH Straßburger Str. 34 - 77694 Kehl / Rhein Tel: (07851) 99 26-0 - Fax: (07851) 99 26-60

ESPAÑA - Chauvin Arnoux Ibérica SA C/ Roger de Flor N° 293, Planta 1 08025 Barcelona Tel: 93 459 08 11 - Fax: 93 459 14 43

ITALIA - Amra SpA Via Sant'Ambrogio, 23/25 - 20050 Bareggia di Macherio (MI) Tel: 039 245 75 45 - Fax: 039 481 561

ÖSTERREICH - Chauvin Arnoux Ges.m.b.H Slamastrasse 29/2/4 - 1230 Wien Tel: 01 61 61 961-0 - Fax: 01 61 61 961-61

SCANDINAVIA - CA Mätsystem AB Box 4501 - SE 18304 TÄBY Tel: +46 8 50 52 68 00 - Fax: +46 8 50 52 68 10 SCHWEIZ - Chauvin Arnoux AG Einsiedlerstraße 535 - 8810 Horgen Tel: 044 727 75 55 - Fax: 044 727 75 56

UNITED KINGDOM - Chauvin Arnoux Ltd Unit 1 Nelson Court - Flagship Square-Shaw Cross Business Park DEWSBURY - West Yorkshire - WF12 7TH Tel: 01628 788 888 - Fax: 01628 628 099

MIDDLE EAST - Chauvin Arnoux Middle East P.O. BOX 60-154 - 1241 2020 JAL EL DIB (Beirut) - LEBANON Tel: (01) 89 04 25 - Fax: (01) 89 04 24

**CHINA - Shanghai Pu-Jiang - Enerdis Instruments Co. Ltd** 3 F, 3 rd Building - N° 381 Xiang De Road - 200081 SHANGHAI Tel: +86 21 65 21 51 96 - Fax: +86 21 65 21 61 07

USA - Chauvin Arnoux Inc - d.b.a AEMC Instruments 200 Foxborough Blvd. - Foxborough - MA 02035 Tel: (508) 698-2115 - Fax: (508) 698-2118

www.chauvin-arnoux.com

190, rue Championnet - 75876 PARIS Cedex 18 - FRANCE Tél.: +33 1 44 85 44 85 - Fax : +33 1 46 27 73 89 - info@chauvin-arnoux.fr Export : Tél. : +33 1 44 85 44 86 - Fax : +33 1 46 27 95 59 - export@chauvin-arnoux.fr